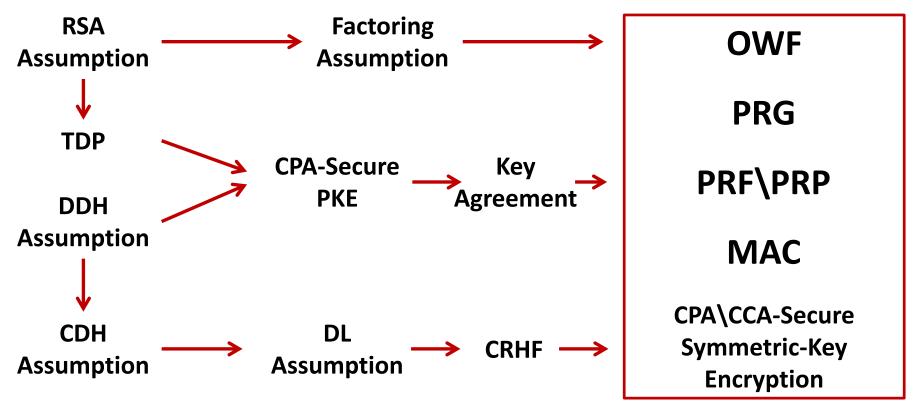


Cryptography

Lecture 10: Digital Signatures

Gil Segev

The World of Crypto Primitives



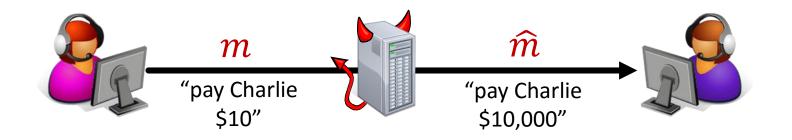
Outline

- Digital signatures
- Constructions
 - One-time signatures
 - Stateful signatures
 - Stateless signatures
- Certificates and public-key infrastructure
- User-server identification

Digital Signatures

Alice and Bob wish to communicate

- Eve completely controls the channel
- Would like to assure the receiver of a message that it has not been modified



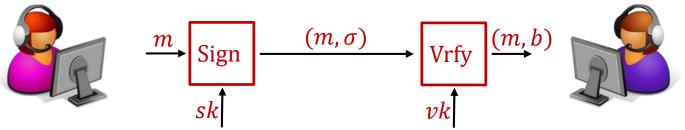
Public-key counterpart of message-authentication codes

- Signer holds a secret signing key
- Verifier knows the corresponding public verification key

Digital Signatures

Syntax: $\Pi = (Gen, Sign, Vrfy)$

- Key-generation algorithm Gen on input 1ⁿ outputs a signing key sk and a verification key vk
- Signing algorithm Sign takes a signing key sk and a message m, and outputs a signature σ
- Verification algorithm Vrfy takes a verification key vk, a message m and a signature σ, and outputs a bit b



Correctness: For every message *m*

 $\Pr[\operatorname{Vrfy}_{\nu k}(m, \operatorname{Sign}_{sk}(m)) = 1] = 1$

Signatures vs. MACs

Signatures

- *n* users require only *n* secret keys
- Same signature can be verified by all users
- Publicly verifiable and transferable
- Provide non-repudiation

MACs

• *n* users require $\approx n^2$ secret keys

- Privately verifiable and non-transferable
- More efficient (2-3 orders of magnitude faster)

The Security of Signatures

- \mathcal{A} knows vk and can adaptively ask for signatures of messages of its choice
- *A* tries to forge a signature on a new message

 $(sk, vk) \leftarrow \text{Gen}(1^n)$

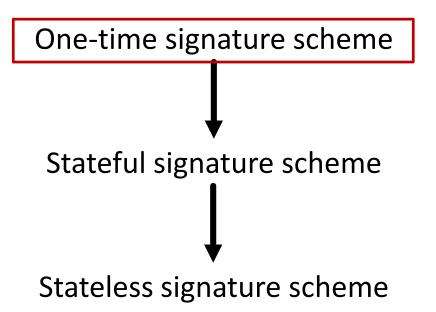
ante

Definition:
II is existentially unforgeable against an
adaptive chosen-message attack if for every PPT
adversary
$$\mathcal{A}$$
 there exists a negligible function
 $v(\cdot)$ such that
 $\Pr[\operatorname{SigForge}_{\Pi,\mathcal{A}}(n) = 1] \leq v(n)$
 $\mathcal{Q} = \operatorname{Set} \text{ of all queries asked by }\mathcal{A}$
 $\operatorname{SigForge}_{\Pi,\mathcal{A}}(n) = \begin{cases} 1, & \text{if } \operatorname{Vrfy}_{vk}(m^*, \sigma^*) = 1 \\ & \text{and } m^* \notin Q \\ 0, & \text{otherwise} \end{cases}$
for the security (weaker notion): \mathcal{A} is
allowed to ask for at most T signatures

