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Course Overview

While the introductory course (67731) on convex optimization focuses on formulating
and recognizing convex optimization problems, the emphasis of our course is more
algorithmic. We revisit some of the most fundamental problems in optimization and
introduce efficient methods for solving these problems. Starting from core techniques,
we proceed to cover some of the recent major achievements in the area of mathematical
programming. In particular, we discuss the emerging interplay between optimization
and machine learning.

0.1 Case Study: Ridge Regression

As an example, consider the optimization problem associated with the commonly used
method of ridge regression. We are given a sequence of vector instances x1, . . . , xn P
Rd and corresponding labels y1, . . . , yn P R. For a regularization parameter λ ¡ 0,
the objective is given by

min
wPRd

1

n

ņ

i�1

1

2
pwJxi � yiq2 � λ

2
}w}2 . (1)

We also assume1 that }x}i ¤ 1 for all i. We next observe that exactly minimizing the
objective is equivalent to solving a linear system. Precisely, denoting C � 1

n

°n
i�1 xix

J
i

and b � 1
n

°n
i�1 yixi, an equivalent objective is given by

min
wPRd

1

2
wJpC � λIqw � wJb .

Since C � λI is positive definite, the objective is convex. By first-order conditions,
minimizing the problem is equivalent to solving the system Cw � b. This can be done
by standard methods in numerical linear algebra like Gaussian Elimination. Forming
the matrix C takes Opnd2q and computing the inverse takes Opdωq, where ω   2.373
is the current value of the matrix multiplication constant.

When n and d are huge, it is often not practical to invert or even to store the
matrix C. Instead of computing an exact minimizer, we now seek for an efficient

1As we shall see later, this assumption is w.l.o.g.
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6 0.1 Case Study: Ridge Regression

iterative method that converges to an optimal solution as fast as possible. We begin
with the well known Gradient Descent algorithm. Noting that the gradient at any
point w is Cw � λw � b, we can apply the Gradient Descent (GD) algorithm. Note
that computing Cw does not require neither the computation nor the storage of C.
Instead, we iteratively process all the xi’s and sum the terms xipxJi wq. Thus, the
runtime per iteration2 is Opndq.

The next natural question is how many iterations are needed in order to obtain a
good approximation. For a desired accuracy ε ¡ 0, we will establish the upper bound
Opλ�1 logp1{εqq on the number of iterations until reaching ε-approximation. We refer
to the quantity λ�1 as the condition number of the problem. We remark that the
dependence on this quantity can be improved using either the Conjugate Gradient
(CG) method or the Accelerated Gradient Descent (AGD) method of Nesterov.

In the last decade, stochastic methods have become indispensable tools in opti-
mization and in particular in machine learning optimization problems. More con-
cretely, stochastic first-order methods such as Stochastic Gradient Descent (SGD)
use only a random subsequence (a.k.a. mini-batch) of px1, y1q, . . . , pxn, ynq in order
to form an unbiased estimate of the gradient on each round. While this modification
reduces the complexity per iteration, it also introduces an undesired noise and con-
sequently, the convergence rate deteriorates. For example, the convergence rate of
the SGD, which uses only a single random example for each estimate, scales at least
linearly with 1{ε (rather than logarithmically).

Recently, several fast stochastic methods have been developed to remedy this
situation. Roughly speaking, the suggested methods employ sophisticated techniques
in order to reduce the variance induced by the estimation process. We will study the
SDCA algorithm ([Shalev-Shwartz and Zhang, 2013]) and show that its runtime per
iteration is Opdq and its convergence rate is Oppn�λ�1q logp1{εqq. That is, it is faster
than GD by factor mintn, λ�1u. As with GD, we can improve the dependence on λ�1

by using acceleration techniques.

Last, consider the regime where d is moderate but n and λ�1 are extremely
large. We will (hopefully) study recently developed random linear sketching methods.
Roughly speaking, given a matrix A, a linear sketch of A is a smaller random matrix
AS. Based on Johnson-Lindenstrauss type results, a sketch-and-solve approach can
be used to significantly reduce the overall computation. For our case we will see an
algorithm due to [Clarkson and Woodruff, 2013] whose runtime is3 Õpd3 � ndq. We
summarize the comparison in Figure 1.

2Note that the complexity per iteration of GD can be bounded by N �d, where N is the number
of nonzeros in the sequence x1, . . . , xn. While a trivial bound on N is nd, many machine learning
problems are very sparse, resulting in a much better upper bound on N . This is an important
advantage of first-order methods over Gaussian elimination which has does not exploit data sparsity.

3Throughout these notes, the notation Õp�q has nearly the same meaning as Op�q; the only
difference is that we hide polylogarithmic dependencies.
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Method overall runtime
Gaussian elimination nd2 � dω

GD dnγ�1

SDCA dpn� γ�1q
Sketch-and-solve d3 � nd

Figure 1: Comparison between numerical methods for approximately minimizing lin-
ear regression with respect the square loss (equivalently, approximately solving a
linear system). We compare overall runtimes while ignoring logarithmic terms.

Course organization: In the first part of the course we study convex analysis
while closely following the first three chapters of [Borwein and Lewis, 2010]. We then
proceed to cover fundamental deterministic methods for unconstrained (convex) opti-
mization such as Gradient Descent and Newton’s method. Borrowing ideas from the
first two parts of the course, we next study efficient interior point and cutting-plane
methods for constrained optimization. Finally, we will study advanced stochastic
methods such as SDCA and linear sketching.
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Part I

Convex Analysis
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Chapter 1

Background

1.1 Euclidean Spaces

We start by reviewing some basic properties of Euclidean spaces. We denote by E an
arbitrary Euclidean space, that is, E is a finite-dimensional real vector space, equipped
with an inner product1 x�, �y. The inner product induces a norm by }x} � axx, xy.
The unit ball is defined by B � tx : }x} ¤ 1u. For two sets C,D � E and a subset
Λ � R, we define

C �D � tx� y : x P C, y P Du , ΛC � tλx : λ P Λ, x P Cu .
The set of nonnegative reals is denoted by R�. A set C � E is called a cone if
R�C � C. An important example of a cone is the nonnegative orthant Rn

� :� tx P
Rn : each xi ¥ 0u is a cone.

Once we have the notion of norm, a topology is naturally defined. The interior of
a set D � E, denoted intD, consists of all the points x for which there exists r ¡ 0
such that x� rB � D. The set D is said to be open if D � intD. We say that x̄ P E
is the limit point of a sequence pxnq � E if limnÑ8 }xn � x̄} � 0. The closure of D,
denoted clD, consists of all the limit points of D. A set D � E is closed if it contains
all of its limit points, i.e., if D � clD. The boundary of a set D � E is defined
by bdD � clDzintD. As an example, the interior of the nonnegative orthant, Rn

�,
is the positive orthant, Rn

�� � tx P Rn : each xi ¡ 0u. Conversely, clRn
�� � Rn

�.
Hence, the nonnegative orthant is closed (but not open) whereas the positive orthant
is open (but not closed). An exercise shows that a set D is closed if and only if its
complement EzD is open. A set D is bounded if there exists r ¡ 0 such that D � rB.
Last, a set D � E is compact if it is closed and bounded.

It can be seen that xn Ñ x̄ if and only if for every index i P dimpEq, the i-th
coordinate of xn converges to the i-th coordinate of x̄. This fact leads to important
generalization of results from univariate calculus.

1Unless stated otherwise, it is always assumed that vectors in E are expressed according to some
(arbitrary) orthonormal basis (e.g., in Rn we simply pick the standard basis).
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12 1.1 Euclidean Spaces

Theorem 1.1.1 (Bolzano-Weierstrass) Bounded sequences in E have convergent
subsequences.

A real-valued function f defined over a subset D � E is said to be continuous at
x̄ P D if for every sequence xn that converges to x, fpxiq Ñ fpx̄q. It can be verified
that for any α P R, the level set tx P D : fpxq ¤ αu is closed providing that D is
closed. The following important result provides sufficient conditions for existence of
an optimal solution for a minimization problem.

Theorem 1.1.2 (Weierstrass) Suppose that the set D � E is nonempty and
closed, and that the level sets of the continuous function f : D Ñ R are bounded.
Then, f has a global minimizer in D, i.e., there exists x̄ P D such that fpx̄q ¤ fpxq
for all x P D.

Proof Let v � inftfpxq : x P Du. For an arbitrary z P D, consider the set
C � tx P D : fpxq ¤ fpzqu. By assumption, C is bounded. Since f is continuous
and D is closed, C is also closed (see Exercise (1.1.2)). We now restrict our attention
to the compact set C and show that f attains its minimum on C. By definition
of v, there exists a sequence pxnq in C which satisfies fpxnq Ñ v. According to
Theorem 1.1.1, we can pick a convergent subsequence pxnk

q. Since C is closed, the
limit of this subsequence, x̄, also belongs to C. The continuity of f implies that
fpx̄q � limkÑ8 fpxnk

q � v (in particular, we conclude that v � �8).

In particular, a continuous function defined over a compact set has a global minimizer
(and also a global maximizer).

Convexity

Recall that a set C is convex if for every two points x, y P C and α P r0, 1s, the
point αx� p1� αqy belongs to C. Let D � E. For any sequence x1, . . . , xm P D and
α � pα1, . . . , αmq P Rm

� such that
°m
i�1 αi � 1, the vector

°m
i�1 αixi is called a convex

combination of x1, . . . , xm. It follows by induction on m that a convex set consists
exactly of all the convex combinations of its points. Arbitrary intersection of convex
sets is convex. The convex hull of a subset D P E, denoted convD, is the intersection
of all the convex sets that contain D, thus, is is the smallest convex set that contains
D. An exercise shows that convD consists exactly of all the convex combinations of
points from D. The following elementary property of convex hulls is proven useful in
many applications (see Exercise (1.1.12)).

Lemma 1.1.1 If a linear function f defined over convD has a global minimizer
(similarly, maximizer) in convD, then it also has a global minimizer (maximizer) in
D.



13 1.1 Euclidean Spaces

Proof Let x̄ � °m
i�1 αixi be a convex combination of points from D that attains the

minimum. Let xj P arg mintfpxiq : i P rmsu. Then, by the linearity of f

fpx̄q �
m̧

i�1

αifpxiq ¥
m̧

i�1

αifpxjq � fpxjq .

The proof for the case that x̄ attains the maximum of f is analogous.

Given a convex set C � E, we say that a function f : C Ñ R is convex if for all
x, y P C and α P r0, 1s, fpαx � p1 � αqyq ¤ αfpxq � p1 � αqfpyq. The function f
is strictly convex if the above inequality is strict whenever x and y are distinct and
α P p0, 1q. Examples of convex functions include affine functions and norms. For a
fixed vector x̄ P E, the function x ÞÑ 1

2
}x� x̄}2 defined over E is strictly convex. The

function f is said to be concave if �f is convex.
The following basic properties of convex functions are reviewed in the exercises. It

is often eaiser to verify the convexity of a function by restricting it to a line. Namely,
a function f : C Ñ R is (strictly) convex if and only if for every x, y P C px � yq,
the function φ : r0, 1s Ñ R defined by φptq � fpx� tpy� xqq is (strictly) convex. The
epigraph of the function f : C Ñ R is the set tpx, sq P C � R : fpxq ¤ su. It is easy
to verify that f is convex if and only if its epigraph is convex. Finally, It can be seen
that if a strictly convex function attains its minimum, then it is unique.

Exercises

Exercise 1.1.1 Let pE, x�, �yq be an inner product space.

1. Prove the Cauchy-Schwarz inequality: for every x, y P E, |xx, yy| ¤axx, xyaxy, yy.
An equality holds if and only if x and y are linearly dependent.

2. Show that the function }x} �axx, xy defined over E is indeed a norm. (Hint:
The only nontrivial property is the triangle inequality. Given x, y P E, use the
Cauchy-Schwarz inequality to bound xx� y, x� yy from above.)

3. For a fixed y P E, show that the function x ÞÑ xx, yy is continuous.

Exercise 1.1.2 Show that any level set of the form tx P D : fpxq ¤ αu of a contin-
uous function f : D Ñ R is closed providing that D � E is closed.

Exercise 1.1.3 Compute the interiors and the boundaries of the following subsets of
E. Deduce which of the sets are closed or open.

1. Rn
�� � tx P Rn : each xi ¡ 0u

2. Rn
� � tx P Rn : each xi ¥ 0u

3. Sn�� � tA P Rd�d : A is symmetric and positive definiteu
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4. Sn� � tA P Rd�d : A is symmetric and positive semidefiniteu
5. p�q A linear subspace L � E. Distinguish between the cases dimpLq � dimpEq

and dimpLq   dimpEq. (Hint: Consider the latter case and let v1, . . . , vm be an
orthogonal basis for L. Consider also a completion of v1, . . . , vm to an orthogonal
basis, v1, . . . , vn of E. Note that a vector x̄ belongs to L if and only if for every
i ¡ m, xx̄, xiy � 0. Use the continuity of the inner product (Exercise (1.1.1)).)

6. For a point w and a scalar b, consider the halfspaces tx : xw, xy ¤ bu, tx :
xw, xy   bu. Also, consider the hyperplane tx : xw, xy � bu.

Exercise 1.1.4

1. Show that a set D is closed if and only if its complement EzD is open.

2. p�q Show that the only two sets in E which are both closed and open are H and
E.

Exercise 1.1.5 Show that an arbitrary union of open sets is open. Similarly, an
arbitrary intersection of closed sets is closed. Deduce that intpDq is equal to the union
of all the open sets that are contained in D (thus, it is the largest open set contained
in D) and clpDq is equal to the intersection of all the closed sets that contain D (thus,
it is the smallest closed set that contains D).

Exercise 1.1.6 Show that xn Ñ x̄ in E if and only if for every index i P dimpEq,
the i-th coordinate of xn converges to the i-th coordinate of x̄.

Exercise 1.1.7 Prove Theorem 1.1.1.

Exercise 1.1.8 Suppose that the set D � E is nonempty and closed and let f :
D Ñ R be a continuous function. Assume that for every α, the set tx : fpxq ¥ αu
is bounded. Show that f has a global maximizer in D. Deduce that a continuous
function f defined over a compact set D has both a global minimizer and a global
maximizer.

Exercise 1.1.9 We recall some basic operations that preserve convexity of sets. Prove
the following:

1. Arbitrary intersection of convex sets is convex.

2. If C,D � E are convex, then C � D is convex. In particular, convexity is
invariant to translation.

Exercise 1.1.10 Show that for any D � E, convpDq consists exactly of all the convex
combinations of elements of D.
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Exercise 1.1.11 Prove that the closure of a convex set C � E is convex. Conclude
that for any set D � E, clpconvDq is the smallest closed convex set containing D.

TODO: affine sets, relative interior, the interior of a convex set is convex

Exercise 1.1.12 (Zero-sum games) A two-player zero-sum game is defined as
follows. Let A P Rn�m be a matrix. The game consists of one round in which the
row player decides on a row and the column player decides on a column. From rea-
sons that will become clear shortly, we associate the i-th row with the standard basis
vector ei P te1, . . . , enu, and the j-th column with ej P te1, . . . , emu. Given a pair of
decisions (a.k.a. strategies), pei, ejq, the payoff of the row player and the loss of the
column player are equal to Ai,j. Naturally, while the row player wishes to maximize
its payoff, the column player would like to minimize its loss. Therefore, we consider
two important quantities:2

Mm � max
ei:iPrns

min
ej :jPrms

Ai,j , mM � min
ej :jPrms

max
ei:iPrns

Ai,j .

The left quantity corresponds to the scenario where the column player can choose its
action based on the decision of the row player. The right quantity corresponds to the
opposite scenario. A pair of strategies pi, jq is called an equilibrium if given that the
strategy of the column player is ej, the strategy ei of the row player is optimal (i.e.,
Aq,j ¤ Ai,j for all q P rns), and vice versa (Ai,s ¥ Ai,j for all s P rms).

1. Prove the minimax inequality: Mm ¤ mM . Describe a game in which the
inequality is strict.

2. Show that there exists an equilibrium if and only if Mm � mM . Furthermore,
a pair of strategies pei, ejq forms an equilibrium iff Mm � Ai,j � mM .

