Nnintn

1. Email: Give Examples Before Theory

2. MRI and Fourier

3. Need a Student to Implement Deblurring

a) Maybe an exercise next year
b) Get 2 or 4 credit points
c) Come to me at the break

MRI'IS ACQUIRED IN FOURIER DOMAIN!

Sampling domain
(k-space)

Image domain

MR image (as
column
vector) 2

Measurement model: y — f{X}\

Acquired data Fourier transform

Blind Image Deblurring
(Michaeli & Irani)

* Given a blurred image y we look for a sharp
image x and a blur kernel k such that y=x*k

* This is an ill-conditioned problem. Priors needed
to help solve it.

Cross Scale Similarity: One Row

Original Picture Reduced Scale

Intensity
Intensity

>

Blurry

Y,
Q
C
=
(¢

Intensity
Intensity

Patch Recurrence Across Scales in Sharp Images

Sharp image x

7T X7

Sharp 1mage
shrunk by «

Patch Recurrence Across Scales in Blurry Images

Blurry image ¥y

Blurry image
shrunk by «

Blurry Input Levin ef al. XudJia Sun et al.

Blurry Input

Deblurred Output

Deblurring by Optimization

arg min ||y — &k * 2% +A1 p(2,2%) + A2 || k|2
&k — |

data term image prior kernel
prior

* Looking for sharp image x and blur kernel k s.t.
— Data Term: Blurring x by k gives y

— Image Prior: Low L? distance between patches in x
and their Nearest Neighbor in scaled-down x.

— Kernel Prior: Sharpest Possible Kernel

Kernel Estimation

Input: Blurry image y

Output: Blur Kernel k

Initialize k=6, x=y

For t=1,..., T

1. Image Prior Update: Scale down x to get x°

* x?Has a pool of sharper patches

2. Deblurring: Minimize for x (k and x? fixed)
 What happens in Iteration 17

3. Kernel Update: Minimize for k (x and x? fixed)

Details of the steps

1. Scale down in Fourier domain (Sinc kernel)

2. Deblur using sharp patches and k
arg min ||y — Kz||* + M\ p(&,)
T
— Replace each patch by its NN (Nearest Neighbor)

— Enforce data term. Repeat.

3. Compute k

arg min ||y — Xk||? + \al[k]|?
k>0

Implementation Details

Build a pyramid, where each level is
downscaled by a factor of 4/3, using Sinc

mage level kernel is 51x51. Build pyramid
evels until kernel size is 5x5.

Processing starts at smallest pyramid level.
Each recovered x and k are interpolated to
higher levels as initial guesses.

Solving deblurring equations using Fourier

Image Alignment

* Find the transformation between two images
— Translation, Rotation, zoom
— Affine, Homography
— Assumption: No effects of 3D parallax

e Good for:

— Video Stabilization, Video Mosaicing...

M-. ’: ‘:‘;‘ t
~év_':'_f‘iixl;é!n‘ - _SJQL:E}E&M

Parametric (global) warping

 Examples of parametric warps:

Translation (2 Scaling (1) Rotation (1)
Parameters) Keeps Angles Keeps Distances

Affine (6) Projective (8)
Keeps Parallel Keeps straight lines

Computing Translation, Direct Methods

Assumption: Constant Brightness

* Given images/, and /,, we can find the

translation (u,v) that will minimize the squared

€rror Eu,v)=>" 3 (1;(x,y)~ I (x+u, y +v))*
Xy

* Average over area of
overlap

e Can also search for
rotations: (u,v,a)

/;

Cross Correlation
e Starting from the SSD
E(u,V)=ZZ(h(x,y)—12(X+u,y+V))2

Xy
* Since (a—b)zzaz—zab+b2

e \We can write

E(u,v)=22]12—ZZZIl(x,y)-]2(x+u,y+v)+22122
X y Xy XY

* Since 2/,2 and 2/, are almost constant,
minimizing the SSD maximizes the cross-

correlation 2/,1,
C(u,v)=> Y Li(x,y) I (x+u,y+v)
Xy

Normalized Cross Correlation (NCC)

* Given two images /, and /,, search for the
translation (x, y) maximizing the cross-

correlation
Cu,v)=>> L(x,y) - Ir(x+u,y+v)
Xy

 NCC invariant to global addition and
multiplication of intensity (/, = a:/, + b)

> U (x,) = 1) - (L(x+u, y+v) = 1,)

R o) S L o))

* Multiresolution search (Pyramids) increases
efficiency.