Outline

- Digital signatures
- Constructions
 - One-time signatures
 - Stateful signatures
 - Stateless signatures
- Certificates and public-key infrastructure
- User-server identification

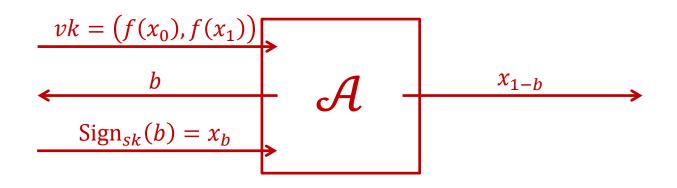
Construction Outline



$$sk = x_0 \qquad x_1$$

$$vk = \int f(x_0) \qquad f(x_1)$$

$$\operatorname{Sign}_{sk}(b) = x_b$$



Let f be a OWF. Define a signature scheme $\Pi = (Gen, Sign, Vrfy)$ for 1-bit messages as follow:

- Gen(1ⁿ): Sample $x_0, x_1 \leftarrow \{0,1\}^n$ and compute $y_0 = f(x_0)$ and $y_1 = f(x_1)$. Output $sk = (x_0, x_1)$ and $vk = (y_0, y_1)$.
- Sign_{*sk*}(*b*): Output $\sigma = x_b$.
- Vrfy_{vk}(b, σ): If $f(\sigma) = y_b$ output 1, and otherwise output 0.

Theorem:

If f is a OWF then Π is a secure one-time signature scheme for 1-bit messages.

Proof idea:

- \mathcal{A} forges a signature on $b^* \Rightarrow \mathcal{A}$ inverts $y_{b^*} = f(x_{b^*})$
- Inverting $f(x_{b^*})$ is clearly hard even when given x_{1-b^*} and $f(x_{1-b^*})$
- An inverter can guess the forged bit b^* ahead of time w.p. 1/2

Inverter B:

Input: y = f(x) for some $x \leftarrow \{0,1\}^n$. 1. Choose $b^* \leftarrow \{0,1\}$, and set $y_{h^*} = y$. 2. Sample $x_{1-h^*} \leftarrow \{0,1\}^n$ and set $y_{1-h^*} = f(x_{1-h^*})$. 3. Run \mathcal{A} on input $vk = (y_0, y_1)$. 4. When \mathcal{A} requests a signature on b: • If $b = b^*$, abort. • If $b = 1 - b^*$ output x_{1-b^*} . 5. If \mathcal{A} output a forgery σ^* on b^* , output σ^* . Independence! $\Pr[\mathcal{B}(f(x)) \in f^{-1}(f(x))] \ge \Pr[\operatorname{SigForge}_{\Pi,\mathcal{A}}(n) = 1 \land \mathcal{B} \operatorname{doesn't} \operatorname{abort}]$ = $\Pr[\text{SigForge}_{\Pi,\mathcal{A}}(n) = 1] \cdot \Pr[\mathcal{B} \text{ doesn't abort}]$ = $\Pr[\text{SigForge}_{\Pi,\mathcal{A}}(n) = 1] \cdot \frac{1}{2}$

Let f be a OWF. Define a signature scheme $\Pi = (Gen, Sign, Vrfy)$ for ℓ -bit messages as follow:

- Gen(1^{*n*}): For each $i \in [\ell]$ and $b \in \{0,1\}$ sample $x_{i,b} \leftarrow \{0,1\}^n$ and compute $y_{i,b} = f(x_{i,b})$. Output $sk = \{(x_{i,0}, x_{i,1})\}_{i \in [\ell]}$ and $vk = \{(y_{i,0}, y_{i,1})\}_{i \in [\ell]}$.
- Sign_{sk} $(m = m_1 \cdots m_\ell)$: Output $\sigma = (x_{1,m_1}, \dots, x_{\ell,m_\ell})$.
- $\operatorname{Vrfy}_{\nu k}(m = m_1 \cdots m_\ell, \sigma = (x_1, \dots, x_\ell))$: If $f(x_i) = y_{i,m_i}$ for all $i \in [\ell]$ output 1, and otherwise output 0.