3. Suppose that we modify the game by allowing each player to select a probability
distribution over its set of pure strategies, i.e., the row player is allowed to
select a probability distribution p P ∆n � tp1 P Rn : each p1i ¥ 0,

°
p1i � 1u

and the column player is allowed to select a vector q P ∆m. Given a pair of
strategies pp, qq, the payoff of the row player (analogously, the negative loss of
the column player) is now defined as the expected payoff:

ņ

i�1

m̧

i�1

piqjAi,j � pJAq .

The quantities Mm and mM are now defined by

Mm � max
pP∆n

min
qP∆m

pJAq , mM � min
qP∆m

max
pP∆n

pJAq .

2For preciseness, the expression maxei:iPrns minej :jPrmsAi,j is defined as follows: Consider the
function φ : rns Ñ R defined by φpiq � maxjPrmsAi,j . Then maxei:iPrns minej :jPrmsAi,j � maxi P
rnsφpiq.
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The definition equilibrium is generalized analogously. The minimax inequality
certainly holds. The minimax theorem due to von Neumann says that these
quantities are equal, and therefore, there exists an equilibrium (we will hopefully
see a non-standard proof of this result).

(a) Show that ∆n � conv te1, . . . , enu.
(b) Show that there exists a pure strategy ei for the row player that attains the

value mM . That is, for all q P ∆m, there exists i P rns such that

eJi Aq � max
pP∆n

pJAq .

Similarly, there exists a pure strategy ej for the column player that attains
the value Mm.

Exercise 1.1.13 Let C � E be a convex set. Show that a function f : C Ñ R is
(strictly) convex if and only if for every x, y P C, the function φx,y : r0, 1s Ñ R defined
by φx,yptq � fpx� tpy � xqq is (strictly) convex.

Exercise 1.1.14 Prove the following:

1. For a fixed vector x̄ P E, the function x ÞÑ 1
2
}x � x̄}2 defined over E is strictly

convex.

2. Let C � E be a convex set and f : C Ñ R be a strictly convex function. If f
attains its minimum over C, then it is unique.

Exercise 1.1.15 We recall some basic operations that preserve convexity of func-
tions. Prove the following:

1. Given a convex set C � E and convex functions pfiqiPI defined over C, show
that f � sup fi is convex.

2. Let g be a linear function from E to another Euclidean space, Y, f : Y Ñ R be
a convex function and let b P Y. The function x ÞÑ fpgpxq � bq defined over E
is convex.

Exercise 1.1.16 Let C � E and f : C Ñ R. Show that f is convex if and only if its
epigraph is convex.



17 1.2 Symmetric Matrices

1.2 Symmetric Matrices

Linear algebra plays a significant role in our studies. In this short section we consider
the vector space Sd of symmetric d � d matrices. We make this vector space into
a Euclidean space by defining the Frobenius inner product. Note that for any two
n � n matrices X and Y , trpXJY q � °

i�1

°d
j�1Xi,jYi,j. It is easily seen that the

bilinear form x�, �y defined by xX, Y y � trpXJY q forms an inner product. It induces

the Frobenius norm, }X}F �
axX,Xy �

b°d
i�1

°d
j�1X

2
i,j. In the sequel, we always

equip the space Sd with the Frobenius inner product and norm.
According to the spectral theorem, any matrix X P Sd has d eigenvalues which

we denote and order by λ1pXq ¥ . . . ¥ λdpXq. We also define the vector λpXq �
pλ1pXq, . . . , λdpXqq. Let Od be the group of d � d orthogonal matrices. Then, any
X P Sd can be written in eigenvalue decomposition (EVD) form as

X � Updiag λpXqqUJ �
ḑ

i�1

λipXquiuJi ,

where the matrix U P Od, and the operator diag maps a d-dimensional vector x into a
diagonal matrix X with Xi,i � xi. The i-th column of U , denoted ui, is the eigenvector
of X corresponding to the eigenvalue λipXq. An exercise shows that }X}F � }λpXq}.

An important subset of the space Sd is the convex cone Sd� of symmetric positive
semidefinite matrices, which consists of the matrices X P Sd that satisfy zJXz ¥ 0
for all z P Rd. We also consider the subset Sd�� � Sn� of positive definite matrices,
for which the above inequality is strict for all z P Rn. It can be seen that X P
Sd� (respectively, X P Sd��) if and only if all the eigenvalues of X are nonnegative
(positive). This two subsets induce an ordering relation over Sd; For two matrices
X, Y P Sd, we write X ¨ Y (equivalently, X � Y ¨ 0) if Y �X P Sd�. Analogously,
we write X   Y (equivalently, X � Y   0) if Y �X P Sd��.

Note that if X, Y P Sn, the Cauchy-Schwartz inequality implies that

xX, Y y ¤ }X}F }Y }F � }λpXq}}λpY q}
We conclude this section by showing an important refinement of this result, while
demonstrating an application of Lemma 1.1.1. We rely on the following theorem,
whose proof is deferred to a later stage of the course. Recall that a square matrix
is called doubly stochastic if its entries lie in the range r0, 1s and the entries in every
column and row sum up to 1. A square matrix is called a permutation matrix if its
entries lie in t0, 1u and each row and column contain exactly one entry of 1.

Theorem 1.2.1 (Birkhoff) The convex hull of the set of n�n permutation matrices
is the set of n� n doubly stochastic matrices.

We also need the following simple lemma. For a vector x P Rd, we denote by rxs the
vector with the same components permuted into decreasing order.
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Lemma 1.2.1 For any two vectors x, y P Rd, xx, yy ¤ xrxs, rysy.

Theorem 1.2.2 (Fan) For any two symmetric d� d matrices X and Y ,

xX, Y y ¤ xλpXq, λpY qy

Moreover, equality holds if and only if X and Y have a simultaneous ordered spec-
tral decomposition: there exists U P Od such that X � Updiag λpXqqUJ and Y �
Updiag λpY qqUJ.

Proof Consider the spectral decompositionsX � °d
i�1 λipXquiuJi and Y � °d

i�1 λipY qvivJi .
Then,

xX, Y y �
ḑ

i�1

ḑ

j�1

λipXqλjpY qtrpuiuJi vjvJj q �
ḑ

i�1

ḑ

j�1

λipXqλjpY qpxui, vjyq2 .

Denote zi,j � pxui, vjyq2. It can be verified that the d� d matrix, Z � pzi,jq is doubly
stochastic3. Hence,

xX, Y y � λpXqJZλpY q .
Now consider the problem of maximizing A ÞÑ λpXqJAλpY q over all doubly stochas-
tic matrices. Combining Theorem 1.2.1 and Lemma 1.1.1, we know that it suffices
to consider this maximization problem over all permutation matrices. The desired
inequality follows from Lemma 1.2.1. The condition for equality is left as an exercise.

Additional notions such as projection matrices, adjoint and singular value decompo-
sition (SVD) are reviewed in the exercises.

Exercises

Exercise 1.2.1 Let A : E Ñ Y be a linear transformation between two Euclidean
spaces. Recall that the null space (a.k.a. kernel) of A, denoted by NpAq, consists of
all the vectors x for which Ax � 0. The column space of A, denoted CpAq is the set
ty P Y : pDx P Eq s.t. Ax � yu. The adjoint of A, denoted A�, is the unique linear
transformation from Y to E that satisfies xA�y, xy � xy, Axy for all x P E and y P Y.
Fixing bases for E and Y, the associated matrices which we also denote by A and A�,
satisfy A� � AJ.

1. Show that for any linear transformation A, the column space of A coincides
with the orthogonal complement of the null space of A�.

3For example,
°n

j�1 Z1,j � }V Ju1}
2 � }u1}

2 � 1.
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2. p�q Show that the column space of AA� coincides with the column space of A.
(Hint: Prove that the null space of AA� is included in the null space of A�.
For this purpose, note that if v � 0 belongs to the null space of AA�, then
0 � xv, AA�vy � xA�v, A�vy.)

Exercise 1.2.2 Show that the bilinear form x�, �y, defined over pairs of n�n matrices
by xX, Y y � trpXJY q, forms an inner product.

Exercise 1.2.3 Show that Sd� is indeed a convex cone.

Exercise 1.2.4 Let X P Sd. Show that X P Sd� (respectively, X P Sd��) if and only
if all the eigenvalues of X are nonnegative (positive).

Exercise 1.2.5 An (orthogonal)4 linear projection is a linear transformation P from
a space E to itself that satisfies P 2 � P and its column space is orthogonal to its null
space.

1. Show that P is a linear (orthogonal) projection if and only if the associated
matrix can be written as P � UUJ, where U P Rd�k has orthonormal columns
(k ¤ n is the rank of P ).

2. Conclude that a projection matrix is positive semidefinite and k of its eigenval-
ues are one, while the rest are zero.

Exercise 1.2.6 Recall the SVD theorem: Every matrix X P Rd�n can be written in
singular value decomposition (SVD) form as X � UΣV J, where U P Rd�d and V P
Rn�n have orthonormal columns, and Σ P Rd�n is a diagonal matrix. The columns
of U and V , denoted u1, . . . , ud and v1, . . . , vn (respectively), are named left and right
singular vectors, respectively. The p � mintd, nu diagonal entries of Σ, denoted
σ1pXq, . . . , σppXq, are called singular values and we always assume that σ1pXq ¥
. . . ¥ σppXq. We also define the vector σpXq � pσ1pXq, . . . , σppXqq. Note that X
can also be written as X � °r

i�1 σipXquivJi , where r is the rank of X (the rest of the
singular values are 0).

1. Following the above notation, show that XXJ P Sd� and both the SVD and the
EVD of XXJ are given by XXJ � °p

i�1 σipXq2uiuJi .

2. Let Y P Sd. Show that if Y � °d
i�1 λipY quiuJi is the EVD of X, then its SVD

is given by Y � °
iPrds |λipY q|uivJi , where vi � sgnpλipXqqui.

Exercise 1.2.7

4A linear projection is only assumed to satisfy the property P 2 � P . We restrict our attention
to orthogonal projections.
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1. Show that the trace is invariant under cyclic permutations: for any sequence of
matrices A1, . . . , Am for which

±m
i�1Ai is a square matrix,

trpA1 � . . . � Amq � trpA2 � A3 � . . . � Am � A1q � . . . � trpAm � A1 � . . . � Am�1q .

2. Show that the trace is similarity-invariant: for A,P P Rd�d, trpP�1AP q � trpAq
providing that P is invertible.

3. Show that the trace is unitary-invariant: if A P Rd�d and U P Rm�d has orthog-
onal columns (m ¥ d), then

trpUAUJq � trpAq .

4. Show that the Frobenius norm is unitary-invariant: if A P Rd�n and U P Rm�d

has orthogonal columns (m ¥ d), then }UA}F � }A}F .

5. Conclude that for any matrix X, }X}F � }σpXq}, where σ is the vector con-
sisting of the singular values of X (see Exercise (1.2.6)). Also, if X P Sd, then
}X}F � }λpXq}.

6. Show that the Frobenius norm is submutiplicative: for any two matrices A,B
for which AB is defined, }AB} ¤ }A}}B}.

Exercise 1.2.8 Prove Lemma 1.2.1.

Exercise 1.2.9

1. Prove that following analog of Fan’s inequality: for two matrices X, Y P Sd,

xX, Y y ¥
ḑ

i�1

λipXqλd�1�ipY q .

2. p�q Complete the proof of Fan’s theorem: show that if the matrices X, Y P Sd
satisfy xX, Y y � xλpXq, λpY qy, then there exists U P On such that X �
Updiag λpXqqUJ and Y � Updiag λpY qqUJ. (Hint: Consider the matrix X �Y
and denote its spectral decomposition by Upλ pX�Y qqUJ. Let X̃ � Updiag λpXqqUJ,
Ỹ � Updiag λpY qqUJ. Prove the equality xX̃,X � Y y � xX,X � Y y and use
the Cauchy-Schwarz inequality (more precisely, use the condition for equality
in Cauchy-Schwarz inequality) to conclude that X̃ � X. Similarly, show that
Ỹ � Y .)
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Exercise 1.2.10 (PCA via Fan’s Theorem) Consider the PCA problem: we are
given a sequence of vectors, x1, . . . , xn P Rd, and a parameter k P rds. We would like to
find a projection of the vectors onto a k-dimensional subspace of Rd such that the sum
of squared `2-distances between points and their projection is minimized. Following
the notation from Exercise (1.2.5), we consider the minimization of

P ÞÑ
ņ

i�1

}xi � Pxi}2

over all d� d projection matrices of rank k. Let A � °n
i�1 xix

J
i .

1. Show that above minimization problem is equivalent to maximizing

P ÞÑ xP,Ay

over all d� d projection matrices of rank k.

2. Use Fan’s inequality to deduce that if u1, . . . , uk denote the leading eigenvectors
of A � °n

i�1 xix
J
i (i.e. ui corresponds to λipAq), then P � °k

i�1 uiu
J
i is an

optimal solution for the above optimization problems.

Exercise 1.2.11 (Courant–Fischer–Weyl min-max principle) Let A P Sd
and denote its spectral decomposition by A � °d

i�1 λiuiu
J
i , where λ1 ¥ . . . ¥ λd.

Prove the Courant–Fischer–Weyl min-max principle: for every i P rds, the following
identities hold:

λipAq � max
x�0:

xKtu1,...,ui�1u

xJAx
xJx

,

and ui is a corresponding arg max. Similarly,

λipAq � min
x�0:

xKtud,...,ud�i�1u

xJAx
xJx

,

and ui is a corresponding arg min.
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Chapter 2

Inequality Constraints

2.1 Optimality Conditions and Basic Separation

The significance of derivatives in finding optimal solutions of optimization problems
is already known to us from a basic calculus course. In this section we investigate
further analytical notions while emphasizing the interplay between derivatives and
convexity in characterizing optimal solutions. This will lead us to a central theme in
convex analysis — separation theorems.

Consider the problem of minimizing a function f : C Ñ R, where C is a subset
of E. A point x̄ is called a local minimizer of f on C if there exists a ball around x̄
such that fpx̄q ¤ fpxq for all x P D that lies in this ball. The directional derivative
of f at x̄ in a direction d P E is

f 1px̄; dq � lim
tÓ0

fpx̄� tdq � fpx̄q
t

, (2.1)

when this limit exists. When the map d ÞÑ f 1px̄; dq is linear, i.e., there exists a P
E such that f 1px̄; dq � xa, dy, then we say that f is (Gâteaux) differentiable with
(Gâteaux) derivative ∇fpx̄q � a. When f is differentiable1 at every point in C, we
say that f is differentiable on C.

Given a convex set C � E and a point x̄ P C, the normal cone to C at x̄, denoted
NCpx̄q, is the set of all vectors d P E that satisfy xd, x � x̄y ¤ 0 for all x P C. It is
clear that if x̄ P intpCq, then NCpx̄q consists exactly of the vector 0. The normal cone
gives us an elegant necessary condition for optimality.

Theorem 2.1.1 (First-order necessary condition) Suppose that C � E is con-
vex and x̄ is a local minimizer of the function f : C Ñ R. Then for any point x P C,
the directional derivative f 1px̄;x� x̄q, if it exists, satisfies f 1px̄;x� x̄q ¥ 0. In partic-
ular, if f is differentiable at x̄ then �∇fpx̄q P NCpx̄q. If, in addition x̄ P intpCq then
∇fpx̄q � 0.

1While Gâteaux differentiability is slightly weaker than the usual (a.k.a. Fréchet) differentiability,
it suffices for our needs. The difference between these notions is explained in Exercise (2.1.1).

23
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Proof Assume that some point x P C satisfies f 1px̄;x � x̄q   0. Then, for small
enough t P p0, 1q, we have2 fpx̄ � tpx � x̄qq � fpx̄q{t   0, contradicting the lo-
cal minimality of x̄. If f is differentiable, then for all x P C, x�∇fpx̄q, x � x̄y �
�f 1px̄;x � x̄q ¤ 0. Thus, �∇fpxq P NCpx̄q. If, in addition x̄ belongs to the interior
of C, then NCpx̄q � t0u so ∇fpxq must be zero.