NC

Coarse-to-fine motion estimation

u=1.25 pixels

u=2.5 pixels

u=>5 pixels

Gaussian pyramid of image /, Gaussian pyramid of image I,

Coarse-to-fine Image Alignment

Gaussian pyramid of image /, Gaussian pyramid of image /,

Pattern Matching / Tracking:
Normalized Cross Correlation

S (1) = 1) -, (x+u, y+v) = 1,)

IS) -1 VU ()1

* Normalized Cross Correlation is
an excellent method to find
objects in pictures, and to track
objects in video.

NC(u,v) =

* Multiresolution search (Pyramids) =S==
is used in object search. Not el
necessary in tracking.

Limitations of Correlation Search

* Discrete accuracy: checking every possible
translation in integer pixel values

 Complexity increases exponentially with
numbers of parameters
— Translation: (u,v) Complexity is N?
— Rotations: (u,v,a) Complexity is N°
— Zoom: (u,v,a,s) Complexity is N4
— Affine: N°

Continuous Approximation

(Lucas Kanade)
* Local Taylor approximation in 1D:

J(x+h)= f(x)+ f'(x)-h

f(x)+f(x)<h

| }f(x)
I

X

* Local Taylor approximation in 2D for images:

f(x—l—u,y+v)zf(x,y)+g.u+g,v
Ox oy

Error Minimization

e Accurate only for very small (u,v), approx. 1 pixel

* MSE when shifting /, relative to /, by (u,v):
E(u,V)=ZZ[fz(HuaerV)—h(xay)]z

* To simplify, v)\C/eonok at a single pixel (No 5)
and use Taylor approximation
E(u,v)=|L(x+u,y+v)-1,(x,)] =
ol ol,

[L(6) +—>ut+—2v=1(x,y)] =
Ox oy

(I, -u+l,-v+1)

where]x=%; [y:%; [=1,-1;

Ox oy

Error Minimization

* Writing it in simple form

oy

v+Q

— [_: The x derivative of image /,
—[,: The y derivative of image /,
— [, : The image difference /,-,
* Find (u,v) that minimize the error function

B9 = Do urly o) v ki)

u(x y) v(x, y)

Minimization: Zero Derivatives

E,v)=Y Iy u+l, v+1,)>

X,y
* Finding (u,v) by setting derivatives to zero:

- OE
—=> 1., u+l,v+I;) =0
S LUyl vy
X,)
OF
—=>1,-(U,-u+l,-v+1;) =0
ey xz):/ y (x Yy t)

—

NIl DI, bysa
X,y X,y {”}: X,y

DI, 0 DI v] | D
X,y ES

X,Y

— —

Iterative Approach (larger (u,v))
* Compute image derivatives /, I,. Set u,v to 0.

» Compute once , _ 2L DIy

2Dy e 20y

* |terate until convergence (I, =0):

—compute _ DI

Z]y'lf

(X, y) =1 (x, y) =1 (x +u,y+v)

— Solve equations to compute residual motion

i
A- =-ph
dv

— Update total motion with residual motion: u+=du, v+=dv

— Warp /, towards /, with total motion (u,v).

Ilterative Motion Estimation

A @) ()

Initial: u,=0
l=F1(X0)-f5(X0)
du=I./f,(x,)

u,=uy+du

estimate
update

>
Xo X

(using d for displacement here instead of u)

Ilterative Motion Estimation

file —d1) | fo(2)

Initial: U,
l=F(Xo-U4)-T5(X0)

u,=u,+du

estimate
update

<Y

Ilterative Motion Estimation

file —d2) | f5(2)

Initial: U,
[=11(Xo=U2)-T(Xp)

Us=uU,+du

estimate
update

=
X

Ilterative Motion Estimation

filx —d3) = fa(x)

)

Power of Iterations
Compute the image derivatives only once

Has two stages in each iteration:

* Motion Estimation

* Warping

Works even with poor motion estimation, as
long as it reduces the residual error

Warping of one image towards the other is
done from original image using total motion,
and not from previous image using residual
motion. (Repetitive warping blurs!)

Multiresolution

Lucas-Kanade assumes that corresponding pixels in
the two images have same derivative. It works OK
even if derivatives are similar. But this is incorrect for

very large motions.

A f1(z) folx) A fi(z) fo(x)
Most areas have Uncorrelated derivatives
similar derivatives (opposite signs)

To overcome this problem: coarse-to-fine estimation.

