
חזרות
1. Email: Give Examples Before Theory
2. MRI and Fourier
3. Need a Student to Implement Deblurring

a) Maybe an exercise next year
b) Get 2 or 4 credit points
c) Come to me at the break

MRI IS ACQUIRED IN FOURIER DOMAIN!

MR image (as
column
vector)Fourier transformAcquired data

y = {x}

Sampling domain
(k-space)

Image domain

Measurement model:

-1

2

Blind Image Deblurring (Michaeli & Irani)
• Given a blurred image y we look for a sharp image x and a blur kernel k such that y=x*k
• This is an ill-conditioned problem. Priors needed to help solve it.
• E.g. Allow only a limited set of sharp patches
• Observations used for Priors in this approach:

• High patch recurrence across scales in sharp images
• Lower patch recurrence across scales in blurred images

Cross Scale Similarity: One Row
Sharp
Picture

Blurry
Picture

Original Picture Reduced Scale
Inte

nsi
ty

x

Inte
nsi

ty

Inte
nsi

ty
Inte

nsi
ty

Patch Recurrence Across Scales in Sharp Images

Patch Recurrence Across Scales in Blurry Images

Deblurring by Optimization

• Looking for sharp image x and blur kernel k s.t.
– Data Term: Blurring x by k gives y
– Image Prior: Low L2 distance between patches in xand their Nearest Neighbor in scaled-down x.
– Kernel Prior: Sharpest Possible Kernel

Kernel Estimation
• Input: Blurry image y
• Output: Blur Kernel k
• Initialize k=δ, x=y
• For t=1,…, T

1. Image Prior Update: Scale down x to get xa
• xa Has a pool of sharper patches

2. Deblurring: Minimize for x (k and xa fixed)
• What happens in Iteration 1?

3. Kernel Update: Minimize for k (x and xa fixed)

Details of the steps
1. Scale down in Fourier domain (Sinc kernel)
2. Deblur using sharp patches and k

– Replace each patch by its NN (Nearest Neighbor)
– Enforce data term. Repeat.

3. Compute k

Implementation Details
• Build a pyramid, where each level is downscaled by a factor of 4/3, using Sinc
• Image level kernel is 51×51. Build pyramid levels until kernel size is 5×5.
• Processing starts at smallest pyramid level. Each recovered x and k are interpolated to higher levels as initial guesses.
• Solving deblurring equations using Fourier

Blurry Input Image

Deblurred

Image Alignment
• Find the transformation between two images

– Translation, Rotation, zoom
– Affine, Homography
– Assumption: No effects of 3D parallax

• Good for:
– Video Stabilization, Video Mosaicing…

Parametric (global) warping
• Examples of parametric warps:

Translation (2
Parameters)

Rotation (1)
Keeps Distances

Scaling (1)
Keeps Angles

Affine (6)
Keeps Parallel

Projective (8)
Keeps straight lines

Computing Translation, Direct Methods Assumption: Constant Brightness
• Given images I1 and I2, we can find the translation (u,v) that will minimize the squared error

x y
vyuxIyxIvuE 221),(),(),(

I1
I2

{ }v
u

• Average over area of overlap
• Can also search for rotations: (u,v,α)

Cross Correlation

x y

vyuxIyxIvuC),(),(),(21

 222 2 bababa

• Starting from the SSD

• Since
• We can write

• Since ΣI12 and ΣI22 are almost constant, minimizing the SSD maximizes the cross-correlation ΣI1I2

x yx yx y

IvyuxIyxIIvuE 222121),(),(2),(

x y

vyuxIyxIvuE 221),(),(),(

Normalized Cross Correlation (NCC)
• Given two images I1 and I2 , search for the translation (x, y) maximizing the cross-correlation
• NCC invariant to global addition and multiplication of intensity (I2 = a∙I1 + b)

• Multiresolution search (Pyramids) increases efficiency.

)ˆ),(()ˆ),((2211

)ˆ),(()ˆ),((),(22
2211

IyxIIyxI
IvyuxIIyxIvuNC

x y

vyuxIyxIvuC),(),(),(21

Gaussian pyramid of image I1 Gaussian pyramid of image I2

image I2image I1 u=10 pixels

u=5 pixels

u=2.5 pixels
u=1.25 pixels

Coarse-to-fine motion estimation

image I1 image I2

image Iimage J
Gaussian pyramid of image I1 Gaussian pyramid of image I2

image I2image I1

Coarse-to-fine Image Alignment

Search all shifts (small)

Search ±1
Multiply motion by 2

.

.

.

Pattern Matching / Tracking: Normalized Cross Correlation

• Normalized Cross Correlation is an excellent method to find objects in pictures, and to track objects in video.
• Multiresolution search (Pyramids) is used in object search. Not necessary in tracking.

)ˆ),(()ˆ),((2211

)ˆ),(()ˆ),((),(22
2211

IyxIIyxI
IvyuxIIyxIvuNC

Limitations of Correlation Search
• Discrete accuracy: checking every possible translation in integer pixel values
• Complexity increases exponentially with numbers of parameters

– Translation: (u,v) Complexity is N2
– Rotations: (u,v,α) Complexity is N3
– Zoom: (u,v,α,s) Complexity is N4
– Affine: N6

Continuous Approximation(Lucas Kanade)
• Local Taylor approximation in 1D:

• Local Taylor approximation in 2D for images:

hxfxfhxf)(')()(
f

f(x)
x

f(x)+f’(x)•h

vy
fux

fyxfvyuxf

),(),(

;;;
)(

)],(),([
),(),(),(

1222

2

2
1222

2
12

IIIy
IIx

IIwhere
IvIuI

yxIvy
Iux

IyxI
yxIvyuxIvuE

tyx

tyx

Error Minimization

• To simplify, we look at a single pixel (No ∑ ∑) and use Taylor approximation

x y
yxIvyuxIvuE 212),(),(),(

• MSE when shifting I2 relative to I1 by (u,v):
• Accurate only for very small (u,v), approx. 1 pixel