When convexity of the function is assumed, we can derive analogous sufficient condi-
tions for global optimality. An exercise shows that for any x̄, x in a convex set C � E,
the function t P p0, 1s Ñ fpx̄�tpx�x̄qq�fpx̄q

t
is nondecreasing providing that f is convex.

In particular, fpxq � fpx̄q ¥ f 1px̄;x� x̄q. This implies the following result.

Theorem 2.1.2 (First-order sufficient condition) Suppose that f is a convex
function defined over the convex set C � E. Then for any points x̄, x P C, the
directional derivative f 1px̄;x� x̄q exists in r�8,8q. If the condition f 1px̄;x� x̄q ¥ 0
holds for all x P C, or in particular if �∇fpx̄q P NCpx̄q, then x̄ is a global minimizer
of f on C.

In particular, critical points of a convex functions are global minimizers. Notably,
a milder “local” notion of convexity is often sufficient for optimality. The following
result is typical.

Theorem 2.1.3 Let f : Rd Ñ R be a twice continuously differentiable3 function.
If x̄ is a critical point and ∇2fpx̄q is positive definite, then x̄ is a local minimizer.
Conversely, if f is twice continuously differentiable and x̄ is a local minimizer, then
∇2fpx̄q is positive definite.

We now establish several important consequences of Theorem 2.1.1 and Theorem 2.1.2.

Corollary 2.1.1 (First-order conditions for linear constraints) Let C � E
be a convex set, f : C Ñ R, a linear map A : E Ñ Y, and a point b P Y . Consider
the optimization problem

inftfpxq : Ax � bu
If x̄ is a local minimizer f is differentiable at x̄, then ∇fpx̄q P A�Y. Conversely, if f
is convex and ∇fpxq P A�Y, then x̄ is a global minimizer.

As we shall see later, Corollary 2.1.1 is a direct consequence of the more general KKT
conditions.

Lemma 2.1.1 (The projection lemma) Let C � E be a closed and convex set.
For every point y P E, the projection PCpyq � arg minxPC }x� y} is uniquely defined.
Moreover, for any point x̄ P C, y � x̄ P NCpx̄q if and only if x̄ � PCpyq.

2Note that x̄� tpx� x̄q belongs to C since C is convex.
3We rely on the following fact from multivariate analysis: the Hessian of a twice continuously

differentiable function is symmetric.
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Proof We may assume that y R C. Define the function f : E Ñ R by fpxq �
}x � y}2{2. It is easily seen that the level sets of f are bounded. According to
Weierstrass theorem, f admits a minimizer on C. Since f is strictly convex, the
minimizer is unique. Next, we note that for any x̄, x P C, f 1px̄;x� x̄q � xx̄�y, x� x̄y.
If x̄ � PCpyq, then for d � y � x̄, by first order necessary conditions (2.1.1), we have

0 ¥ xd, x� x̄y ñ d P NCpx̄q .

Conversely, by first-order sufficient conditions (2.1.2), if d � y� x̄ � f P NCpx̄q, then
x̄ is a (unique) global minimizer.

As an example, consider projecting onto the unit ball, B. A quick picture reveals
that for y R B, the projection is given by y ÞÑ y{}y} . The projection lemma gives
us a simple way to validate our informal proof. Indeed, denoting x̄ � y{}y}, for all
x P B we have

xy � y{}y}, x� y{}y}y � xy � y{}y},�y{}y}y � xy � y{}y}, xy
� �p}y} � 1q � p}y} � 1qxy{}y}, xyq
¤ �p}y} � 1q � p}y} � 1q � 0 ,

where the inequality follows from Cauchy-Schwarz inequality together with the fact
that }y} � 1 ¥ 0 and both y{}y} and x belong to B.

Finally, the basic separation demonstrates the interplay between analytic and
geometric concepts.

Theorem 2.1.4 (Basic separation) Suppose that C � E is closed and convex and
the point y P E does not lie in C. Then, there exist a nonzero a P E and b P R such
that

b   xa, yy , b ¥ xa, xy p@x P Cq .

Proof Define f : C Ñ R by fpxq � }y � x}2{2. We already know that there exists
a unique minimizer x̄ � PCpyq which also satisfies

p@x P Cq xy � x̄, x� x̄y ¤ 0 (2.2)

Choosing a � y � x̄, b � xy � x̄, x̄y yields:

xa, yy � b � }y}2 � xx̄, yy � b � }y}2 � 2xx̄, yy � }x̄}2 � }y � x̄}2 ¡ 0 ñ xa, yy ¡ b

p@x P Cq xa, xy � xy � x̄, xy ¤ xy � x̄, x̄y � b ,

where the last inequality follows from (2.2).

It follows that a closed convex set coincides with the intersection of all the closed
affine halfspaces that contain it.
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Exercises

Exercise 2.1.1 Let C � E and let x̄ P intpCq. Recall that a function f : C Ñ R is
Fréchet differentiable at x̄ if

fpx̄� dq � pfpx̄q � x∇fpx̄q, dyq � op}d}q
where the function o : R� Ñ R satisfies limrÓ0

oprq
r
� 0.

1. Show that if f is Fréchet differentiable at x̄, then for any d P E, f 1px̄; dq �
x∇fpxq, dy. Conclude that Fréchet differentiability implies (Gâteaux) differen-
tiability.

2. Show that if the function is (Gâteaux) differentiable and the limit f 1px̄; dq is
uniform4 over d, then the function is Fréchet differentiable at x̄.

Exercise 2.1.2 We extend Taylor’s Theorem to multivariate real-valued functions.

1. Mean-value theorem: Let f : E Ñ R be a differentiable function. Show that for
every x, y P E, there exists α P p0, 1q such that

fpyq � fpxq � x∇fpx� αpy � xqq, y � xy .

2. Assume now that f is twice differentiable. Prove the following important con-
sequence of the multivariate Taylor’s theorem: for any two points x, y, there
exists α P r0, 1s such that

fpyq � fpxq �∇fpxqJpy � xq � 1

2
py � xqJ∇2fpx� αpy � xqqpy � xq ,

(Hint for both parts: consider the function φ : r0, 1s Ñ R defined by φptq � fpx �
tpy � xqq.)
Exercise 2.1.3 (First-order characterization of convexity) Let C � E be a
open convex set and let f : C Ñ R. Prove the following facts:

1. For any x̄, x P C � E, the function t P p0, 1s Ñ fpx̄�tpx�x̄qq�fpx̄q
t

is monotonically
nondecreasing providing that f is convex.

2. Conclude that if f is convex then for any x̄, x P C, f 1px̄;x�x̄q exists in r�8,8q
and f 1px̄;x� x̄q ¤ fpxq � fpx̄q. In particular, if f is convex and differentiable,
then

∇fpx̄qJpx� x̄q � f 1px̄;x� x̄q ¤ fpxq � fpx̄q , (2.3)

Conclude the proof of Theorem 2.1.2.

4That is, for any ε ¡ 0, there exists s ¡ 0 such that for any 0   t ¤ s and any d P E,�
�
� fpx̄�tdq�fpx̄q

t � f 1px̄; dq
�
�
� ¤ ε (note that for every ε, there exists a choice of s ¡ 0 that works for all

d P E).
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3. Conversely, if f is differentiable on C and Equation (2.3) holds for every x̄, x P
C, then f is convex. (Hint: for x, y P C, α P r0, 1s and z � αx � p1 � αqy,
consider the expression α � f 1pz;x� zq � p1 � αqf 1pz; y � zq.).

4. Assuming that f is differentiable, f is strictly convex if and only if Equa-
tion (2.3) is strict whenever x � y.

5. Assume that f is differentiable. Show that f is convex if and only if for all
y, x P C, we have

x∇fpyq �∇fpxq, y � xy ¥ 0

Furthermore, f is strictly convex if and only if the inequality is strict whenever
x � y. (Hint: use Exercise (2.1.2)).

6. Let I � R be an open interval and assume that f : I Ñ R is differentiable.
Show that f is (strictly) convex if and only if f 1 is monotonically nondecreasing
(increasing).

TODO: Bregman distance

Exercise 2.1.4 Prove Corollary 2.1.1. (Hint: Recall from Exercise (1.2.1) that the
null space of A coincides with the complement of the column space of A�.)

Exercise 2.1.5 (Second-order characterization of convexity) Let C � Rd be
a open convex set and let f : C Ñ R be a twice differentiable function.

1. Show that if ∇2fpxq is positive semidefinite (positive definite) for every x, then
f is (strictly) convex. Furthermore, if f is twice continuously differentiable and
convex, then ∇2fpxq is positive semidefinite. (Hint: use Exercise (2.1.2)).

2. Conclude that if C � I � R is an open interval, then f is (strictly) convex if
and only if f2 ¥ 0. furthermore, if f2 ¡ 0, then f is strictly convex.

3. Is it true that if f is strictly convex and twice continuously differentiable, then
its Hessian at any point is positive definite?

4. Prove Theorem 2.1.3.

Exercise 2.1.6 The above discussion of first and the second-order characterizations
of convex functions is limited to functions with open doamins. The following result is
useful:

1. Prove that a continuous function f : clC Ñ R is convex if and only if its
restriction to C is convex.

2. Given an example of C and f : clC Ñ R such that f |C is strictly convex but f
is only convex.
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Exercise 2.1.7 Let f � h � g, where h, g : R Ñ R are differentiable.

1. Show that f2pxq � h2pgpxqqpg1pxqq2 � g2pxqh1pgpxqq.

2. Conclude that f is convex under each of the following conditions:

(a) The function h is convex and nondecreasing and g is convex.

(b) The function h is convex and nonincreasing and g is conave.

3. Extend the above results to the case where g : Rd Ñ R.

4. Derive analogous conditions for the concavity of f .

Exercise 2.1.8 Let C � E be an open convex set. Show that the twice continuously
differentiable function f : C Ñ R is convex if and only if for every x, y P C, the
function φx,y : R Ñ R, defined by φx,yptq � fpx � tpy � xqq, satisfies φ2x,yp0q ¥ 0.
Furthremore, if for any such φx,y, φ

2
x,yp0q ¡ 0 if x � y, then f is strictly convex.

(Hint: Use Exercise (1.1.13), Exercise (2.1.5) and Exercise (2.1.6). Show that for
any φx,y and any t P p0, 1q, φ2x,yptq � φ2x�αpy�xq,yp0q{p1 � tq2.)

Exercise 2.1.9�

1. Consider the function f : Sd�� Ñ R defined by fpXq � log det X.

(a) Show that ∇fpXq � X�1. (Hint: Note that for any D P Sn and small
enough t ¡ 0, fpX � tDq � log det pXpI � tX�1Dqq � log det X �
log detpI�tX�1Dq. Also note that X�1D is similar to the positive semidef-
inite matrix X�1{2DX�1{2. Express the directional derivative using the
eigenvalues of X�1{2DX�1{2.)

(b) Show that f is convex. (Hint: use Exercise (2.1.3).)

2. Consider the function f : Sn�� Ñ R defined by fpXq � trX�1.

(a) Show that ∇fpXq � �X�2. (Hint: Use the relation X � tD � XpI �
p�tX�1Dqq. Verify the identity pI � Aq�1 � °8

i�0A
i which holds for any

matrix A whose maximal singular value is at most 1.)

(b) Prove that f is convex. (Hint: use Exercise (2.1.8).)

Exercise 2.1.10

1. Let C � E be a closed and convex set. For any y P E and x P C, }x�PCpyq} ¤
}x� y}.
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2. Show that the projection from E � Rd onto Rd
� is given y ÞÑ y�, where y�i �

maxt0, yiu. Similarly, show that the projection from Sd onto Sd� is given by
Updiag λqUJ ÞÑ U diagpλ�qUJ.

3. Let V � E be a linear subspace and denote by tv1, . . . , vku an orthonormal basis
for V . Show that the projection mapping onto V is given by the linear map
x ÞÑ °k

i�1 viv
J
i x.

Exercise 2.1.11�(Supporting Hyperplane Theorem) Let C � E be a convex set
and let x̄ R C. Show that there exists a P E such that

sup
xPC

xx, ay ¤ xx̄, ay .

(Hint: Consider the case x̄ P clpCq. We can pick a sequence pynq � C that converges
to x̄ (why?). Use the separation theorem to find an P E, bn P R which separate between
yn and C. Crucially, we may assume w.l.o.g. that for all n, }an} and |bn| are at most
c for some constant c ¡ 0.)

Exercise 2.1.12 (Strong Separation) Suppose that the sets C,D � E are closed
and convex and D is also bounded.

1. Show that the set D � C is closed and convex.

2. Deduce that if C and D are disjoint, there there exists a nonzero a P E such
that

inf
xPD

xa, xy ¡ sup
yPC

xa, yy

3. Show that no such separation exists for the sets C � tpx1, x2q : x1 ¡ 0, x2 ¥
1{x1u and D � tpx1, x2q : x2 � 0u.
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2.2 Theorems of the Alternative

A prominent consequence of the basic separation theorem is a family of results called
“theorems of the alternative”. We discuss two such results due to Gordan and Farkas.

Theorem 2.2.1 For any sequence of points a1 . . . , am P E, exactly one of the follow-
ing systems has a solution:

0 �
m̧

i�1

λiai , each λi ¥ 0,
m̧

i�1

λi � 1 .

p@i P rmsq xai, xy   0 , x P E .

Proof Consider the set C � conv ta1, . . . , amu. Assume that 0 � °m
i�1 λiai P C

and assume by contradiction that the second system has a solution x̄ P E. Then, we
obtain a contradiction by

0 � x
m̧

i�1

λiai, x̄y �
m̧

i�1

λixai, x̄y   0

(since all the λi’s are nonnegative and at least one of them is positive). Assume now
that the first system has no solution. It is not hard to verify that the set C is closed
and convex. The Basic separation theorem implies that there exists x P E and b P R
such that

x0, xy ¡ b , p@i P rmsq xai, xy ¤ b .

Since b must be negative, it follows that the second system has a solution.

For the second theorem of alternative, we need the following important result.

Theorem 2.2.2 (Carathéodory’s Theorem) Let tai : i P Iu � E be a finite set.
For each J � I, we consider the finitely generated cone

CJ � t
¸
jPJ

µjaj : each µj ¥ 0u

Also, we consider the convex hull C � conv tai : i P Iu.
1. The set CI is equal to the union of all those cones CJ for which the set taj : j P

Ju is independent.

2. The set CI is closed.

3. Every vector in C can be expressed as a convex combination of at most dim E�1
vectors from tai : i P Iu.
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The proof is outlined in the exercises.

Lemma 2.2.1 (Farkas) For any set of points a1, . . . , am and c P E, exactly one of
the following systems has a solution:

c �
m̧

i�1

λiai, p@i P rmsq λi ¥ 0 .

xc, wy ¡ 0, p@i P rmsq xai, wy ¤ 0, w P E .

Proof The fact that if the first system has a solution then the second does not have
a solution follows as in Gordan theorem. Denote by C � t°m

i�1 µiai : each µi ¥ 0u.
The set C is convex and according to Theorem 2.2.2, it is also closed. The basic
separation theorem implies that if the first system has no solution, then there exists
w P E and b P R such that xx,wy ¤ b for all x P C and xc, wy ¡ b. We argue that
that b can be chosen to be 0. First, b ¥ 0 since 0 P C. Next, we observe that if there
exist x̄ P C such that xx̄, wy ¡ 0, then supxPCxx,wy � 8. Thus, if the first system
has no solution then the second system has a solution.

Application: Duality of Linear Programming

Consider a linear program (LP) of the form

max cJx

s.t. Ax ¤ b , x ¥ 0 (2.4)

where c P Rd, A P Rn�d, b P Rn and inequality between vectors is understood
component-wise. The dual linear program is given by

min bJy

s.t. AJy ¥ b , y ¥ 0 . (2.5)

The former problem is called the primal problem and the second is called the dual
problem. The weak-duality theorem follows immediately from the definitions of the
problems.