Theorem:

If f is a OWF then Π is a secure one-time signature scheme for ℓ -bit messages.

Proof idea:

- Suppose that \mathcal{A} asks for a signature on m and then forges on $m^* \neq m$
- The inverter \mathcal{B} needs to guess $i \in [\ell]$ s.t. $m_i^* \neq m_i$ as well as guess the bit m_i^*

One-Time Signatures -- Summary

Theorem (Lamport '79):

If OWFs exist then for any polynomial $\ell = \ell(n)$ there is a one-time signature scheme for signing ℓ -bit messages.

The following theorem is known as the "Hash-and-Sign" paradigm:

Theorem:

If CRHFs exist then there is a one-time signature scheme that can sign messages of arbitrary polynomial length.

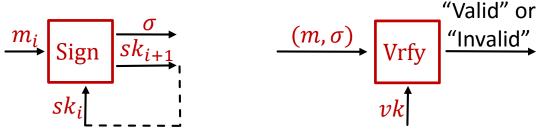
Construction Outline



Stateful Signature Schemes

Signer updates the signing key after each signature

- Initial state sk_1 produced by Gen: $(vk, sk_1) \leftarrow \text{Gen}(1^n)$
- Signing the *i*th message updates sk_i to sk_{i+1} : $(\sigma, sk_{i+1}) \leftarrow \text{Sign}_{sk_i}(m_i)$
- Verification requires only vk



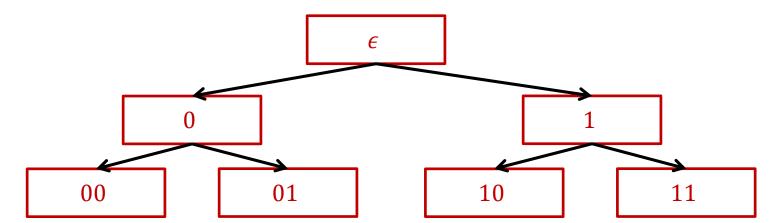
Existential unforgeability against an adaptive chosen-message attack

- \mathcal{A} knows vk and can adaptively ask for signatures of messages of its choice
- The signing oracle maintains the internal state sk_i
- *A* tries to forge a signature on a new message

- Let Π = (Gen, Sign, Vrfy) be a one-time signature scheme for signing "sufficiently long" messages
- For $m = m_1 \cdots m_n \in \{0,1\}^n$ we let $m|_i \stackrel{\text{\tiny def}}{=} m_1 \cdots m_i$ (and $m|_0 \stackrel{\text{\tiny def}}{=} \epsilon$)

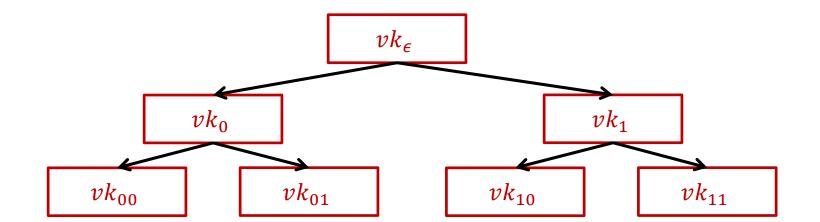
Define $\Pi' = (Gen', Sign', Vrfy')$ for signing *n*-bit messages as follows:

- The signer's state is binary tree with 2^n leaves
- Each node $w \in \{0,1\}^{\leq n}$ has a left child w0 and a right child w1
- The tree is of exponential size but is never fully constructed



Key generation:

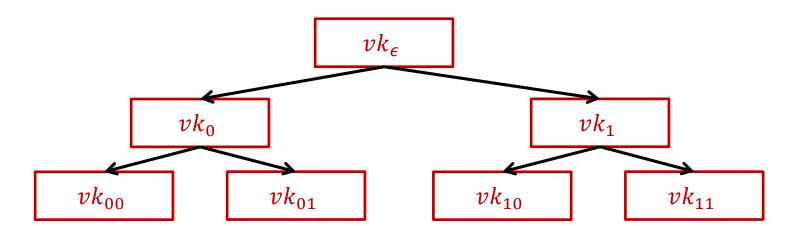
- Each node $w \in \{0,1\}^{\leq n}$ is associated with $(vk_w, sk_w) \leftarrow \text{Gen}(1^n)$
- Keys are generated and stored only when needed
- The state $\frac{sk'_i}{i}$ consists of all keys and signatures that were generated so far
- $vk' = vk_{\epsilon}$ and $sk'_1 = sk_{\epsilon}$



