TA session 14 - 17.1.2016

- Sparse representation
- Blending results 😳

Where we've already encountered sparsity in the course e.g. in Fourier and Wavelet based compression

These were good analytical representations

Wavelets and the Fourier basis were 2 sets of complete orthonormal vectors we used to represent our images / image patches.

E.g. the 2D DCT basis looked like this –

For some patch x, This was basically done as follows

$$\alpha[i] = \sum d_i \cdot x$$

These were good analytical representations

Wavelets and the Fourier basis were 2 sets of complete orthonormal vectors we used to represent our images / image patches.

E.g. the 2D DCT basis looked like this –

For some patch x, This was basically done as follows

$$\underbrace{\left(\mathbf{x}\right)}_{\mathbf{x}\in\mathbb{R}^{m}}\approx\underbrace{\left(\begin{array}{c|c}\mathbf{d}_{1} & \mathbf{d}_{2} & \cdots & \mathbf{d}_{p}\end{array}\right)}_{\mathbf{D}\in\mathbb{R}^{m\times p}} \underbrace{\left(\begin{array}{c}\boldsymbol{\alpha}[1]\\\boldsymbol{\alpha}[2]\\\vdots\\\boldsymbol{\alpha}[p]\end{array}\right)}_{\mathbf{C}\in\mathbb{R}^{m\times p}}$$

 $\alpha[i] = \sum d_i \cdot x$

These were good analytical representations

Wavelets and the Fourier basis were 2 sets of complete orthonormal vectors we used to represent our images / image patches.

What we mean by sparsity in this context

Let \boldsymbol{x} in \mathbb{R}^m be a signal

Let $D = [d_1, ..., d_p] \in \mathbb{R}^{m \times p}$ be a set of normalized "basis vector". We call it **dictionary**

D is "adapted" to \boldsymbol{x} if it can represent it with a few basis vectors: a **sparse vector** $\boldsymbol{\alpha} \in \mathbb{R}^p$ such the $\boldsymbol{x} \approx \boldsymbol{D} \cdot \boldsymbol{\alpha}$. We call $\boldsymbol{\alpha}$ the sparse code.

Where do we expect to encounter sparsity

- Example: Patches taken from a large page of text (same font).
- But this is apparently a very common feature of various types of signals and classes of images + biological motivation

Fig. 2. Left: A few 12×12 Gabor atoms at different scales and orientations. Right: A few atoms trained by Olshausen and Field (extracted from [34]).

Sparse coding illustration

Natural Images

 $= [a_1, ..., a_{64}]$ (feature representation)

Given a dictionary how can we decompose signal sparsely

• The term ψ induces sparsity

- the
$$\ell_0$$
 "pseudo-norm": $||\alpha||_0 \triangleq \#\{i \text{ s.t. } \alpha_i \neq 0\}$ (NP-hard)

– the
$$\ell_1$$
 norm: $||lpha||_1 riangleq \sum_{i=1}^p |lpha_i|$ (convex)

Greedy algorithm to find representation given D

Matching Pursuit

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^p} ||\underbrace{\mathbf{x} - \mathbf{D}\boldsymbol{\alpha}}_{\mathbf{r}}||_2^2 \text{ s.t. } ||\boldsymbol{\alpha}||_0 \leq L$$

- 1: $\alpha \leftarrow 0$
- 2: $\mathbf{r} \leftarrow \mathbf{x}$ (residual).
- 3: while $||\alpha||_0 < L$ do
- 4: Select the atom with maximum correlation with the residual

$$\hat{\imath} \leftarrow \underset{i=1,...,p}{\operatorname{arg\,max}} |\mathbf{d}_i^T \mathbf{r}|$$

5: Update the residual and the coefficients

$$egin{array}{rcl} m{lpha} & \leftarrow & m{lpha} [\widehat{\imath}] + m{d}_{\widehat{\imath}}^T m{r} \ m{r} & \leftarrow & m{r} - (m{d}_{\widehat{\imath}}^T m{r}) m{d}_{\widehat{\imath}} \end{array}$$

6: end while

Matching Pursuit

$\boldsymbol{\alpha} = (0, 0, 0)$

 $\alpha = (0, 0, 0.75)$

Learning the dictionary

$\min_{D,A} \|DA - X\|_2^2 \quad s.t. \ \forall j, \|\vec{a}_j\|_0 \le L$

The examples are linear combinations of atoms from **D**

Each example has a sparse representation with no more than L atoms

A partial list of applications

- Edge detection
- Single frame super-resolution (Digital zooming)
- Denoising
- Inpainting
- Inverse half-toning

- There are also many computer vision applications which we won't list...

Single frame super-resolution (digital zooming)

Given a low resolution image: find a natural high resolution image that its downsampled version is similar to the input image.

Single frame super-resolution (digital zooming)

Given a low resolution image: find a natural high resolution image that its downsampled version is similar to the input image.

Example: denoising

Example: Inpainting

Example: Inpainting