Lemma 2.2.2 (Weak Duality for Linear Programming) For any two feasible
solutions x and y for the primal and the dual programs, we have cJx ¤ bJy.

The strong duality theorem establishes conditions under which an equality is obtained.
This result has numerous applications in continuous and discrete optimization.

Theorem 2.2.3 (Strong Duality for Linear Programming) The primal and
the dual programs described above satisfy exactly one of the following properties:
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1. Both are infeasible (i.e., there are no vectors that satisfy the constraints).

2. The primal problem is unbounded and the dual is infeasible.

3. The dual problem is unbounded and the primal is infeasible.

4. Both problems have optimal solutions, denoted x� and y�, respectively. They
satisfy the equality

cJx� � bJy� . (2.6)

Proof It follows from the weak duality Theorem that these are indeed all the possible
scenarios. We prove the strong duality equation (2.6). Denote the rows of A by
a1, . . . , an. Let I � ti P rns : aJi x

� � biu be the constraints that are tight at x�. We
argue that c � °

iPI λiai for some nonnegative vector of coefficients, λ. Otherwise,
according to Farkas’s lemma, there exists v P Rd such that xv, cy ¡ 0 and xv, aiy ¤ 0
for all i P I. It is clear then that for sufficiently small ε ¡ 0, the vector x� � εv is a
feasible solution with cJpx� � εvq ¡ cJx�, contradicting the optimality of x�.

Define y P Rn by

yi �
#
λi i P I
0 i R I

Then,

yJb �
¸
iPI
yibi �

¸
iPI
yipaJi x�q � cJx� .

Since y is feasible, the theorem follows using the Weak duality theorem.

Note that the vector y constructed during the proof satisfies the following property:
for every i P rns, either the dual variable yi is zero or the corresponding constraint is
tight. This is not a coincidence.

Corollary 2.2.1 (Complementary Slackness for Linear Programming) The
following conditions are equivalent:

1. The vectors x� and y� are optimal solutions for the primal and the dual problems,
respectively.

2. For every i P rns, either pAx�qi � bi or y�i � 0. Similarly, for every j P rds,
either pAJy�qj � cj or x�j � 0.

Exercises

Exercise 2.2.1 Let a1, . . . , am P E. Show that conv ta1, . . . , amu is compact.

Exercise 2.2.2�(Carathéodory’s Theorem)
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1. Prove Theorem 2.2.2. (Hint: verify the fact that a finite union of closed sets is
closed. Hence, given the first part of the lemma, it suffices to prove the second
part for any CJ which is generated by an independent set of vectors. For the last
part of the lemma, note that if x � °m

i�1 µiai P C, then px, 1q � °m
i�1 µipai, 1q.)

2. Conclude that for every set P � Rd, every point x P convP belongs to the
convex hull of a finite set P 1 � P of size at most d� 1.

Exercise 2.2.3

1. Deduce Gordan’s theorem from the Farkas lemma. (Hint: consider the aug-
mented vectors pai, 1q for all i.)

2. p�q Deduce the Farkas lemma from Gordan’s theorem.

Exercise 2.2.4 Prove Lemma 2.2.2.

Exercise 2.2.5 Prove Corollary 2.2.1.

Exercise 2.2.6�(The minimax theorem) Consider a zero-sum game as formu-
lated in Exercise (1.1.12), where the players are allowed to play mixed strategies.
Following the same notations, we already know that Mm ¤ mM . In this question we
prove an equality. This result is called von Neumann theorem.

1. Assume by contradiction that Mm   mM �: v. We consider a modified game in
which all the values are decreased by v, i.e., the game matrix, Ã P Rn�m, satisfies
Ãi,j � Ai,j � v. Denoting the rows of Ã by ã1, . . . , ãn, use Exercise (1.1.12) to
conclude that for every p P ∆n there exists q P te1, . . . , emu such that pJÃq   0.

2. Deduce that the convex hull of tã1, . . . , ãnu and the set Rm
� are disjoint.

3. Use Exercise (2.1.12) to obtain the contradiction mM   v.
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2.3 Max-functions and Lagrangian Duality

We now establish optimality conditions for one of the most common forms of an
optimization problem:

min fpxq
s.t. gipxq ¤ 0 for i � 1, . . . ,m

x P C . (2.7)

where C is a convex subset of E and where f and g1, . . . , gm are differentiable functions
defined over C. We say that x P C is feasible if gipxq ¤ 0 for all i P rms. The feasible
region is the set of feasible points. The problem is said to be feasible if the feasible
region is not empty. A point x P C is a local minimizer if for all close feasible points
x, fpxq ¥ fpx̄q.

A key idea in optimization is the association of unconstrained optimization prob-
lems with constrained minimization problems. In this section we present two such
methodologies: max-functions and Lagrangian. We next explain each of these con-
cepts.

Let x̄ P intpCq (in our context, x̄ can be viewed as a candidate local minimizer).
Define h0 : C Ñ R by h0pxq � fpxq�fpx̄q, and for i � 1, . . . ,m, let hi � gi. We define
the max-function hpxq � maxiPt0,...,mu hipxq. Note that while the hi’s are smooth, the
function h is certainly not smooth. Still, the directional derivative exists and has the
following useful property.

Lemma 2.3.1 Let x P intpCq. Define the index set I � ti P t0, . . . ,mu : hipxq �
hpxqu. Then, for all d P E,

h1px; dq � max
iPt0,...,mu

x∇hipxq, dy .

Proof Let d P E. By continuity, we may assume w.l.o.g.5 that I � t0, . . . ,mu. For
all i P I, we have

lim inf
tÓ0

hpx� tdq � hpxq
t

¥ lim
tÓ0

hipx� tdq � hipxq
t

� x∇hipxq, dy .

Suppose

lim sup
tÓ0

hpx� tdq � hpxq
t

¡ max
i
x∇hipxq, dy .

Then, we can take a sequence ptnqnPN of positive scalars such that tn Ó 0 and

p@n P Nq hpx� tndq � hpxq
tn

¡ max
i
x∇hipxq, dy � ε .

5All other functions do not affect h1px; dq.
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for some ε ¡ 0. For each n P N, there exists an index i � ipnq P I such that
hpx � tdq � hipx � tdq. At least one index j P I appears in the sequence pipnqq
infinitely many times. In the limit we obtain the contradiction

x∇hjpxq, dy ¡ max
i
x∇hipxq, dy � ε .

The Lagrangian associated with the optimization problem (2.7) is the function L :
C � Rm

� Ñ R defined by

Lpx;λq � fpxq �
m̧

i�1

λigipxq . (2.8)

Let x̄ be a feasible point. We define the active set Ipx̄q � ti P rms : gipxq � 0u. We
say that λ P Rm

� is a Lagrange multiplier vector for x̄ if x̄ is a critical point of Lp;λq,
i.e.,

∇fpx̄q �
m̧

i�1

λigipx̄q � 0,

and complementary slackness holds: λi � 0 for any i R Ipx̄q.
The Lagrangian provides a very simple sufficient condition for optimality. Note

that if λ is a Lagrange multiplier for x̄, then
°m
i�1 λigipx̄q � 0. Therefore, Lpx̄, λq �

fpx̄q. For any other feasible point x P C, it is easy to check that Lpx, λq ¤ fpxq. The
following conclusion is immediate.

Theorem 2.3.1 Consider the optimization problem (2.7). Assume that x̄ P C is a
feasible solution and there exists λ P Rm

� such that x̄ minimizes the function Lp�;λq
and λi � 0 for all i R Ipx̄q. Then x̄ is a global minimizer. In particular, if x P intpCq,
f, g1, . . . , gm are convex and there exists a Lagrange multiplier vector for x̄, then x̄ is
a global minimizer.

Proof The first part was proved above. When f, g1, . . . , gm are convex, x̄ minimizes
the function Lp�, λq if and only if x̄ is a critical point of Lp�, λq. The “in particular”
part is now clear.

We turn to discuss necessary conditions. In particular, we aim at establishing neces-
sary conditions that ensure the existence of a Lagrange multiplier vector. We begin
with the following theorem.

Theorem 2.3.2 (Fritz John Conditions) Assume that x̄ P intpCq is a local min-
imizer of the problem (2.7). Then, there exist λ0, λi P R� pi P Ipx̄qq, not all zero,
such that

λ0∇fpxq �
¸
iPIpxq

λi∇gipxq � 0 . (2.9)



36 2.3 Max-functions and Lagrangian Duality

Proof Consider the function hpxq defined above. It can be seen that for i � 0, . . . ,m,
hipx̄q � 0. Therefore, hpx̄q � 0. Furthermore, if x is close enough to x̄, then
hpxq ¥ h0pxq ¥ 0. Hence, x̄ is a local minimizer of h. According to Lemma 2.3.1 and
Theorem 2.1.1, for all d P E,

0 ¤ h1px; dq � maxtx∇fpxq, dy, x∇gipxq, dy : i P Ipxqu .
Therefore, for all d P E, both x∇fpx̄q, dy ¥ 0 and

p@i P Ipx̄qq x∇gipx̄q, dy ¥ 0 .

Putting it differently, there is no d P E such that x∇gipx̄q, dy   0 for all i P Ipx̄q. The
feasibility of Equation (2.9) follows now from Gordan’s theorem.

Note that the theorem does not yield a Lagrange multiplier. We need to impose addi-
tional assumptions in order to rule out the possibility that λ0 � 0. For example, one
such condition is linear independence of the set t∇gipx̄q : i P Ipx̄qu. We now discuss
a weaker condition. We say that the Mangasarian-Fromovitz constraint qualification
holds at x̄ if there is a direction d P E such that x∇gipx̄q, dy   0 for all i P Ipx̄q.
Theorem 2.3.3 (Karush-Kuhn-Tucker (KKT) conditions) Suppose that the
conditions in Theorem 2.3.2 hold and that Mangasarian-Fromovitz constraint qualifi-
cation holds at x̄. Then, there exists a Lagrange multiplier vector for x̄.

Proof Theorem 2.3.2 implies the feasibility of Equation (2.9). By the opposite direc-
tion of Gordan’s theorem, the constraint qualification implies that λ0 � 0. Dividing
Equation (2.9) by λ0, we conclude the existence of a Lagrange multiplier vector.

Exercises

Exercise 2.3.1 Compute the directional derivatives of the absolute value function | � |
at the point 0.

Exercise 2.3.2 (The entire regularization path) Let f1, . . . , fn : Rd Ñ R be
differentiable functions. We consider two minimization problems:

Regularized minimization: min
wPRd

1

n

ņ

i�1

fipwq � λ}w}2 (2.10)

Constrained minimization: min
w:}w}¤B

1

n

ņ

i�1

fipwq (2.11)

where B and λ are two positive scalars. Show that if w� is a global minimizer of
the regularized problem, then there exists B ¡ 0 such that w� is a minimizer of the
constrained problem. Conversely, if f1, . . . , fn are convex and w� � 0 is a global
minimizer of the constrained problem (2.11), then there exists λ ¡ 0 such that w� is
also a global minimizer of the corresponding regularized problem (2.10).
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Exercise 2.3.3 Show that the Mangasarian-Fromovitz constraint qualification is in-
deed weaker than linear independence. That is, if a1, . . . , am P E are linearly inde-
pendent, then there exits d P E such that xd, aiy   0 for all i P rms.
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Chapter 3

Nonsmooth Optimization and
Lagrangian Duality

3.1 Subgradients and Convex Functions

We are already familiar with the following useful characterization of differentiable
convex functions: for any point x in the domain, the first-order approximation around
x lies below the function. This is another example for how a local information yields a
global information on f . In the absence of differentiability, this property is captured
by subgradients.

Definition 3.1.1 Let C � E, f : C Ñ R and x̄ P C. A vector a P E is a subgradient
of f at x̄ if for all x P C,

xa, x� x̄y ¤ fpxq � fpx̄q
The subdifferential of f at x̄, denoted Bfpx̄q, is the set of all subgradients of f at x̄.

The subgradient provides a trivial yet important optimality condition: a point x̄ is a
global minimizer of a function f is and only if 0 P Bfpx̄q.

Our geometric intuition tells us that the subdifferentials of a convex function are
never empty. Furthermore, if f is differentiable, the subdifferential consists exactly
of one element, the gradient. The simplest illustrating example is the absolute value
function. At any point x � 0, the function is differentiable and the only subgradient
is sgnpxq. For x � 0, any slope α P r�1, 1s satisfies the definition. It turns out that
subgradients characterize convex function in a very strong way.

Theorem 3.1.1 Let C � E be a convex set and let f : C Ñ R. If Bfpxq � H for all
x P C, then f is convex. Conversely, if f is convex, then the subdifferential of any
point x̄ P intC is not empty. Moreover, we have the following relationship between
subgradients and directional derivatives: For any d P E,

f 1px̄; dq � maxtxa, dy : a P Bfpx̄qu .
In particular, if f is differentiable, Bfpx̄q consists exactly of ∇fpx̄q.

39
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The proof of the first part of the theorem (sufficient condition for convexity) is anal-
ogous to the third part of Exercise (2.1.3). Throughout the rest of this section, we
prove the second part by relating the subgradient to the directional derivative. Before
proceeding, by taking a quick picture, we see that existence of subgradients can be
proved by means of separation theorems. Namely, the point px, fpxqq can be sepa-
rated from the epigraph of f , tpx, yq : fpxq   yu. Indeed, this approach is outlined
in the exercises.

Throughout the rest of this section, let us fix a convex set C � E, a convex
function f : C Ñ R and x̄ P intC. We begin with the following simple result.

Lemma 3.1.1 An element a P E is a subgradient of f at x̄ if and only if xφ, �y ¤
f 1px̄; �q.
Proof If a is a subgradient, then for any d P E and t ¡ 0,

fpx̄� tdq � fpx̄q
t

¥ xa, tdy
t

� xa, dy .
In particular, the inequality is satisfied when t Ó 0. Therefore, xa, �y ¤ f 1px; �q. As-
sume now that xa, dy ¤ f 1px̄; dq for all d P E. Then, since f is convex, we know that
f 1px̄; dq ¤ fpx̄� dq � fpx̄q for all d, so we obtain that a is a subgradient.

The following lemma provides some (additional) properties of the directional
derivative. We use the following definitions: a function g : E Ñ R is said to be
sublinear if for all d, e P E and λ, µ P R�, gpλd � µeq ¤ λgpdq � µgpeq. A function
g : E Ñ R is said to be subaditive if for all d, e P E, gpd � eq ¤ gpdq � gpeq. The
function g is positively homogeneous if for all d P E and λ P R�, gpλdq � λgpdq. An
exercise shows that g is sublinear if and only if g is subaditive and positively homo-
geneous. Also, if g is sublinear, then gp�xq ¥ �gpxq for all x (Exercise (3.1.6�)).

Lemma 3.1.2
The directional derivative satisfies the following properties:

1. For any direction d P E, the directional derivative f 1px̄; dq exists in R.

2. Sublinearity in the second argument: the function f 1px̄; �q is sublinear.

Now let d P E and denote µ � f 1px̄; dq. We know that µ P R. Define the linear
subspace S � tαd : α P Ru and the linear function Λ : S Ñ R by Λpαdq � αµ. Since
f 1px̄;αdq � αµ when α ¥ 0 and for α   0,

f 1px̄;αdq ¥ �f 1px̄; |α|dq � αµ ,

we have that Λp�q ¤ f 1px̄; �q|S and λpαdq � f 1px̄;αdq for α ¥ 0. In particular,
Λpdq � f 1px̄; dq. It would be great if we could extend Λ to the entire space while
preserving the relation Λp�q ¤ f 1px̄; �q. This gives us an excuse to prove the following
fundamental theorem.
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Theorem 3.1.2 (Hahn-Banach extension) Suppose p : E Ñ R is a sublinear
function and Λ : S Ñ R is linear, where S is a subspace of E. If Λ ¤ P |S, then there
exists an extension of Λ, Λ̄ : E Ñ R, which satisfies Λ̄|S � Λ and Λ̄ ¤ p.

Proof Let x1 P EzS. We show how to extend Λ to S1 � spanpS Y tx1, uq. Since the
dimension is finite,1 by repeating this argument we conclude the proof.