Signing a message $m \in \{0, 1\}^n$:

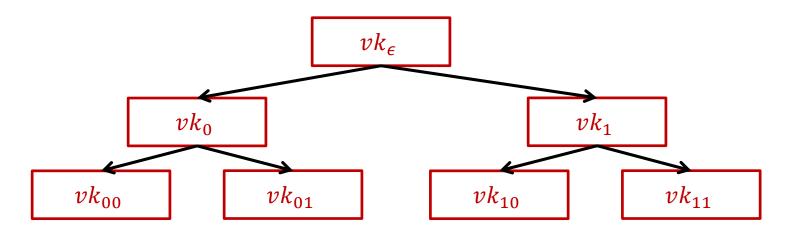
- 1. Generate a path from the root to the leaf labeled m: For each proper prefix w of m sample $(vk_{w0}, sk_{w0}), (vk_{w1}, sk_{w1}) \leftarrow \text{Gen}(1^n)$
- 2. Certify the path: For each proper prefix w of m compute $\sigma_w = \text{Sign}_{sk_w}(vk_{w0}, vk_{w1})$
- 3. Compute $\sigma_m = \operatorname{Sign}_{sk_m}(m)$

Values are generated in steps 1-3 only if these values are not already part of the current state



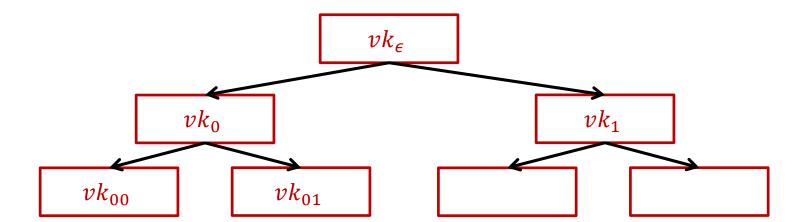
Signing a message $m \in \{0, 1\}^n$:

- 1. Generate a path from the root to the leaf labeled m: For each proper prefix w of m sample $(vk_{w0}, sk_{w0}), (vk_{w1}, sk_{w1}) \leftarrow \text{Gen}(1^n)$
- 2. Certify the path: For each proper prefix w of m compute $\sigma_w = \text{Sign}_{sk_w}(vk_{w0}, vk_{w1})$
- 3. Compute $\sigma_m = \operatorname{Sign}_{sk_m}(m)$
- 4. Store all generated keys and signatures as part of the updated state
- 5. Output the signature $\left(\left\{\sigma_{m|_{i}}, \nu k_{m|_{i}0}, \nu k_{m|_{i}1}\right\}_{i=0}^{n-1}, \sigma_{m}\right)$



Example: A signature on m = 01 consists of $(\sigma_{\epsilon}, \sigma_0, \sigma_{01})$ where

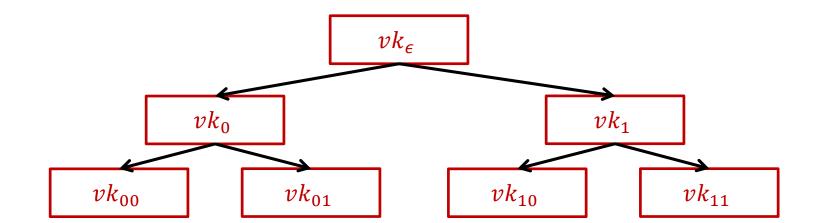
$$\begin{split} \sigma_{\epsilon} &= \mathrm{Sign}_{sk_{\epsilon}}(vk_{0}, vk_{1}) \\ \sigma_{0} &= \mathrm{Sign}_{sk_{0}}(vk_{00}, vk_{01}) \\ \sigma_{01} &= \mathrm{Sign}_{sk_{01}}(01) \end{split} \text{ (Certifying the path)}$$