Error Minimization
• Writing it in simple form

– Ix : The x derivative of image I2– Iy : The y derivative of image I2– It : The image difference I2 - I1• Find (u,v) that minimize the error function

2
21222

)(
)],(),([

tyx IvIuI
yxIvy

Iux
IyxI

yx

tyx yxIvyxIuyxIvuE
,

2)),(),(),((),(
),(),(yxvyxu

Minimization: Zero Derivatives
• Finding (u,v) by setting derivatives to zero:

yx
tyxy

yx
tyxx

yx
tyx

IvIuIIv
E

IvIuIIu
E

IvIuIvuE

,

,

,
2

0)(

0)(

)(),(

yx
ty

yx
tx

yx
yy

yx
xy

yx
yx

yx
xx

II
II

v
u

IIII
IIII

,

,

,,

,,

Iterative Approach (larger (u,v))

yyxy
yxxx

IIII
IIIIA

),(),(),(, 12 vyuxIyxIyxIII
IIb tty
tx

bdv
duA

• Compute image derivatives Ix, Iy. Set u,v to 0.
• Compute once
• Iterate until convergence (It ≈0):

– compute
– Solve equations to compute residual motion

– Update total motion with residual motion: u+=du, v+=dv
– Warp I2 towards I1 with total motion (u,v).

Iterative Motion Estimation

xx0

estimate
update

(using d for displacement here instead of u)

Initial: u0=0
It=f1(x0)-f2(x0)
du=It / f’1(x0)
u1=u0+du

Iterative Motion Estimation

xx0

estimate
update

Initial: u1
It=f1(x0-u1)-f2(x0)
du=It / f’1(x0-u1)
u2=u1+du

Iterative Motion Estimation

xx0

estimate
update

Initial: u2
It=f1(x0-u2)-f2(x0)
du=It / f’1(x0-u2)
u3=u2+du

Iterative Motion Estimation

xx0

Power of Iterations
• Compute the image derivatives only once
• Has two stages in each iteration:

• Motion Estimation
• Warping

• Works even with poor motion estimation, as long as it reduces the residual error
• Warping of one image towards the other is done from original image using total motion, and not from previous image using residual motion. (Repetitive warping blurs!)

Multiresolution
Lucas-Kanade assumes that corresponding pixels in
the two images have same derivative. It works OK
even if derivatives are similar. But this is incorrect for
very large motions.

Most areas have
similar derivatives

Uncorrelated derivatives
(opposite signs)

To overcome this problem: coarse-to-fine estimation.

Gaussian pyramid of image I1 Gaussian pyramid of image I2

image I2image I1 u=10 pixels

u=5 pixels

u=2.5 pixels
u=1.25 pixels

Coarse-to-fine motion estimation
Needs very small (u,v)

image I1 image I2

image Iimage J
Gaussian pyramid of image I1 Gaussian pyramid of image I2

image I2image I1

Coarse-to-fine Image Alignment
Iteratively
Compute (u,v)

Compute (du,dv)
Warp lower level by 2(u,v)

Update (u,v) & warp

Translation + Scale

yx
tyx IyxvIyxuIvuE

,
2)),(),((),(

dyysyyvdyysy dxxsxxudxxsx)1()1(
1212 1212

yx

tyx IdyysIdxxsIsdydxE
,

2))1()1((),,(

0;0;0

s
E

dy
E

dx
E

• Write (u,v) for translation and scale

• Insert into the Error Equation

• Compute dx, dy, and s by using derivatives

Translation + Scale
yx

tyx IdyysIdxxsIsdydxE
,

2))1()1((),,(

0;0;0

s
E

dy
E

dx
E

• Compute dx, dy, and s by using derivatives

yx

xtyx IIdyysIdxxsI
,

))1()1((0

yx
ytyx IIdyysIdxxsI

,
))1()1((0

yx

yxtyx yIxIIdyysIdxxsI
,

)())1()1((0

• Solve 3 linear equations with 3 unknowns

dyxyyv
dxyxxu

dyyxdyyxy
dxyxdxyxx

112
112

11112
11112

α)(Small1)cos(
α)(Small)sin(

)cos()sin(
)sin()cos(

Translation + Rotation (Small α)

yx

tyx IdyxIdxyIdydxE
,

2)(),,(

• Needs approximation of small α to remain linear

Small α Assumption

cos(α)→1 sin(α)→ α

• The “small α assumption” is used only for motion estimation (solving the equations)
• Warping is done with full accuracy of sin and cos
• Iterations converge to an accurate solution

0 0

Translation + Rotation(unverified)

• Iterations: Solve with “small α assumption”
• Warp with full accuracy of sin and cos.
• Pyramids: Angle remains the same…

yx
xtyx IIdyxIdxyIdx

E
,

)(0

yx
tyx IdyxIdxyIdydxE

,
2)(),,(

yx
ytyx IIdyxIdxyIdy

E
,

)(0

yx

xytyx yIxIIdyxIdxyIE
,

)(0

Translation + Rotation(unverified Matrix Representation)

txy
ty
tx

xyxyyxyx
yxyyyyyx
xxxyyxxx

IyIxI
II
II

dy
dx

yIxIyIxIIyIxII
yIIxIIIIII
yIIxIIIIII

2

Representation of Transformation

1100

)cos()sin(
)sin()cos(

1
1
1

2
2

y
x

d
d

y
x

y
x

• Transformations can be chained by matrix multiplication. Important for iterations.

