
חזרות
1. Email: Give Examples Before Theory
2. MRI and Fourier
3. Need a Student to Implement Deblurring

a) Maybe an exercise next year
b) Get 2 or 4 credit points
c) Come to me at the break



MRI IS ACQUIRED IN FOURIER DOMAIN!

MR image (as 
column 
vector)Fourier transformAcquired data

y = {x}

Sampling domain 
(k-space)

Image domain

Measurement model:
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Blind Image Deblurring (Michaeli & Irani)
• Given a blurred image y we look for a sharp image x and a blur kernel k such that y=x*k
• This is an ill-conditioned problem. Priors needed to help solve it.
• E.g. Allow only a limited set of sharp patches
• Observations used for Priors in this approach:

• High patch recurrence across scales in sharp images
• Lower patch recurrence across scales in blurred images



Cross Scale Similarity: One Row
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Patch Recurrence Across Scales in Sharp Images

Patch Recurrence Across Scales in Blurry Images









Deblurring by Optimization

• Looking for sharp image x and blur kernel k s.t.
– Data Term: Blurring x by k gives y 
– Image Prior: Low L2 distance between patches in xand their Nearest Neighbor in scaled-down x.
– Kernel Prior: Sharpest Possible Kernel



Kernel Estimation
• Input: Blurry image y
• Output: Blur Kernel k
• Initialize k=δ, x=y
• For t=1,…, T

1. Image Prior Update: Scale down x to get xa 
• xa Has a pool of sharper patches

2. Deblurring: Minimize for x (k and xa fixed)
• What happens in Iteration 1?

3. Kernel Update: Minimize for k (x and xa fixed)



Details of the steps
1. Scale down in Fourier domain (Sinc kernel)
2. Deblur using sharp patches and k

– Replace each patch by its NN (Nearest Neighbor)
– Enforce data term. Repeat.

3. Compute k



Implementation Details
• Build a pyramid, where each level is downscaled by a factor of 4/3, using Sinc
• Image level kernel is 51×51. Build pyramid levels until kernel size is 5×5.
• Processing starts at smallest pyramid level. Each recovered x and k are interpolated to higher levels as initial guesses.
• Solving deblurring equations using Fourier



Blurry Input Image



Deblurred



Image Alignment
• Find the transformation between two images

– Translation, Rotation, zoom
– Affine, Homography
– Assumption: No effects of 3D parallax

• Good for:
– Video Stabilization, Video Mosaicing…



Parametric (global) warping
• Examples of parametric warps:

Translation (2 
Parameters)

Rotation (1) 
Keeps Distances

Scaling (1) 
Keeps Angles

Affine (6) 
Keeps Parallel

Projective (8) 
Keeps straight lines



Computing Translation, Direct Methods Assumption: Constant Brightness
• Given images I1 and I2, we can find the translation (u,v) that will minimize the squared error   
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• Average over area of overlap
• Can also search for rotations: (u,v,α)



Cross Correlation
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• Starting from the SSD

• Since
• We can write

• Since ΣI12 and ΣI22 are almost constant, minimizing the SSD maximizes the cross-correlation ΣI1I2
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Normalized Cross Correlation (NCC)
• Given two images I1 and I2 , search for the translation (x, y) maximizing the cross-correlation
• NCC invariant to global addition and multiplication of intensity (I2 = a∙I1 + b)

• Multiresolution search (Pyramids) increases efficiency.
  

 
)ˆ),(()ˆ),(( 2211

)ˆ),(()ˆ),((),( 22
2211

IyxIIyxI
IvyuxIIyxIvuNC

 
x y

vyuxIyxIvuC ),(),(),( 21



Gaussian pyramid of image I1 Gaussian pyramid of image I2

image I2image I1 u=10 pixels

u=5 pixels

u=2.5 pixels
u=1.25 pixels

Coarse-to-fine motion estimation

image I1 image I2



image Iimage J
Gaussian pyramid of image I1 Gaussian pyramid of image I2

image I2image I1

Coarse-to-fine Image Alignment

Search all shifts (small)

Search ±1
Multiply motion by 2

.

.

.