Verifying a signature $(\{\sigma_{m|_i}, \nu k_{m|_i0}, \nu k_{m|_i1}\}_{i=0}^{n-1}, \sigma_m)$ on $m \in \{0, 1\}^n$: Output 1 if and only if both:

1.
$$\operatorname{Vrfy}_{vk_{m|_{i}}}\left(\left(vk_{m|_{i}0}, vk_{m|_{i}1}\right), \sigma_{m|_{i}}\right) = 1 \text{ for every } i \in \{0, ..., n-1\}$$

2. $\operatorname{Vrfy}_{vk_{m}}(m, \sigma_{m}) = 1$



Theorem:

If Π is a one-time signature scheme, then Π' is existentially unforgeable against a chosen-message attacks.

Note:

 Π needs to allow signing "sufficiently long" messages (two verification keys of Π)

- Can be constructed from CRHFs by applying the hash-and-sign paradigm to Lamport's scheme
- In fact, can be constructed assuming OWFs instead of CRHFs (but this is outside the scope of this course)

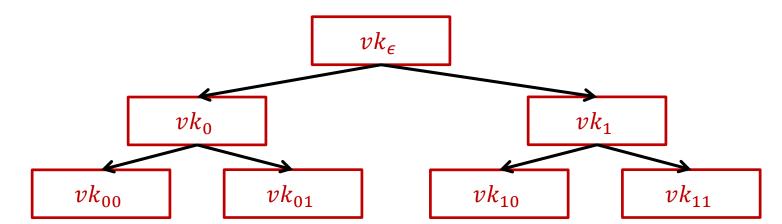
Theorem:

If Π is a one-time signature scheme, then Π' is existentially unforgeable against a chosen-message attacks.

Proof idea #1:

Each sk_w is used to sign exactly one "message"

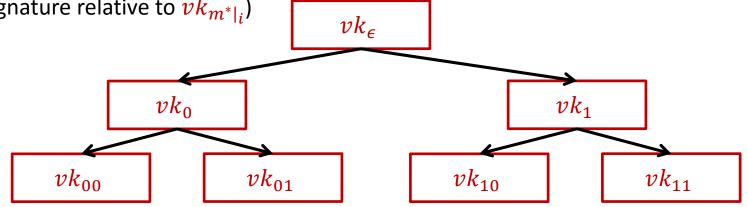
- If w is an internal node then sk_w is used to sign (vk_{w0}, vk_{w1})
- If w is a leaf then sk_w is used to sign w



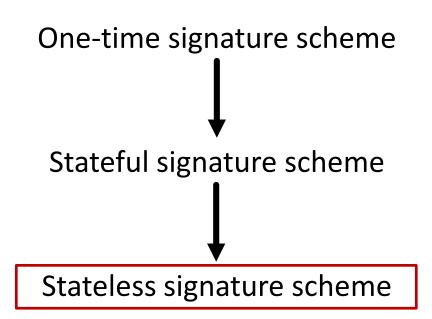
Proof idea #2:

Suppose that \mathcal{A} asks forges a signature $\left(\left\{\sigma_{m^*|_i}^*, \nu k_{m^*|_i0}^*, \nu k_{m^*|_i1}^*\right\}_{i=0}^{n-1}, \sigma_{m^*}^*\right)$ on m^* . Two possible cases:

- The full path to the leaf m^* already existed and \mathcal{A} used the same path $\Rightarrow \mathcal{A}$ must have forged a signature relative to vk_{m^*} (and did not receive any signature relative to vk_{m^*})
- The full path to the leaf m^* didn't exist or \mathcal{A} used a different path $\Rightarrow \mathcal{A}$ must have forged a signature relative to $vk_{m^*|_i}$ for $i \in \{0, ..., n-1\}$ (and received exactly one signature relative to $vk_{m^*|_i}$)



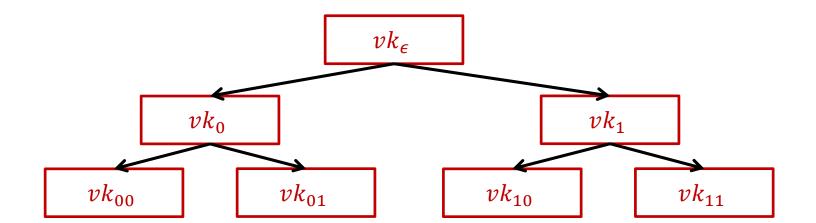
Construction Outline



A Stateless Scheme

De-randomize the stateful scheme Π' to a stateless scheme Π'' :