Note that every vector v P S1 can be uniquely written as x� tx1, where x P S and
t P R. We define Λ̄ : S1 Ñ R by Λ̄px� tx1q � fpxq �µt, where µ will be chosen later.
It is clear that Λ̄ is linear and that Λ̄|S � Λ. In order to satisfy the relation Λ̄ ¤ p,
it suffices to ensure that for every x, y P S,

Λ̄py � x1q ¤ ppy � x1q , Λ̄px� x1q ¤ ppx� x1q . (3.1)

The Sublinearity of p and our assumptions on Λ imply that

ppy � x1q � ppx� x1q ¥ ppy � xq ¥ λpy � xq � Λpyq � Λpxq .

Hence,

ppy � x1q � Λpyq ¥ Λpxq � ppx� x1q .
We now choose µ � supxPS Λpxq � ppx � x1q. It is straightforward to check that µ
satisfies Equation (3.1).

We leave it as an easy exercise to complete the proof of Theorem 3.1.1.

Exercises

Exercise 3.1.1 Let C � E, f : C Ñ R. Show that a point x̄ P C is a global
minimizer of a function f is and only if 0 P Bfpx̄q.

Exercise 3.1.2 Use the supporting hyperplane theorem to deduce that the subdiffer-
ential of a convex function f : C Ñ R at any point x P intpCq is not empty.

Exercise 3.1.3 Prove Lemma 3.1.2 (Hint: you may rely on Exercise (3.1.6�).)

Exercise 3.1.4 Complete the proof of Theorem 3.1.1.

Exercise 3.1.5 Use Lemma 3.1.1 in order to provide an alternative proof for the fact
that if f is differentiable at x P intC, then Bfpxq � t∇fpx̄qu.

Exercise 3.1.6�Let g : E Ñ R. Prove the following facts:

1The theorem is also true in infinite-dimensional spaces. However, a standard proof of this result
in the infinite-dimensional case usually involves the axiom of choice (although this axiom can be
replaced by the weaker ultrafilter theorem).
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1. The function g is sublinear if and only if g is subaditive and positively homoge-
neous.

2. Show that if g is sublinear then for all x, gp�xq ¥ �gpxq.

Exercise 3.1.7 Justify the argument that we made during the proof of Theorem 3.1.2:
in order to satisfy the relation Λ̄ ¤ p, it suffices to ensure that for every x, y P S,

Λ̄py � x1q ¤ ppy � x1q , Λ̄px� x1q ¤ ppx� x1q .

Exercise 3.1.8

1. Let }�} be an arbitrary norm defined over E. Compute Bfpxq at any point x P E.

2. p�q Let f : E Ñ R be a sublinear function. Show that

Bfp0q � ta P E : p@x P Eq xφ, xy ¤ fpxqu ,

and for all nonzero x̄ P E,

Bfpx̄q � ta P Bfp0q : xa, x̄y � fpx̄qu .
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3.2 The Value Function

In this section we describe an alternative approach to the KKT conditions (Theo-
rem 2.3.3) while considering convex but not necessarily differentiable objective and
inequality constraints. We begin by extending the type of functions the definition of
a convex function. We consider extended real-valued functions f : E Ñ r�8,�8s.
The domain of f is the set dom f � tx P E : fpxq ¤ �8u. In order to avoid the
appearance of the expression �8�8, we need to generalize the definition of a con-
vex function. We say that f is convex if its epigraph tpx, sq P E � R : fpxq ¤ su is
convex. It can be verified that f is convex if and only if for all x, y P dom f and every
α P r0, 1s, fpαx � p1 � αqyq ¤ αfpxq � p1 � αqfpyq. Furthermore, the domain of a
convex function is convex.

Allowing the value �8 helps us in formulating optimization programs. For exam-
ple, instead of explicitly restricting the feasible region to a set C � E, we may add
the indicator function δC , where δCpxq � 0 if x P C and �8 otherwise, to the objec-
tive. We usually prefer to exclude the possibility that f takes the value �8 (e.g., the
definition of value function below requires us to allow this value. However, we then
provide conditions under which it does not takes this value). We say that f is proper
if dom f � H and f never takes the value �8. The definition of directional derivative
and subdifferential are easily extended to proper functions (see Exercise (3.2.3)).

We establish optimality conditions for convex optimization problems of the fol-
lowing form:

min fpxq
s.t. gipxq ¤ 0 for i � 1, . . . ,m

(3.2)

where f, g1, . . . , gm : E Ñ r�8,8s are convex but not necessarily differentiable.
Denoting by gpxq � pg1pxq, . . . , gmpxqq, the Lagrangian L : E � R�

m Ñ R is defined
by Lpx, λq � fpxq�λJgpxq. In our context, a vector λ P Rm

� is a Lagrange multiplier
vector for a feasible solution x̄ if x̄ minimizes Lp�, λq and complementary slackness
holds: λi � 0 whenever gipx̄q � 0. Certainly, the sufficient conditions stated in
Theorem 2.3.1 apply also here.

Theorem 3.2.1 If the point x̄ is feasible and λ is a Lagrange multiplier vector for
x̄, then x̄ is optimal.

Note that the proof does not rely on convexity.
The main object in our approach is the value function v : Rm Ñ R, defined by

vpbq � inftfpxq : gpxq ¤ bu .
Clearly, v is monotonic in the following sense: vpbq ¤ vpaq if b � a P Rm

� . Note that
if x̄ P dom f is optimal for the program (3.2), then vp0q � fpx̄q. Also, by definition,
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for all x P E, fpxq ¥ vpgpxqq. In the absence of differentiability, we will resort to the
subdifferential of the value function. For this purpose, we need to ensure that v is
proper. The following constraint qualification suffices:

Slater condition: Dx̂ P dom f P E s.t. p@i P rmsq gipx̂q   0 .

Lemma 3.2.1 Suppose that x̄ P dom f is optimal for the convex program (3.2) and
that the Slater condition holds. Then v is proper.

Proof By assumption, vp0q � fpx̄q P p�8,8q. The slater condition implies that
0 P intpdom vq. Assume by contradiction that there exits µ P Rm with vpµq � �8.
By considering a line of the form r�sµ, sµs � dom v and using the convexity of v, we
obtain a contradiction. Filling the missing details is left as an exercise.

Theorem 3.2.2 (Lagrangian necessary conditions) Suppose that x̄ P dom f is
optimal for the convex program (3.2) and that the Slater condition holds. Then there
exists a Lagrange multiplier vector for x̄

Proof According to Lemma 3.2.1, the value function v is proper and 0 P intpdom vq.
According to Theorem 3.1.1, the subdifferential Bvp0q is not empty. Let a be any
subgradient of v at 0. By definition of the subgradient and the above elementary
properties of the value function, for every b P Rm

� ,

fpx̄q � vp0q ¤ vpbq � xa, by ¤ vp0q � xa, by � fpx̄q � xa, by . (3.3)

It follows that λ :� �a P Rm
� . In particular, substituting b � gpx̄q, we obtain that

fpx̄q ¤ Lpx̄, λq. Since the coordinates of both gpx̄q and λ are nonnegative, we conclude
that λi � 0 whenever gipx̄q   0. We complete the proof by showing that for every
x P E, Lpx, λq ¥ fpx̄q. Indeed, for every x P E,

fpxq ¥ vpgpxqq ¥ vp0q � xa, gpxqy � fpx̄q � λJgpxq .

By rearraning we obtain Lpx, λq ¥ fpx̄q. Hence,

Lpx̄, λq ¤ fpx̄q ¤ Lpx, λq .

We deduce that λ is a Lagrange multiplier vector for x̄.

Note that if f, g1, . . . , gm are differentiable, the KKT conditions are recaptured. In-
deed, it is not hard to see that in this case, the Slater condition is equivalent to the
Mangasarian-Fromovitz constraint qualification.
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Exercises

Exercise 3.2.1 Let f : E Ñ r�8,8s.
1. Prove that f is convex if and only if for all x, y in dom f (or E if f is proper)

and every α P r0, 1s,

fpαx� p1 � αqyq ¤ αfpxq � p1 � αqfpyq .

2. Show that if f is convex, then its domain is convex.

Exercise 3.2.2 Complete the proof of Lemma 3.2.1.

Exercise 3.2.3 For a proper function f : E Ñ r�8,8s, we define the subdifferential
of f at every point x P dom f as in Definition 3.1.1. For x R dom f , we define
Bfpxq � H. Convince yourself that all the results from Section 3.1 (in particular,
Theorem 3.1.1) extend to this setting, where the conditions x P C, x P intC are
respectively replaced by x P dom f, x P intpdom fq.

Exercise 3.2.4 Establish the equivalence between the Slater condition and the Mangasarian-
Fromovitz constraint qualification asserted at’ the end of the section.

Exercise 3.2.5 TODO: John’s Ellipsoid
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3.3 Lagrangian Duality

Consider the convex program (3.2). We now state without a proof2 a fundamental
duality result for convex programs. We consider two progarms:

Primal: p � inf
xPE

sup
λPRm

�

Lpx;λq ,

Dual: d � sup
λPRm

�

inf
xPE

Lpx;λq .

It is straighforward to verify that d ¤ p and that p is equal to the optimal value of
the convex program (3.2). The term p � d is named the duality gap. The following
theorem establishes conditions under which the duality gap is zero.

Theorem 3.3.1 Suppose that the Slater condition holds for the primal problem.
Then the duality gap is zero.

Exercises

Exercise 3.3.1 Prove that d ¤ p.

Exercise 3.3.2 Show that p is equal to the optimal value of the convex program (3.2)

2Due to the lack of time, we will not see the proof of this important result. Sections 3.3, 4.1, 4.2,
4.3 in [Borwein and Lewis, 2010] provide all the details.
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Chapter 4

Condition Number

4.1 Solving Linear Systems using Gradient Descent

We start with one of the most fundamental problems in numerical computation:
solving a system of linear equations. Precisely, given a matrix A P Rd�d and a vector
b P Rd, our goal is to find a vector x such that Ax � b. From a basic course in linear
algebra, we know that when A is invertible, a unique solution is given by x� � A�1b.
We also know that x� can be computed by applying Gaussian elimination, whose
(computational) complexity is dominated by the runtime of matrix multiplication
(currently Opd2.37q). While we are not aware of any exact solver with better worst-
case complexity, it turns out that if we are satisfied with approximate solutions,
then in many applications we can do much better by applying iterative optimization
methods. Concretely, when A P Sd��, solving the system Ax � b is equivalent to
minimizing of the following convex quadratic form:

min
xPRd

"
fpxq � 1

2
xJAx� bJx

*
. (4.1)

Based on this equivalence, we show that a Gradient Descent-based solver, which
we simply call GD, essentially reduces the problem of approximating A�1b to the
computation of a relatively small number of matrix-vector products with the matrix
A. The complexity of this method depends on the condition number of A, which is
defined by

κpAq � λ1pAq
λdpAq , (4.2)

where λ1pAq ¥ . . . λdpAq ¡ 0 are the eigenvalues of A.
Most of this section is devoted to the analysis of the convergence rate of GD.

As will be apparent soon, in our context, it is natural to evaluate the quality of an
approximate solution x̄ according its distance from x� as measured by A; denoting
}z}A �

?
zJAz, we call x̄ an ε-approximate solution if }x̄� x�}2

A ¤ ε. Note that since
A is pd, the function } � } is indeed a norm.

49
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Theorem 4.1.1 Let A ¡ 0 be a d�d matrix and let b P Rd be a vector. Given an ac-
curacy parameter ε ¡ 0, GD finds an ε-approximate solution after OpκpAq logp}x}�{εqq
iterations with overall complexity OpptA � dqκpAq logp}x�}A{εqq, where tA is the run-
time of multiplying A with a vector.

An extremely important observation is that (unlike Gaussian elimination), the GD-
based solver exploits sparsity of the matrix A. Namely, we note if A has only
m � opd2q nonzero entries, then tA scales linearly with m. Therefore, assuming that
logp1{εq is negligible, GD is superior to Gaussian elimination if κAptA�dq � opd2.737q.
In words, GD is superior when A is well-conditioned (and possibly sparse).

Gradient Descent-based solver for linear systems

Starting from x0 � 0, the algorithm GD maintains an approximation, xt, of the
minima of f (4.1), x� � A�1b, according to the following update rule:

xt�1 � xt � ηt∇fpxtq � xt � ηtpAxt � bq � xt � ηtpApxt � x�qq ,
where ηt P R�, the step size at time t, is a parameter that we tune later. Of course, it
would be better to move in the direction Ipxt � x�q (rather than the direction of the
gradient, Apxt � x�q), but computing this direction is hard as solving the problem.
This point of view suggests that the “closer” is A to the identity matrix, the faster is
the convergence of GD to x�. Indeed, this intuition is affirmed, where the notion of
distance from the identity matrix is captured by the condition number.

Theorem 4.1.1 may be proved in various ways. Our technique will lead to a unified
treatment of GD’s convergence rate in a more general setting. We start by observing
that for any two vectors, x, y P Rd,

fpyq � fpxq � x∇fpxq, y � xy � 1

2
py � xqJApy � xq . (4.3)

To see this, simply note that right-hand side is the second degree Taylor approxima-
tion of f near x. Since f is quadratic, the approximation is accurate, i.e., an equality
holds. In particular, since ∇fpx�q � 0, we have fpxq � fpx�q � 1

2
py � xqJApy � xq �

1
2
}y � x}2

A.
We would like to understand what is the impact of relying only on first-order

information. Denote λi � λipAq for all i. Since A ¡ 0, we know from the Courant
minmax principle that λd}y � x}2 ¤ }y � x}2

A ¤ λ1}y � x}2. Therefore, we have the
following upper and lower bounds on the first order approximation of f near x:

Df py, xq :� fpyq � �fpxq �∇fpxqJpy � xq� P �λd
2
}y � x}2,

λ1

2
}y � x}2

�
. (4.4)

The function Df py, xq is called the Bregman distance with f for the points y, x (note
that D is not symmetric, does it does not form a metric). Based on this inequality,
we can analyze the progress of GD.
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Lemma 4.1.1 Let x P Rd, x� � x� 1
λ1
∇fpxq. Then, fpx�q�fpxq ¤ � 1

2λ1
}∇fpxq}2.

Proof By substituting y � x� η∇fpxq in (4.4), we obtain

fpyq � fpxq ¤ �η∇fpxqJ∇fpxq � λ1η
2

2
}∇fpxq}2 .

Optimizing over η yields η� � 1{λ1. Substituting this value in the bound implies the
lemma.

Next, we relate the magnitude of the gradient to the suboptimality.

Lemma 4.1.2 For any x P Rd, fpxq � fpx�q ¤ 1
2λd

}∇fpxq}2.

Proof Using (4.4), we have

fpx�q ¥ fpxq �∇fpxqJpx� � xq � λd
2
}x� � x}2 ¥ min

zPRd
fpxq �∇fpxqJz � λd

2
}z}2

�loomoon
z���λ�1

d ∇fpxq

fpxq � 1

2λd
}∇fpxq}2 .

By rearranging, we conclude the bound.

The proof of Theorem 4.1.1 is now almost straightforward. Denoting ∆t � fpxtq �
fpx�q, we have

∆t�1 ¤ ∆t � 1

2λ1

}∇fpxtq}2 � ∆t � 2λd
2λ1

∆t ¤ ∆t expp�λd{λ1q .

Therefore, ∆T ¤ expp�Tλd{λ1q∆0. By rearranging and recalling that }xt � x�}2
A �

2∆T , we conclude the claimed convergence rate. The runtime per iteration is tA � d.
We thus conclude Theorem 4.1.1.

One disadvantage of the suggested implementation is that the step size depends on
λ1pAq, which is usually unknown. In Exercise (4.1.3) we suggest a different strategy
that leads to an identical bound.