Pattern Matching / Tracking: Normalized Cross Correlation

• Normalized Cross Correlation is an excellent method to find objects in pictures, and to track objects in video.
• Multiresolution search (Pyramids) is used in object search. Not necessary in tracking.
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Limitations of Correlation Search
• Discrete accuracy: checking every possible translation in integer pixel values
• Complexity increases exponentially with numbers of parameters

– Translation: (u,v)  Complexity is N2
– Rotations: (u,v,α) Complexity is N3
– Zoom: (u,v,α,s) Complexity is N4
– Affine: N6



Continuous Approximation(Lucas Kanade)
• Local Taylor approximation in 1D:

• Local Taylor approximation in 2D for images:
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Error Minimization

• To simplify, we look at a single pixel (No ∑ ∑) and use Taylor approximation
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• MSE  when shifting I2 relative to I1 by (u,v):
• Accurate only for very small (u,v), approx. 1 pixel



Error Minimization
• Writing it in simple form

– Ix : The x derivative of image I2– Iy : The y derivative of image I2– It : The image difference I2 - I1• Find (u,v) that minimize the error function 
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Minimization: Zero Derivatives
• Finding (u,v) by setting derivatives to zero:
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Iterative Approach (larger (u,v))
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• Compute image derivatives Ix, Iy. Set u,v to 0.
• Compute once
• Iterate until convergence (It ≈0):

– compute 
– Solve equations to compute residual motion

– Update total motion with residual motion: u+=du, v+=dv
– Warp I2 towards I1 with total motion (u,v).



Iterative Motion Estimation

xx0

estimate 
update

(using d for displacement here instead of u)

Initial: u0=0
It=f1(x0)-f2(x0)
du=It / f’1(x0)
u1=u0+du



Iterative Motion Estimation

xx0

estimate 
update

Initial: u1
It=f1(x0-u1)-f2(x0)
du=It / f’1(x0-u1)
u2=u1+du



Iterative Motion Estimation

xx0

estimate 
update

Initial: u2
It=f1(x0-u2)-f2(x0)
du=It / f’1(x0-u2)
u3=u2+du



Iterative Motion Estimation

xx0



Power of Iterations
• Compute the image derivatives only once
• Has two stages in each iteration:

• Motion Estimation 
• Warping

• Works even with poor motion estimation, as long as it reduces the residual error
• Warping of one image towards the other is done from original image using total motion, and not from previous image using residual motion. (Repetitive warping blurs!)



Multiresolution
Lucas-Kanade assumes that corresponding pixels in 
the two images have same derivative. It works OK 
even if derivatives are similar. But this is incorrect for 
very large motions.

Most areas have 
similar derivatives

Uncorrelated derivatives 
(opposite signs)

To overcome this problem: coarse-to-fine estimation.



Gaussian pyramid of image I1 Gaussian pyramid of image I2

image I2image I1 u=10 pixels

u=5 pixels

u=2.5 pixels
u=1.25 pixels

Coarse-to-fine motion estimation
Needs very small (u,v)

image I1 image I2



image Iimage J
Gaussian pyramid of image I1 Gaussian pyramid of image I2

image I2image I1

Coarse-to-fine Image Alignment
Iteratively
Compute (u,v)

Compute (du,dv)
Warp lower level by 2(u,v)

Update (u,v) & warp



Translation + Scale
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• Write (u,v) for translation and scale

• Insert into the Error Equation

• Compute dx, dy, and s by using derivatives



Translation + Scale    
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• Compute dx, dy, and s by using derivatives

    
yx

xtyx IIdyysIdxxsI
,

))1()1((0
    

yx
ytyx IIdyysIdxxsI

,
))1()1((0

    
yx

yxtyx yIxIIdyysIdxxsI
,

)())1()1((0

• Solve 3 linear equations with 3 unknowns
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Translation + Rotation (Small α)
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• Needs approximation of small α to remain linear



Small α Assumption

cos(α)→1 sin(α)→ α

• The “small α assumption” is used only for motion estimation (solving the equations)
• Warping is done with full accuracy of sin and cos
• Iterations converge to an accurate solution

0 0



Translation + Rotation(unverified)

• Iterations: Solve with “small α assumption”
• Warp with full accuracy of sin and cos.
• Pyramids: Angle remains the same…
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Translation + Rotation(unverified Matrix Representation)
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Representation of Transformation
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• Transformations can be chained  by matrix multiplication. Important for iterations.