- The signer's secret key sk is a seed for a PRF $F_{sk}(\cdot)$
- $(r_w, r'_w) \stackrel{\text{\tiny def}}{=} F_{sk}(w)$ is used as the randomness needed for each node $w \in \{0,1\}^{\leq n}$:
 - If $w \in \{0,1\}^{< n}$ then r_w is used for sampling (vk_w, sk_w) and r'_w is used for signing (vk_{w0}, vk_{w1})
 - If $w \in \{0,1\}^n$ then r_w is used for sampling (vk_w, sk_w) and r'_w is used for signing w



A Stateless Scheme

De-randomize the stateful scheme Π' to a stateless scheme Π'' :

- The signer's secret key sk is a seed for a PRF $F_{sk}(\cdot)$
- $(r_w, r'_w) \stackrel{\text{\tiny def}}{=} F_{sk}(w)$ is used as the randomness needed for each node $w \in \{0, 1\}^{\leq n}$
 - If $w \in \{0,1\}^{< n}$ then r_w is used for sampling (vk_w, sk_w) and r'_w is used for signing (vk_{w0}, vk_{w1})
 - If $w \in \{0,1\}^n$ then r_w is used for sampling (vk_w, sk_w) and r'_w is used for signing w

Theorem:

If Π is a one-time signature scheme and F is a PRF, then Π'' is existentially unforgeable against a chosen-message attacks.

Proof idea:

Any adversary \mathcal{A} against Π'' can be used either as an adversary against the stateful scheme Π' , or as a distinguisher against the PRF F

A Stateless Scheme

Theorem:

If Π is a one-time signature scheme and F is a PRF, then Π'' is existentially unforgeable against a chosen-message attacks.

 $\Pr[\operatorname{SigForge}_{\Pi'',\mathcal{A}}(n) = 1] \le \left|\Pr[\operatorname{SigForge}_{\Pi'',\mathcal{A}}(n) = 1] - \Pr[\operatorname{SigForge}_{\Pi',\mathcal{A}}(n) = 1]\right|$

+ $\Pr[\text{SigForge}_{\Pi',\mathcal{A}}(n) = 1]$

 $= \left| \Pr \left[\mathcal{D}^{F_{sk}(\cdot)}(1^n) = 1 \right] - \Pr \left[\mathcal{D}^{f(\cdot)}(1^n) = 1 \right] \right|$

+ $\Pr[\text{SigForge}_{\Pi',\mathcal{A}}(n) = 1]$

Outline

- Digital signatures
- Constructions
 - One-time signatures
 - Stateful signatures
 - Stateless signatures
- Certificates and public-key infrastructures
- User-server identification

Certificates and PKI

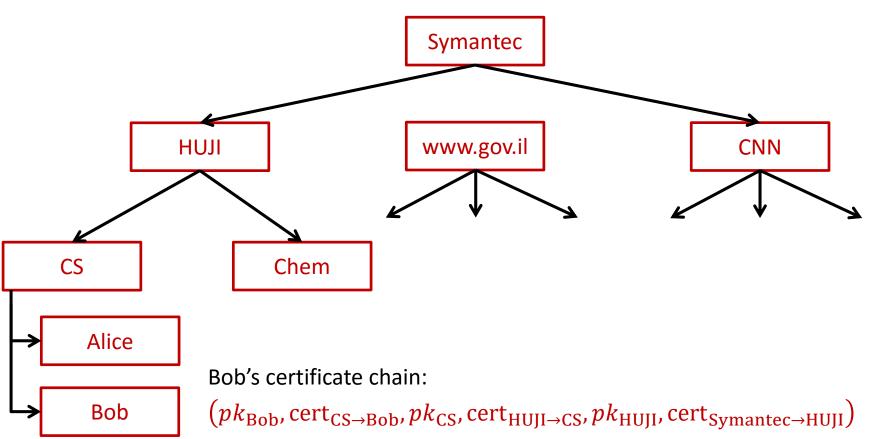
Public-key cryptography is great, but how to distribute the public keys?