Degenerate linear systems

As we shall see soon, in applications it is often the case that A P Sd� (i.e., A is a d� d
positive semidefinite matrix. In this case, A might be singular) and b belongs to the
column space of A (hence the system Ax � b is still solvable). Does Theorem 4.1.1
hold in this case? Certainly, in our situation the statement in Theorem 4.1.1 is
erroneous. First, since λdpAq might be zero, the condition number λ1pAq{λdpAq is
not defined. Furthermore, since there might be no unique solution, x� is not well
defined. Intuitively, it seems that the we can remedy the situation by restricting
ourselves to the column space of A. Indeed, it can be seen that for any solution x̄ to
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Ax � b, the projection of x̄ onto the column space of A is also a solution. Moreover,
all of these projections coincide with the vector A:b, which we denote by x� (see
Exercise (4.1.2)). Furthermore, it is easily seen that the iterates xt maintained by
GD lie in the column space of A. Finally, we redefine the condition number of A as

κpAq � λ1pAq{λrankpAq . (4.5)

We are now able to show the following generalization of Theorem 4.1.1.

Theorem 4.1.2 Let A © 0 be a d � d matrix and let b P Rd be a vector in the
column space A. Denote x� � A:b. Given an accuracy parameter ε ¡ 0, GD finds an
ε-approximate solution1 after OpκpAq logp}x}�A{εqq iterations with overall complexity
OpptA � dqκpAq logp}x�}A{εqq, where κpAq is defined in Equation (4.5) and tA is the
runtime of multiplying A with a vector.

The proof is outlined in Exercise (4.1.4�).

Application: Least Squares

The method of Least Squares is arguably the simplest and the most popualar approach
for regression analysis in statistics and sachine searning. The associated optimization
problem is defined as following. We are given as an input a sequence of vectors
x1, . . . , xn P Rd together with a corresponding sequence of labels y1, . . . , yn P R. The
objective is given by

min

#
Lpwq � 1

2n

ņ

i�1

pwJxi � yiq2 : w P Rd

+
. (4.6)

Note that an equivalent problem is given by

min
wPRd

1

2
wJAw � wJb .

where A � 1
n

°n
i�1 xix

J
i and b � 1

n

°n
i�1 yixi. As we know, this problem is equivalent

to the system Aw � b. Clearly, A © 0, and since the column space of A is equal to
spantx1, . . . , xnu, b belongs to the column space of A. We conclude that Theorem 4.1.2
holds. In particular, since Lpwq �Lpw�q � 1

2
}w�w�}2, we conclude that GD finds w̄

with Lpw̄q ¤ minwPRd Lpwq � ε in time OpptA � dqκpAq logp}w�}{εqq, where w� � A:b.

1The definition of ε-approximate minima refers to the function } � }A. Note that when A is only
assumed to be positive semidefinite, } � }A is a semi-norm rather than a norm. However, when
restricted to the column space of A, } � }A forms a norm. See Exercise (4.1.1).
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Exercises

Exercise 4.1.1 (Mahalanobis norm) Let A ¡ 0 be a d� d matrix.

1. Show that the bilinear form, x�, �yA : Rd � Rd Ñ R, defined by xx, yyA :� xJAy
forms an inner product. Conclude that the function z ÞÑ

?
zJAz is a norm.2

2. Recall that the quadratic function defined in (4.1) satisfies fpx̄q � fpx�q � }x̄�
x�}A. Conclude that x� is (indeed) unique.

3. Show that when A © 0, } � }A forms a semi-norm, i.e., it satisfies the triangle
inequality and }αx}A � α}x} for every scalar α P R and x P Rd (however, there
might be x � 0 with }x}A � 0). Furthermore, show that when restricted to the
column space of A, } � }A forms a norm.

Exercise 4.1.2 (The Moore-Penrose pseudoinverse) Let B P Rd�n be any ma-
trix of rank r and denote its SVD by B � °r

i�1 σiuiv
J
i . The pseudoinverse of B is

defined by B: � °r
i�1 σ

�1
i viu

J
i .

1. Show that BB: forms a projection matrix onto the column space of B (i.e.,
pBB:q2 � BB: and the range of BB: coincides with the range of B). Similarly,
show that B:B is a projection matrix onto the row space of B (i.e., pB:Bq2 �
B:B and the range of B:B coincides with the range of BJ). .

2. Let A be an n � d matrix and let b P Rn be a vector in the column space of
A. Show that A:b solves the system Ax � b. Moreover, if x̄ is any solution to
Ax � b, then its projection to the column space of A coincides with A:b.

3. Let A ¡ 0 be a d � d matrix of rank r and assume that let A � °r
i�1 λiuiu

J
i is

the eigendecomposition of A. Show that A: � °r
i�1 λ

�1
i uiu

J
i .

Exercise 4.1.3 Consider a variant of GD whose step size is defined by ηt � }∇fpxtq}2
}∇fpxtq}2A

.

Show that Theorem 4.1.1 holds with respect to this variant. (Hint: What is the relation
between ηt and 1{λ1?)

Exercise 4.1.4�Prove Theorem 4.1.2. (Hint: Denote by U P Rd�r the matrix whose
i-th column is the i-th leading eigenvector of A. Consider the quadratic problem

min
xPRr

"
f̃pxq � 1

2
xJÃx� b̃Jx

*
, (4.7)

where Ã � UJAU and b̃ � UJb.)

2You may prove this fact directly. Instead, you can show that for every inner product x�, �y, the
function z ÞÑ

a
xz, zy.
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Exercise 4.1.5 Let x1, . . . , xn P Rd. Show that the column space of A � °n
i�1 xix

J
i

is equal to spantx1, . . . , xnu.

Exercise 4.1.6 Consider the objective associated with Ridge regression:

min

#
Lpwq � 1

2n

ņ

i�1

pwJxi � yiq2 � λ

2
}w}2 : w P Rd

+
,

where x1, . . . , xn P Rd, y1, . . . , yn P R and λ ¡ 0 is a regularization parameter.

1. Show that Ridge regression can be written as a standard least squares problem
(4.6).

2. Derive an upper bound on the convergence rate and the runtome of GD when
applied to the Ridge regression objetive.
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4.2 Acceleration using Conjugate Gradient

In view of Theorem 4.1.1 and Theorem 4.1.2, a natural question which arises is
whether we can have a better complexity? In particular, while the dependence on
1{ε seems satisfactory, does the linear dependence on the condition number can be
improved? In this section we present the Conjugate Gradient (CG) method that
leads to a quadratic saving in terms of the dependence on the condition number
while having the same computational complexity per iteration. We also discuss the
optimality of this method. Our exposition highlights the connection to the area of
approximation theory. Namely, we associate every first order algorithm with a matrix
polynomial. By these means, the study of the convergence rate is essentially reduced
to the study of extremal properties of such polynomials.

A simple induction that when applying GD to a convex quadratic form, its t-th
iterate, xt, belongs to the set K :� spantb, Ab, . . . , At�1bu, named the Krylov subspace
of order t. However, the vector xt may not attain the minimal value of the quadratic
form f over K. On the contrary, the Conjugate Gradient algorithm does ensure this
property. In the next two parts we address the two following question. (1) How
does CG find xt efficiently? (2) How does this property imply the claimed quadratic
saving?

Computing conjugate directions efficiently

Let tv0, . . . , vt�1u be any basis for the Krylov subspace of order t. We would like to
find the minimizer of the quadratic form f over K. Since x� � A�1b, we consider the
following minimization problem:

min
α0,...,αt�1

}A�1b�
ţ

i�1

αivi}2
A � }x�}2

A � 2
t�1̧

i�0

αiv
J
i b�

t�1̧

i�0

t�1̧

j�0

αiαjxvi, vjyA

}x�}2
A � 2αV Jb� αJZα . (4.8)

where xvi, vjy � vJAvj, V P Rd�t is the matrix whose columns are v0, . . . , vt�1 and
Z � V JAV . The optimal solution is

α� � Z�1V Jb , (4.9)

Therefore, computing α� requires the inversion of A, which is clearly undesired. This
should not surprise as since we can not expect obtaining a simpler problem by using
an arbitrary change of basis. However, if the v0, . . . , vt�1 are A-orthogonal (a.k.a.
A-conjugate), i.e. xvi, vjyA � 0 for all i � j, then the problem (4.9) becomes much
easier. Namely, a simple exercise shows that the optimal solution is given by

p@iq α�i �
vJi b
}vi}2

A

. (4.10)
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Computing each of the coefficients αi can be carried out in time tA � d. Thus, if we
compute αi�1 at the i-th iteration, we would have the same complexity as GD, but
now we also ensure that xt is the optimal vector in K. In particular, an exact solution
is found after at most d iterations.

Naturally, the next question is how can we compute an A-orthogonal set efficiently.
A naive method is to start with some arbitrary independent set of vectors (e.g.,
the standard basis) and apply the Gram-Schmidt process with respect to x�, �yA. In
order to generate t orthonormal vectors, we need to compute t2 inner products w.r.t.
A, so this preprocessing scheme would run in time Opt2ptA � dqq. For large t, the
resulted scheme is not efficient. We next describe a rather clever iterative method
that computes A-orthogonal vectors on-the-fly (rather than as a preprocessing step).

Starting from v0 � b, we proceed inductively, where at time t, we compute ṽt �
Avt�1 and then A-orthogonalize ṽt with respect to v0, . . . , vt�1

vt � ṽt �
t�1̧

s�0

xṽt, vsyA
xvs, vsyAvs . (4.11)

It follows that spantv0, . . . , vtu � spantb, . . . , Atbu and tv0, . . . , vtu is A-orthonormal3.
Crucially, it also follows that for every s, Avs P spantv0, . . . , vs�1u. Hence, since A is
symmetric, we have

xṽt, vsyA � vJt�1AAvs � xAvs, vt�1yA � 0 for all s   t� 2 .

Hence, all but the two last terms in the RHS of (4.11) are canceled. As a result, the
A-orthogonalization of vt takes only OptA � dq. We leave it as an exercise to write a
pseudo-code of CG.

Analysis via Chebyshev polynomials

We next show how the optimality over Krylov subspaces implies the quadratic sav-
ing in the dependence on the condition number. The analysis relies on a beautiful
connection to approximation theory.

Every vector in the Krylov subspace K � tb, . . . , At�1bu can be (uniquely) written
as ppAqb, where ppxq is a polynomial of degree t. Clearly, this correspondence is also
surjective, i.e., every polynomial of degree t�1 induces a unique vector in K. Denote
the set of polynomials of degree t � 1 by Σt�1. By the optimality of xt over K, we
conclude that

}x� � xt}2
A � min

pPΣt�1

}x� � ppAqb}2
A � }pI � ppAqAqx�}2

A ¤ }x�}2
A}I � ppAqA}2

2 , (4.12)

where }I � ppAqA}2 denotes the spectral norm of I � ppAqA (the inequality in (4.12)
is left as an exercise). Given an accuracy parameter ε1 ¡ 0, we define ε � ε1{}x�}2

A

3More precisely, the set tv0, . . . , vtu is independent unless the vectors b, . . . , Atb are linearly
dependent but in this case we could stop earlier (see Exercise (4.2.1)).
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and aim at finding a small as possible t P N for which there exists a degree-pt � 1q
polynomial p which satisfies }I�ppAqA}2 ¤ ε. Equivalently,4 we can look for a degree-
t polynomial q which evaluates 0 to 1 for which }qpAq}2 ¤ ε. Since A is symmetric
and, thus, diagonalizable, for every polynomial q,

}qpAq}2 ¤ maxtqpxq2 : x P tλ1, . . . , λduu .
where λi � λipAq. Before proceeding, note that the polynomial qpxq �±d

i�1p1�x{λiq
evaluates 0 to 1 and satisfies }qpAq} � 0. This gives another proof for the fact that
CG converges after at most d iterations.

As a first attempt, consider the polynomial

q0pxq �
�

1 � 2x

λ1 � λd


t
. (4.13)

It can be seen that the maximum value attained by q0 over the interval rλd, λ1s is�
κpAq�1
κpAq�1

	t
¤ exp�2t{pκpAq�1q. For ε ¡ 0, by letting

t0 � rκ logp1{εqs ,
we obtain that }qpAq}2

A ¤ ε. We thus recover the upper bound of GD. The reason for
the improved rate of CG follows from the following powerful result.

Theorem 4.2.1 For any t P N, there exists a polynomial pt,d of degree d � r
a

2t logp2{εqs
which satisfies

sup
xPr�1,1s

|xt � pt,dpxq| ¤ ε .

The proof of the theorem relies on Chebyshev polynomials, which are ubiquitous
in numerical optimization. We sketch the proof in the next part. We now exploit
this result in order to deduce a better bound for CG. Note that as x ranges over
r0, λ1 � λds, zpxq :� 1 � 2x{pλ1 � λdq ranges over the interval r�1, 1s. Based on
Theorem 4.2.1, we conclude the existence of a polynomial pt0,d of degree at most
d � r

a
2t0 logp2{εqs � Op?κ logp1{εqq which approximates q0pzq � zt0 up to an error

ε over the interval r�1, 1s. Therefore, the polynomial q1pxq � ps,dpzpxqq approximates
q0pxq up to an error ε over r0, λ1�λds. Since q0p0q � 1, it follows that the polynomial
qpxq � q1pxq{q1p0q evaluates 0 to 1 and satisfies supzPr�1,1s |qpzq � q0pzq| ¤ ε{p1 � εq
which is smaller than 2ε providing that ε   1{2. Finally, since supzPr�1,1s |q0pzq| ¤ ε
for all z P r�1, 1s, it follows that supzPr�1,1s |qpzq| ¤ 3ε. This leads to the promised
speedup.

Theorem 4.2.2 For any A P Sd�� and ε ¡ 0, CG finds an ε-approximate solution to

the system Ax � b after Opmintd,aκpAq lnp1{εquq iterations and its overall complex-

ity is Oppd� tAq � mintd,aκpAq lnp1{εquq.
4Note that I�ppAqA is a polynomial of degree t. Also, every polynomial of degree t that evaluates

0 to 1 can be written in such a way.
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Optimality of the Bounds

The convergence rate of CG is optimal in the following sense. First, we define a
first-order algorithm (for minimization of a quadratic positive definite objective) to
be any method that iteratively maintains a solution xt P Rd while having an access
to a first-order oracle that given a point x P Rd, returns the pair pfpxq,∇fpxqq.
We also assume for simplicity that the xt lies in the span of the observed gradients
(and x0 � 0).5 This is the only information given to the method regarding the
function f . In particular, the identity of A and b is not known in advance. The
lower bound is as follows: for any 0   λd ¤ λ1, there exists a matrix A P Sd�� whose
eigenvalues lie in the range rλd, λ1s, and for which any first-order algorithm needs at
least Ωpmintd,aλ1{λd logp1{εquq iterations in order to converge to an ε-approximate
minimizer. We outline the proof in the exercises.

Appendix

Chebyshev polynomials: proof sketch of Theorem 4.2.1

For a nonnegative integer d, we define the Chebyshev polynomial of degree d in a
recursive manner:

T0pxq � 1, T1pxq � x .

Tdpxq � 2xTd�1pxq � Td�2pxq for d ¥ 2 .

By rearranging, we obtain the relation

xTdpxq � pTd�1pxq � Td�1pxqq{2 . (4.14)

For convenience, we define Tdpxq � T|d|pxq for all d P NzZ and it is easy to verify
that the above recursive definition holds for all d P Z. We now explore some impor-
tant properties of these polynomials. First, an exercise reveals that for any θ P R,
Tdpcospθqq � cospdθq. This property has several important consequences, but for now
we only exploit this fact to deduce that |Tdpxq| ¤ 1 for all x P r�1, 1s.

We next sketch the proof of Theorem 4.2.1 by relating the monomial xt to a
weighted sum of Chebyshev polynomials, where the weights are induced by a random
walk. Consider a random walk which starts at 0 and at each time step i make the
moves �1 with equal probability. We associate with the moves a sequence of (i.i.d.)
random variables Y1, Y2, . . .. The position after t steps is denoted by Y1:t �

°t
i�1 Yi.

We use this process to derive an approximation for zt. Let us begin by observing the
following consequence of Equation (4.14).

Lemma 4.2.1 For any t P N, EY1,...,YtrTY1:tpxqs � xt.