Coarse-to-fine motion estimation
Needs very small (u,v)

I
A A
[I"'\‘\
AN

vy IR

LN
L PN
(] \ \
1 1 \ \
o \ \
| \ \
1 1 \ \
I' \ \
1 1 A
1 \ \
[1
u=1.25 pixels / \
f—] p / \
\
7 \
1 ! \ \\
1 ! \ \
1 ! \ \
1 1 \ \
1 1 \ \
n 1 \ \
1 ! \ \
o ! \
u=2.5 pixels / ‘
-— \
Sp , \
1 AY
I \
1 \
1,
1 1 \
1 1 \
1 1 \

\
\
Y
\
1 1 \ N
1 1 \ \
1
/i \
1 \
° ! \
—-— 1 A
u= Ixeis ; y
, \
, \
1
1
1
g \
[K \
1 h \
i
h \

u=10 pixels ;

Gaussian pyramid of image /, Gaussian pyramid of image I,

Coarse-to-fine Image Alignment

1 I

I\\ ’)\‘
Il‘\ Il\\
A AL

1 \ 11 \

Iteratively
-—’ Compute (u,v) —-

Warp Iowerllevel by 2(u,v)

.——» Compute (du,dv) «——

Gaussian pyramid of image /, Gaussian pyramid of image /,

Translation + Scale

E(u,v)= Z([x u(x,y)+1, -v(x,y)+]t)2
X,V

* Write (u,v) for translation and scale

Xy=8x1+dx = u=xy—-x;=(s—-1)-x+dx
yp=s-yp+dy = v=yy-y=(s=1)-y+dy

* |[nsert into the Error Equation
E(dx,dy,s)= Y (I -[(s=D-x+dx]+1,-[(s=1D-p+dy]+1,)*
X,y
 Compute dx, dy, and s by using derivatives

0E _, OE _, OE _

~, Y o Y —=0
Odx ody Os

Translation + Scale
E(dx,dy,s)= Y (I -[(s=D-x+dx]+1,-[(s=1)-p+dy]+1,)*

X,y

 Compute dx, dy, and s by using derivatives

Odx ody

0= Z([x (s =1)-x+dx

X,y _ _
0= Z([x-_(s—l)-erdx_

X,) i i
0= Z(Ix-_(s—l)-x+dx_
X,y

+[y

+Iy

+Iy

OF
Os

Gs-0-y+av]+1)-1,

(Gs-D-y+dyl+1))-1,

=D y+dyl+1)- (eI + 31)

* Solve 3 linear equations with 3 unknowns

Translation + Rotation (Small a)

* Needs approximation of small a to remain linear
Xy = cos(a)-xy—sin(x)-y;+dx = xj—a -y +dx

Yy =sin()-x;+cos(x)-yi+dy ~a-x;+y;+dy
sin() > «a (Small «)

cos(¢) —»1 (Small «)

U=Xy)—X|=—- -y +dx

V=) =y = a-xt+dy

E(dx,dy,a)=Y (I -[-a-y+dx]+1, - [a-x+dy]+ 1)
X,)

Small a Assumption

RN
cos(ag)él \ (\

sin(a)—> O

* The “small a assumption” is used only for
motion estimation (solving the equations)

e Warping is done with full accuracy of sin and
COosS

* |terations converge to an accurate solution

Translation + Rotation
(unverified)
E(dx,dy,a) = Z([x -[—a-y+dx]+[y -[a-x+dy]+[t)2

X,y
OF
%ZOZZ([-[—a-y+dx]+[y'[0!'X+dy]+]z)'[x

Gdy_o Z([[a-y+dx]+]y-[a-x+dy]+[t)-1y

oFE
£=O=Z([x-[—a-y+dx]+[y-[a-x+dy]+[t)-([yx—[xy)
X,y
* |terations: Solve with “small a assumption”

 Warp with full accuracy of sin and cos.

* Pyramids: Angle remains the same...

Translation + Rotation
(unverified Matrix Representation)

Y I, D1,
21y 2151y
_Z[x(]yx_lxy) Z[y([yx_]xy)

Z]x]t

S (1, I x— 1,0y
(I]x I,y

Z(]x [xy)2 L

v

Representation of Transformation

x, | |cos(a) —sin(ax) d_]| x,

vy, |=|sm(ax) cos(ax) d, |

y

1 0 0 1| 1

* Transformations can be chained by matrix
multiplication. Important for iterations.