• Keys must be authenticated for avoiding man-in-the-middle attacks

Solution: Certification Authorities (CAs)

- Certificate: A signature binding an identity to a public key
- Assume that we already trust the CA's verification key vk_{CA} (e.g., vk_{CA} is hard-wired into the source code of my browser)
- The CA provides Alice with $\operatorname{cert}_{CA \to A} \stackrel{\text{\tiny def}}{=} \operatorname{Sign}_{sk_{CA}}(\text{"Alice's key is } pk_A")$
- Alice sends to Bob both pk_A and $cert_{CA \rightarrow A}$

Delegation of Certificates



Invalidating Certificates

Certificates should not be valid indefinitely

- An employee may leave a company
- A secret key may get stolen

Approach 1: Expiration

- Each certificate includes an expiration date
- $\operatorname{cert}_{CA \to A} \stackrel{\text{\tiny def}}{=} \operatorname{Sign}_{sk_{CA}}(\text{"Alice's key is } pk_{A}", 31/12/2014)$

Approach 2: Revocation

- Each certificate includes a unique serial number
- The CA publishes (a signed) list of revoked certificates
- $\operatorname{cert}_{\operatorname{CA}\to\operatorname{A}} \stackrel{\text{\tiny def}}{=} \operatorname{Sign}_{sk_{\operatorname{CA}}}(\operatorname{"Alice's} \operatorname{key} \operatorname{is} pk_{A}", \operatorname{serial} \operatorname{number})$

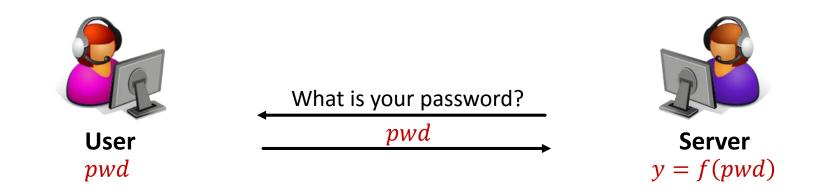
Outline

- Digital signatures
- Constructions
 - One-time signatures
 - Stateful signatures
 - Stateless signatures
- Certificates and public-key infrastructures
- User-server identification

User-Server Identification

A trivial password-based identification protocol

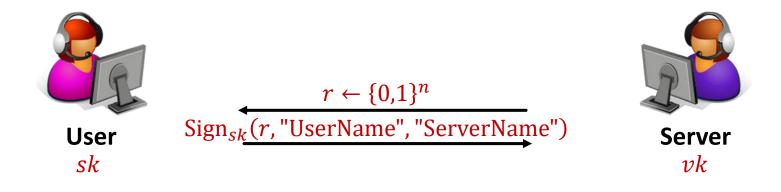
- The user holds a password pwd, the server knows y = f(pwd) for some function f
- The user identifies by sending *pwd* in the clear...



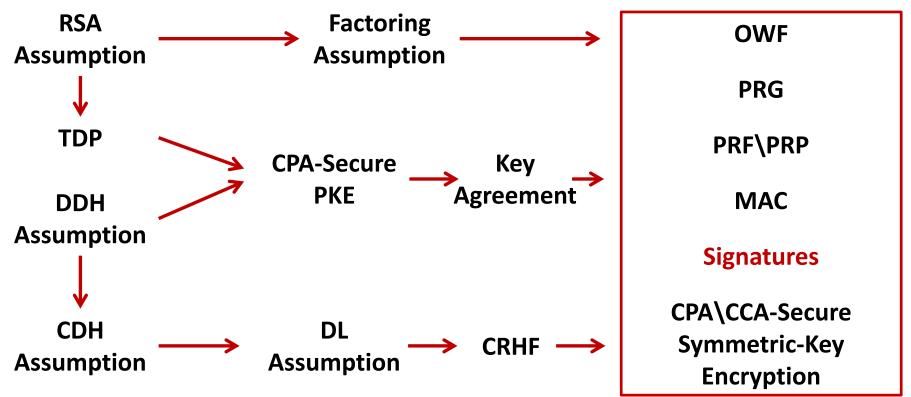
User-Server Identification

A slightly better solution using a signature scheme

- The user holds a signing key sk, the server knows the verification key vk
- The user identifies by signing a randomly chosen message



The World of Crypto Primitives



Recommended Reading

J. Katz and Y. Lindell. Introduction to Modern Cryptography.
 Chapter 12 (Digital Signature Schemes): 12.0-12.3, 12.6-12.7

Problem set 5 is available on-line