5These assumptions can be avoided, see bibliographic remarks.
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In words, xt is a weighted sum of monomials of a lower degree, where the weight of each
monomial is proportional to the probability that a random walk with t steps would
end at the corresponding position. Clearly, the expected position is 0. Moreover, we
can use concentration of measure in order to approximate xt using a polynomial of
degree roughly

?
t. Namely, based on Chernoff bound, we know that the probability

that |Y1:t| ¥ d �a
2s logp2{εq is at most ε. By using the fact that |Tdpxq| ¤ 1 for all

x P r�1, 1s, it can be shown that the polynomial

pt,dpxq � EY1,...,YtrTY1:t � 1rY1:t¤dss ,

which is simply a degree-d truncation of xt, approximates xt up to an error ε. Filling
the missing parts of the proof is left as an exercise.

Exercises

Exercise 4.2.1 Let A P Sd�� and let b P Rd. Assume that for some t, the set
tb, Ab, . . . , Atbu is linearly dependent. Conclude that the solution x� � A�1b lies
in spantb, Ab, . . . , At�1bu. In particular, conclude that CG finds an exact solution to
the system Ax � b after at most d iterations.

Exercise 4.2.2 Write a pseudo-code of the Conjugate Gradient method. It should be
made explicit that the only information available to the method on the function fA,b
is via an oracle which given a vector x, returns ∇fa,bpxq (in particular, A and b are
not known in advance).

Exercise 4.2.3 Prove the inequality in (4.12).

Exercise 4.2.4 Extend the analysis of CG to the case where A is positive semidefinite
and b lies in the column space of A.

Exercise 4.2.5�(Better bound for clustered eigenvalues) Prove the following
bound of CG: Let A P Sd��, b that lies in column space of A and ε ¡ 0. Suppose
that all but m of the eigenvalues of A line in the range ra, bs. Then CG finds an
ε-approximate minimizer after at most m�Opab{a logp}x}A{εqq iterations.

Exercise 4.2.6

1. For any θ P R, Tdpcospθqq � cospdθq.
2. Conclude that maxxPr�1,1s |Tdpxq| � 1 and the extreme value is obtained by xi �

cospjθ{dq for j P t0, . . . , du, where the sign of Tdpxq alternates at these points.

3. Draw Td|r�1,1s for d P t0, . . . , 4u.
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Exercise 4.2.7�Prove Lemma 4.2.1 and complete the proof of Theorem 4.2.1. (Hint:
Note that supxPr�1,1s |xt � pt,d̂pxq| � supxPr�1,1s |EY1,...,YtrTY1:tpxq � 1rY1:t¡d̂ss|. What can

you say about EY1,...,Ytr1rY1:t¡d̂ss?)

Exercise 4.2.8�(Lower bound for quadratic optimization in the black-box
model) We prove the lower bound stated at the end of the lecture. To simplify the
proof we consider an infinite-dimensional space (and establish the dependence on the
condition number). We also assume that the first-order method starts from the point
x0 � 0 and always maintain a solution in the span of the previous gradients.

Let 0   α ¤ β be two scalars and denote κ � β
α

. Let A : `2 Ñ `2 be6 an infinite
tridiagonal matrix with 2 on the diagonal and �1 on the upper and lower diagonals
(i.e., Ai,j � �1 for all i, j such that |i� j| � 1). Consider the function

fpxq � αpκ� 1q
8

pxJAx� 2eJ1 xq �
α

2
}x}2 .

Let A be an algorithm whose access to the function f is via the black-box model and
denote the iterates of A by x0, x1, . . ..

1. Show that 0 ¨ A ¨ 4I.

2. Show that finding w̄ that satisfies fpw̄q ¤ minwPRd fpwq � ε is equivalent to
solving a linear system with a matrix A that satisfies κpAq � κ.

3. Show that for for every t, xt P spanpte1, . . . , etuq.
4. Show that the optimal solution, denoted x�, satisfies the following infinite set of

equations

1 � 2pκ� 1q
κ� 1

x�1 � x�i�2 � 0

x�i�1 �
2pκ� 1q
κ� 1

x�i � x�i�1 � 0, i ¥ 2

5. Conclude that x�i �
�?

κ�1?
κ�1

	i
.

6. Show that fpxtq � fpx�q ¥ α
2
}xt � x�}2 ¥ α

2

°8
i�t�1 x

�
t

2.

7. Conclude that unless t � Ωp?κ lnpα{εqq, fpxtq � fpx�q ¡ ε.

Exercise 4.2.9 TODO: Lanczos for a general symmetric matrix

6The space `2 is the inner-product space consisting of all sequences px1, x2, . . .q P R8 such that°8
i�1 x

2
i   8.
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4.3 Unconstrained Smooth Convex Optimization

In the previous section we proved an upper bound on the convergence rate of GD for
quadratic functions. A careful reader would observe that the analysis holds for a wider
class of objective functions; Namely, during the analysis we have not relied on the fact
that the second-order Taylor approximation is accurate (4.3). Instead, we derived
lower and upper bounds on the second-order term (4.4) and relied solely on these
bounds during the analysis. We now exploit this fact in order to significantly extend
the scope of our results. For simplicity, we focus now on unconstrained optimization.
We always assume that minimizers exist.

Definition 4.3.1 Let f : Rd Ñ R be a continuously differentiable function. We say
that f is β-smooth if the gradient of f is β-Lipschitz, i.e., for all x, y P Rd,

}∇fpxq � fpyq} ¤ β}x� y} .

Lemma 4.3.1 If f : Rd Ñ R is β-smooth, then

Df py, xq � fpyq � �fpxq �∇fpxqJpy � xq� ¤ β

2
}x� y}2 for all x, y P Rd . (4.15)

Furthermore, if f is twice continuously differentiable, then both the β-smoothness of
f and Equation (4.15) are equivalent to the condition λ1p∇2fpxqq ¤ β for all x P Rd.

Definition 4.3.2 Let f : Rd Ñ R be a convex function. We say that f is α-strongly
convex if for all x, y P Rd and v P Bfpxq,

fpyq � �fpxq � vJpy � xq� ¥ α

2
}y � x}2 .

(In particular, if f is differentiable at x, then Df py, xq ¥ α
2
}y � x}2 for all y P Rd.)

Note that a strongly convex function is strictly convex and therefore, minimizers of
strongly convex functions are unique. An important 1-strongly convex function is
the Tikhonov regularization 1

2
}w}2 (it is also 1-smooth). If f is α-strongly convex

function and g is µ-strongly convex, then f � g is α � µ-strongly convex function.
Also, for any positive scalar λ ¡ 0, λf is λα-strongly convex. If g is only assumed to
be convex, then the sum f � g is α-strongly convex.

Lemma 4.3.2 Assume that f : Rd Ñ R is twice continuously differentiable. Then f
is α-strongly convex if and only if λdp∇2fpxqq ¥ α for all x.

The quadratic objective we considered in the previous section was λ1-smooth and λd-
strongly convex. As we mentioned above, the analysis in the previous section merely
relied on these two facts. We thus conclude the following important generalization of
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Theorem 4.1.1. The condition number of a β-smooth and α-strongly convex function
f is defined by

κpfq � β{α .

In our context, x̄ is an ε-approximate minimizer for a function f : Rd Ñ R if fpx̄q ¤
fpxq � ε for all x.

Theorem 4.3.1 Let f : Rd Ñ R be a β-smooth and α-strongly convex function that
admits a (unique) minimizer. Given an accuracy parameter ε ¡ 0, GD finds an
ε-approximate solution after OpκpAq logp∆0{εqq iterations, where ∆0 � fpx0q�fpx�q.

Application: Regularized Loss Minimization for Linear Pre-
diction

We consider a regularized risk minimization (RLM) objective of the form:

min

#
Lpwq � 1

n

ņ

i�1

φipwJxiq � λ

2
}w}2 : w P Rd

+
, (4.16)

where x1, . . . , xn P Rd are vector instances, φ1, . . . , φn are univariate convex functions
which are usually associated with a sequence of labels, y1, . . . , yn P R, and λ ¥ 0 is
a (Tikhonov) regularization parameter. For example, the standard Ridge regression
objective is obtained by defining φipzq � pyi � zq2. Another important example is
logistic Ridge regression, corresponding to φipzq � logp1 � expp�yizqq. We assume
now that

each φi is β-smooth and α-strongly convex . (4.17)

(where α might be zero)7. For example, it can be verified that the square loss is
1-smooth and 1-strongly convex and the logistic loss is 1{4-smooth and 0-strongly
convex. We would like to analyze the smoothness and the strong convexity parameters
of L. For simplicity, we consider the case where each φi is twice differentiable. Using
the chain rule, we see that the Gradient and the Hessian of L are given by

∇Lpwq � 1

n

ņ

i�1

φ1pwJxiqxi � λw, ∇2Lpwq � 1

n

ņ

i�1

φ2pwJxiqxixJi � λI .

Denoting C � 1
n

°n
i�1 xix

J
i , we see that the largest eigenvalue of the Hessian at any

point w is at most βλ1pCq � λ and the smallest eigenvalue is at least αλdpCq � λ
(where both α and λdpCq can be zero). This immediately implies that

f is pβλ1pCq � λq-smooth and pαλdpCq � λq-strongly convex . (4.18)

7We use the following convention: a convex but not necessarily strongly convex function is said
to be 0-strongly convex function.
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In fact, the above is true even when the φi’s are not twice differentiable. Here is one
concrete implication: note that λ1pCq ¤ maxiPrns }xi}2 �: R2. Hence, the convergence
rate of GD when applied to logistic ridge regression is OpR2λ�1 logp1{εqq. Since every
gradient computation costs Opndq, the overall runtime is OpR2λ�1nd logp1{εqq.

Nesterov’s Accelerated Gradient Descent

While we were able to extend the analysis of GD from the quadratic case to the
smooth and strongly convex case, no such extension is known for CG. Fortunately,
in 1983, Nesterov came up with the Accelerated Gradient Descent (AGD) method
which similarly to CG, enjoys a quadratic saving in terms of the dependence on the
condition number. The modification is simple: the update rule of AGD forms a linear
combination of the current and the previous updates of GD. While the modification
is simple, the intuition behind it is not transparent. Indeed, several recent works
attempt to derive alternative explanations for AGD (or closer versions of AGD). We
know from the previous lecture that the bound of AGD is optimal w.r.t. first-order
methods (indeed, quadratic functions form a subclass of smooth and strongly convex
functions).

Reducing smooth convex optimization to smooth and strongly
convex optimization

We now consider the case where f : Rd Ñ R is β-smooth and convex but not neces-
sarily strongly convex (or alternatively, the strong convexity parameter is tiny). In
this case GD has the following convergence rate.

Theorem 4.3.2 Let f : Rd Ñ R be a convex and β-smooth function and let x� be
a minimizer of f . Suppose that we run GD with step size η � β�1. Then, for any

ε ¡ 0, after at most 2β}x�}2
ε

�1 iterations, GD arrives at an ε-approximate minimizer.

Instead of directly proving that GD enjoys the claimed complexity, we propose a
similar algorithm with slightly worse convergence rate. Our strategy is to reduce
the smooth case to the smooth and strongly convex case. Specifically, instead of
directly applying GD to the function f , we will apply it to the function f̃pxq �
fpxq � λ

2
}x}2. Note that the function f̃ is pβ � λq-smooth and λ-strongly convex. As

the convergence rate of GD scales with the ratio pβ�λq{λ, the larger is λ, the faster is
the convergence. However, we should not perturb the function f too much. Namely,
λ should be small enough such that an approximate minimizer to f̃ would also form
an approximate minimizer of f . Let us formalize this requirement. Suppose that x̂ is
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an ε{2-approximate minimizer to f̃ . Letting x� be any minimizer of f , we have

fpx̂q � f̃px̂q � λ

2
}x̂}2 ¤ f̃px�q � ε{2 � λ

2
}x̂}2 � fpx�q � λ

2
}x�}2 � ε{2 � λ

2
}x̂}2

¤ fpx�q � ε{2 � λ

2
}x�}2 .

Therefore, by choosing λ � ε}x�}�2, we obtain ε-approximation for the original ob-

jective. Note that runtime of this strategy yields the bound O
�
β}x�}2
ε

logp∆0{εq
	

which is worse than the stated bound by factor logp∆{εq. We can avoid this extra
dependence by applying the above strategy more carefully (see Exercise (4.3.5�)).

From algorithmic point of view, the reduction approach has several disadvantages.
First, x� is not known so we need to estimate a bound on its norm. In machine learn-
ing applications, this often requires us to tune λ (e.g., via cross validation). Another
disadvantage is that the accuracy should be fixed before running the algorithm (how-
ever, this is not the case in Exercise (4.3.5�)). However, the reduction strategy is
quite elegant and general (see next subsection). It allows us to avoid spending several
lectures on analyzing the rate of first-order methods for each class of of functions.
Furthermore, it sheds a light on the relation between different classes of functions.

Acceleration for The Smooth Case

A slight modification to AGD yields the bound O
�
β}x�}?

ε

	
for the β-smooth case.

Thus, we obtain an improvement of factor 1{?ε. This bound is optimal w.r.t. first-
order methods. It is an easy exercise to obtain a slightly weaker bound by reducing
to the smooth and strongly convex case and applying AGD. One can show that this
bound is optimal w.r.t. first-order methods.

Exercises

Exercise 4.3.1 Assume that f : Rd Ñ R is twice continuously differentiable. Prove
the equivalence stated in Lemma 4.3.1.

Exercise 4.3.2�Prove the first part of Lemma 4.3.1. (Hint: Consider the function
φptq � fpx � tpy � xqq. Use the fundamental theorem of calculus together with the
Cauchy-Schwarz inequality.)

Exercise 4.3.3 Prove Lemma 4.3.2.

Exercise 4.3.4
Consider an RLM objective where each φi is β-smooth and α-strongly convex.

1. Prove (4.18).
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2. Deduce the bound on the convergence rate of GD for the following cases:

(a) Regularized logistic regression.

(b) Regularized squared hinge-loss: φipzq � maxt0, p1 � yizq2u.
3. Consider the case where α ¡ 0 but λdpCq � 0. Prove that the restriction of the

function L to the subspace spanned by tx1, . . . , xnu is αλrpCq � λ, where r is
the rank of C. Deduce a bound on the convergence of GD for this case.

Exercise 4.3.5�Let f : Rd Ñ R be a convex and β-smooth function and let x� be a
minimizer of f . In this question we use the reduction technique in order to suggest
an algorithm that attains the stated in Theorem 4.3.2 . The basic idea is to apply the
reduction in an iterative manner, where each time we decrease the suboptimality by a
constant multiplicative factor.

Let x̂0 � x0 � 0 and σ0 be a positive scalar. At each time t � 0, 1, . . ., we run GD
on the function

ftpxq � fpxq � σt
2
}x}2

with the starting point x̂t for qt � Opβ{σtq iterations. We call the resulted point x̂t�1

and define σt�1 � σt{2. For the sake of the analysis, let x�t be the minimizer of ft.
Denote by ∆t � fpx̂tq � fpx�q and ∆̃t � ftpx̂tq � ftpx�t q.

1. Show that for all t, }x�t } ¤ }x�}.
2. Show that ∆̃0 ¤ ∆0.

3. Show that for all t, the condition number of ft is pβ � σtq{σt. Conclude that by
appropriately setting the constants in the definition of qt, we ensure that for all
t � 1, 2, . . .,

ft�1px̂tq � ft�1px�t�1q ¤
∆̃t�1

4
.

4. Show that for all t � 1, 2, . . .,

∆̃t � ft�1px̂tq � ft�1px�t q �
σt
2
p}x�t }2 � }x̂t}2q ¤ ∆̃t�1

4
� σt

2
}x�}2 .

5. Suppose we choose σ with σ ¤ ∆0{}x�}2. Use induction to deduce that ∆̃t ¤
2�t∆0.

6. Use induction to deduce that ∆t ¤ 2�pt�1q∆0

7. Conclude that the suggested algorithm attains the bound stated in Theorem 4.3.2.

Exercise 4.3.6
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1. Use the reduction from the smooth case to the smooth and strongly convex in
order to prove a bound of Op}x�}β logp1{εq{?εq for the β-smooth case.

