Feature Point Matching

Assumptions:

- Given two images, we computed feature points
 & their descriptors in both images
- For each feature point in each image we computed the k best good matches in the other image (k=1,2..) (e.g. exhaustive search)
- We selected candidate matching pairs. E.g. two points are a matched pair only if each is in the top *k* matches of the other point.

Computing Feature Points & Descriptors

Matching Pairs of Feature Points

Yellow – Correct matches

Blue – Wrong matches

Red – No match

Goal: Compute Homography using Matches

- How to overcome wrong matches?
- Robust methods needed
- •Why is left image is so big?

What are Robust Methods?

- The goal of many algorithms is **parametric model fitting**
- Data measured in real images is inaccurate
 - Occlusions
 - Noise
 - Ambiguity

- outliers
- Wrong feature extraction
- Goal of robust methods: tolerate outliers

Example: Robust Computation of 2D Homography

500 Interest points per image

268 assumed correspondences (Best match,SSD<20)

151 inliers

117 outliers

43 iterations...

All inliers

Line Fit Problem

• Straight line fitting to a set of 2D points

Line Fit using Least Squares

• Fit a straight line to a set of 2D points

Least Square error minimization is not robust. One outlier may cause a large mistake

Least Square Line Fitting

distance from a point (x_i, y_i) to a line (ax + by + c = 0):

$$d = \frac{\left|ax_i + by_i + c\right|}{\sqrt{a^2 + b^2}}$$

Find (*a*, *b*, c) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i + c)^2$$

s.t. $||n|| = \sqrt{a^2 + b^2} = 1$

Least Square Line Fitting Example

LS fit to a clean set of points

One outlier leads to disaster

Least Squares Conclusions

- •Good
 - Very clear objective function
 - Easy optimization
- Bad
 - Sensitive to Outliers
 - Can not find multiple matches

Robust Norms (From Distance to Cost)

- Squared Error $c(d) = d^2$
- Absolute Value c(d) = |d|
 - Hard to minimize
- Robust $c(d,e) = d^2/(e^2+d^2)$
 - Small d: square error
 - Large *d*: maximum 1

RANSAC (1981) (RANdom SAmple Consensus)

Estimate parameters of a model by random sampling of observed data

RANSAC Algorithm

- Sample (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model
- **Repeat** 1-3 until the best model is found with high confidence

RANSAC Line fitting example

- Sample (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model
- **Repeat** 1-3 until the best model is found with high confidence

RANSAC:: line fitting example

- 1. **Sample** (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model
- **Repeat** 1-3 until the best model is found with high confidence

RANSAC Line fitting example

- Sample (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC Line fitting example

- Sample (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC Parameter Selection

- s: Number of points needed to fit the modelω: Probability of choosing an inlier
- ω^s : Probability that all s points are inliers
- $1-\omega^s$: Prob. that at least one point is an outlier
- **p**: Prob. of choosing **s** inliers in some iterations
- $1-p = (1-\omega^s)^N$: Prob. to never select *s* inliers *N*: Number of RANSAC iterations

$$N = \log(1-p) / \log(1-\omega^s)$$

Sufficient Number of Iterations (N)

- p = 0.99
- *w* : inliers probability, 1- *w* : outlier probability

Sample Size				proportion of outliers (1-w)				
	S	5%	10%	20%	25%	30%	40%	50%
•	2	2	3	5	6	7	11	17
	3	3	4	7	9	11	19	35
	4	3	5	9	13	17	34	72
	5	4	6	12	17	26	57	146
	6	4	7	16	24	37	97	293
	7	4	8	20	33	54	163	588
_	8	5	9	26	44	78	272	1177

21

RANSAC Conclusions

Good

- Robust to outliers
- Suitable for many model fitting cases
- Easy to implement

Bad

 Computational time grows quickly with fraction of outliers and number of parameters

Back to Homography Estimation

RANSAC loop:

- 1. Randomly select 4 feature pairs
- 2. Compute homography *H* (exact)
- 3. Compute *inliers* where $D(p_i', Hp_i) < \varepsilon$
- 4. Keep largest set of inliers
- 5. Re-compute *H* using least-squares on all inliers in largest set

Adaptively Determining Number of Iterations

w is often unknown a priori. Assume the worst case (e.g. 50%) and adapt during iterations

- Compute N using w=50%; loop_count =0
- While *N* > *loop_count* repeat:
 - Randomly Sample data, compute model, and count the number of inliers. Update Max[#inliers]
 Set w = (Max[#inliers] / #points)
 - Recompute *N* from *w*
 - Increment the *loop_count* by 1
- Terminate