2. Use Exercise (4.3.5�) to avoid the extra dependence on logp1{εq.

TODO: multiclass
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4.4 Computing Eigenvalues: Power Method vs.

Lanczos Method

In this lecture we consider the task of computing approximating the k leading eigen-
values of a symmetric matrix A P Rd�d. In many senses, this challenge is similar to
the problem of solving a linear system. For example, exact computation of the eigen-
value decomposition (EVD) can be carried out in time Opdωq. Hence, the starting
points are identical: since this computational cost is usually prohibitively expensive
(and since the corresponding methods do not exploit sparsity conditions), we seek
for more efficient iterative methods which provably converge to the solution of the
problem.

We present two algorithms, namely the Power method and the Lanczos method.
We will see that the relation between the Lanczos method and the Power method
resembles the relation between the Gradient Descent and the Conjugate Gradient. In
particular, our presentation of the Lanczos method demonstrates another important
implication of Theorem 4.2.1.

While the problems share a lot in common, we will shortly observe a significant
dissimilarity between the problems: while approximately solving linear systems is
equivalent to quadratic convex problem, the problem of approximating the leading
eigenvalues is not convex!

For simplicity, we focus on the case where A P Rd�d psd and k � 1. We denote
the spectral (a.k.a. EVD) decomposition of A by A � °d

i�1 λiuiu
J
i . Recall that

λ1pAq � max
xPRd:x�0

"
fpxq � xJAx

xJx

*

In our context, an ε-approximate maximizer for f is a vector v � 0 which satisfies
fpvq ¥ p1� εqλ1. Remarkably, the objective f is substantially not convex. Neverthe-
less, we have quite fast methods for this task.

Power method

Perhaps, the most popular method is the Power method (a.k.a. Power iteration)8.
Let x1 � v be a vector chosen uniformly at random from the unit sphere. The power
method repeatedly multiplies v by A (and possibly normalize the outcome vector on
every round). Denoting the presentation of v according to the eigenbasis by

°n
i�1 αiui,

we have that

xt � At�1v �
ḑ

i�1

αiλ
t�1
i ui . (4.19)

8The standard method for drawing such a vector is to draw each coordinate i.i.d. according to
N p0, 1q and normalize the outcome
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We use the following fact:

P pα2
1 ¥ 1{p9dqq ¥ 1{2 . (4.20)

Our analysis is conditioned on the event corresponding to (4.20), i.e., in the sequel
we simply assume that (4.20) holds. The main idea behind the Power method is as
follows: as we proceed, we expect that for any λi which is strictly smaller than λ1,
the gap between λt1 to λti would be large. As a consequence, we expect that xt would
converge to a vector that lies in the eigenspace corresponding to λ1. Indeed, we will
shortly prove the following theorem.

Theorem 4.4.1 Let ε ¡ 0. With probability at least 1{2, after t � O
�

1
2ε

logp9n{εq�,
the vector xt maintained by the Power method satisfies xJAx

xJx
¥ p1� εqλ1. The overall

computational complexity is O
�
tA

1
ε

logpn{εq�.
Lanczos method

Note that the vector xt maintained by the Power method belongs to the Krylov
subspaceKt � tv, Av, . . . , At�1vu. Analogously to CG, the Lanczos method maintains
the relation

xt P arg max
xPK

fpxq .

The implementation is quite similar to CG. We construct an orthonormal basis,
v0, . . . , vt�1, for Kt (in this case, the vi’s are orthonormal w.r.t. the standard in-
ner product rather than w.r.t. to the inner product induced by A). Similarly to CG,
by choosing v0 � v, we ensure that the Gram-Schmidt process can be implemented
efficiently. We leave it as an exercise to show that for any q   s� 1 ¤ t, vJq Avs � 0,
and consequently, the set tv0, . . . , vt�1u can be constructed in time OptptA � dqq. Let
V P Rd�t be the matrix whose columns are v0, . . . , vt�1. Since V V J is a projection
matrix onto Kt, for any nonzero x P Kt we have

xJAx
xJx

� xJV V JAV V Jx

xJV V JVloomoon
�I

V Jx
� pV JxqJBpV Jxq

pV JxqJpV Jxq ,

where B � V JAV P Rt�t. Note that the map x P Kt ÞÑ V Jx is a bijection (it maps
every vector in Kt to its coefficients according to the orthonormal basis V ). Also, the
matrix B is tridiagonal. It follows that we can compute xt as follows:

1. Compute the matrix B in time OptptA � dqq.
2. Find an exact leading eigenvector z of B in time Opt3q (in fact, since B is

tridiagonal, one can show that this step actually costs Opt2q).
3. Compute xt � V z in time td.
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All in all, the computation of xt costs OptptA � dq � t2q. We obtain the following
improved bound.

Theorem 4.4.2 Let ε ¡ 0. With probability at least 1{2, after t � O
�

1?
ε

logp9n{εq
	

,

the vector xt maintained by the Lanczos method satisfies xJAx
xJx

¥ p1�εqλ1. The overall

computational complexity is O
�
tA

1?
ε

logpn{εq
	

.

Analysis of the Methods

We next analyze the the convergence rate of the Lanczos method. Along the way,
we will also conclude the desired bound on the convergence of the Power method.
Therefore, we will deduce Theorem 4.4.1 and Theorem 4.4.2. Given an accuracy
parameter ε ¡ 0, we would like to obtain an upper bound on the minimal t for which
we have that λ1�fpxtq

λ1
¤ ε. Note that for both methods, every vector x P Kt can be

written as ppAqv for some polynomial p P Σt�1, we have that

xt � arg max
pPΣt�1

vJppAqAppAqv
vJv

.

Since v � °d
i�1 αiui, A � °d

i�1 λiuiu
J
i and ppAq � °d

i�1 ppλiquiuJi , we have that

fpxtq � max
pPΣt�1

°d
i�1 α

2
i ppλiq2λi°d

i�1 α
2
i ppλiq2

.

Therefore, for any p P Σt�1,

λ1 � fpxtq
λ1

� 1 � fpxtq
λ1

¤
°n
i�1 α

2
i ppλiq2p1 � λi{λ1q°n
i�1 α

2
i ppλiq2

.

We now split the sum in the enumerator into two parts, depending on whether 1 �
λi{λ1 ¤ ε. Let I � rns be the set of indices for which the corresponding inequality
holds. It follows that

λ1 � fpxtq
λ1

¤ ε�
°n
iRI α

2
i ppλiq2p1 � λi{λ1q°n
i�1 α

2
i ppλiq2

¤ ε�
°
iRI α

2
i ppλiq2°n

i�1 α
2
i ppλiq2

¤ ε�
°
iRI α

2
i ppλiq2

α2
1ppλ1q2

¤ 9nmax
iRI

pppλiq2{ppλ1q2q .
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It is seen that for t0 � 1 � P 1
2ε

logp9n{εqT, for every x P r0, p1 � εqλ1s, the polynomial
p0pxq � xt0�1

ppxq2{ppλ1q2 ¤ p1 � εq2pt0�1q ¤ ε{n .
Consequently,

λ1 � fpxt0q
λ1

¤ 2ε .

As a byproduct, we just obtained a proof for Theorem 4.4.1. As in the analysis of CG,
the improved rate of the Lanczos method can be proved by means of approximation
theory. Namely, from Theorem 4.2.1 we know that there exits a polynomial pt0,d of

degree d � r
a

2t0 logp2n{εqs � O
�

1?
ε

logpn{εq
	

which approximates the polynomial

p0 over r�1, 1s up to an error ε{n. Since λi{λ1 P r0, 1s for all i, we deduce a speedup
of factor 1{?ε for the Lanczos method.

The condition number of eigenvalue problems

Lastly, we discuss the rates of the Lanczos method and the Power method under
the assumption that λ2 is strictly smaller than λ1. Intuitively, the larger is the gap,
we expect the convergence to be faster. This intuition is affirmed by the following
theorem whose proof is left as an exercise.

Theorem 4.4.3 Assume that λ1�λ2 ¡ 0 and define the condition number κ � λ1
λ1�λ2

be the condition number. In this context, we say that x is an ε-approximate maximizer
if both fpxq ¥ p1 � εqλ and xx{}x}, u1y ¥ 1 � ε. Then, for any ε, the following holds
with probability at least 1{2:

1. The Power method achieves an ε-approximate maximizer after t � Opκ logpn{εqq
iterations.

2. The Lanczos method achieves an ε-approximate maximizer after t � Op?κ logpn{εqq
iterations.

As we see, different optimization problems give rise to different definitions of the
condition number.

Exercises

Exercise 4.4.1 Prove Theorem 4.4.3.
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4.5 Conditioning and Newton’s Method

From here on out, the notes will be more sketchy.

Basic framework for Conditioning

1. Preconditioning: instead of minimizing fpxq, we minimize fpgpxqq, where g is
an invertible funciton.

2. For now we consider the case where f : Rd Ñ Rd and g : Rd Ñ Rd is induced
by a positive definite matrix of the form P�1{2 (denoting the EVD of P by

P � °
λiuiu

J
i , then P�1{2 � °

λ
�1{2
i uiu

J
i ).

3. Consider a stongly convex quadratic objective fpxq � xJAx�bJx, where A ¡ 0.
We know that the condition number is λ1{λd, where λi is the i-th eigenvalue of
A. What would happen if we choose P to be the Hessian, i.e., P � A? The
new objective becomes

fpgpxqq � fpP�1{2xq � xJ P�1{2AP�1{2loooooomoooooon
I

x� pP�1{2bqJx .

We see that the new objective is perfectly conditioned! We call this P the
Newton’s conditioner.

4. The catch is that computing P�1{2 is hard as solving the problem.

5. Still, more sophisticated conditioners are useful for minimizing quadratic objec-
tives (equivalently, solving linear systems). For example, conditioning is widely
used in the context of Laplacian solvers (see [Vishnoi, 2012]).

Newton’s Method

1. Conditioning can be also incorporated more adaptively (in this case it is called
conditioning rather than preconditioning).

2. Suppose that we aim at minimizing a smooth and strongly convex function
(which is not necessarily quadratic) over Rd. We already know how to apply
Gradient Descent to this problem. A natural extension of the scheme proposed
above is to compute the Hessian at each round and use it as a conditioner.
Precisely, we maintain two iterates, xt and x̃t, where xt lies in the original space
and x̃t lies in the so-called conditioned space. At each time t, the relation
between xt and x̃t is given by x̃t � P

1{2
t xt, where Pt � ∇2fpxtq. While the

function being minimized in the original space is fixed (namely, this is the

function f), we define the conditioned function at time t by f̃tpyq � fpP�1{2
t yq.
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As in the quadratic case, we next see that at the point x̃t, the function f̃f is
perfectly conditioned.

3. The gradient of f̃t at any point y is P�1{2∇fpP�1{2yq and the Hessian is
P�1{2∇2fpP�1{2yqP�1{2. In particular,

∇f̃tpx̃tq � P�1{2∇fpxq, ∇2f̃tpx̃tq � I .

4. Thus, our strategy is as follows. Start with x1 � 0. At each time t, perform the
following update:

(a) Compute x̃t � P 1{2xt and make a step in the direction of the gradient in
the condition space, i.e., let

x̃t�1 � x̃t � η∇f̃tpx̃tq � x̃t � ηP�1{2∇fpxtq .

(b) Map x̃t�1 back to the original space. Simple calculation gives the folliwing
rule:

xt�1 � P�1{2x̃t�1 � xt � ηP�1∇fpxtq � xt � η∇2fpxtq�1∇fpxtq .

(c) The obtained algorithm is called Newton’s method. As we expect,
under some suitable assumptions (self-concordance), the convergence of
Newton’s method is independent of the condition number. We refer to
[Nesterov and Nesterov, 2004] for more detials.

A Brief Overview of the Interior Point Method

We briefly introduced the main idea behaind interior point methods. We refer to
Chapter 3-5 in This notes for further reading.

http://theory.epfl.ch/vishnoi/Nisheeth-VishnoiFall2014-ConvexOptimization.pdf


Chapter 5

Online and Stochastic (Convex)
Optimization

5.1 Online Convex Optimization

Main refernce: We follow the survey [Shalev-Shwartz, 2011].

1. The online convex optimization model, Regularized Follow the Leader (RFTL),
Online Gradient Descent (OGD): sections 2.1-2.4.

5.2 Strongly Convex Regularizers: from Online

Gradient Descent to Exponentiated Gradient

1. We covered Section 2.5.

2. We simplified the proof of lemma 2.8 as we considered only the case where wt
belongs to the interior so its gradient/subgradient vanishes. See the full proof
in the survey.

3. Recall that S is the decision set and U is the set of competitors. Note that the
FTL lemma (lemma 2.1), which is the basis for the analysis of RFTL, provides
a bound w.r.t. a competitor u P S. Hence, to ensure that the bounds are valid
w.r.t. any competitor in U , we must form some restriction on the relationship
between S and U . While the restriction U � S obviously works, it can be seen
that it suffices to require that the closure of S contains the set U . Note that the
later restriction holds in all the setups we consider. For example, in the expert
setting, we consider the set S � tw P Rd

�� :
°
wi � 1u. While this set does not

contain the set of competitors U � te1, . . . , edu, the closure of S does contain
this set.
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5.2 Strongly Convex Regularizers: from Online Gradient Descent to

Exponentiated Gradient

4. In the beginning of the next lecture we will prove that the negative entropy is
1-strongly convex w.r.t. } � }1.

Exercises

Exercise 5.2.1 (Projected Online Gradient Descent) In this question we ex-
tend OGD to the constrained setting. Consider the following setup of RFTL. Let
U � S � tw P Rd : }w} ¤ Bu for some B ¡ 0. Consider the Regularizer R : Rd Ñ R
defined by Rpwq � 1

2
}w}2

2 � ISpwq, where ISpwq � 0 if w P S and �8 if w R S. The
class of loss functions under consideration consists of all the convex functions defined
over some open set D � S which are L-Lipschitz w.r.t. } � }2. As we saw in class, we
may assume w.l.o.g. that each ft is linear, i.e., ftpwq � zJt w for some zt.

1 We also
derived the regret bound RT ¤

?
2TBL for the corresponding instance of RFTL.

We now show that this instance coincides with a lazy2 version of projected OGD.
Namely, the algorithm is described by:

w0 � 0, wt � ΠSp�η
¸
i t
ziq ,

where ΠS is the projection onto the set S, i.e.,

ΠSpwq �
#
w }w} ¤ B
B
}w}w }w} ¡ B

.

(Hint: denote by θ � �°i t zi and show that wt is the minimizer of }w � ηθ} over
S.)

Exercise 5.2.2 Consider the model of prediction with expert advice. Each vector
in U � te1, . . . , edu corresponds to an expert. The loss functions are of the form
ftpwq � zJt w. The loss of expert i at time t, denoted zt,i, lies in the range r�1, 1s.
The learner is allowed to choose its decision from the set S � tw P Rd

�� :
°
wi � 1u.3

Let us apply the RFTL algorithm with the negative entropy regularizer R : Rd
�� Ñ R

defined by Rpwq � °
wi logwi. We call the resulted algorithm Exponentiated Gradient

(EG). Show that EG corresponds to the following update rule:

w1 � p1{d, . . . , 1{dq, wt�1,i � wt,i expp�ηzt,iq°d
i�1wt,i expp�ηzt,iq

.

(Hint: use Corollary 2.1.1.)

1We simply set zt P Bftpwtq and observed that the regret with respect to the zt’s upper bounds
the regret with respect the ft’s.

2The algorithm is lazy in the sense that if are only interested in computing the last iterate wT we
do not need to compute all the wt’s and in particular, we do not need to perform all the projections.

3Technically, we do not allow the learner to put zero probability on any expert. The analysis
shows that this restriction is not harmful.
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5.2 Strongly Convex Regularizers: from Online Gradient Descent to

Exponentiated Gradient

Exercise 5.2.3 Recall the formulation of a zero-sum game from Exercise (1.1.12).
In Exercise (2.2.6�) we proved the minimax theorem by using the separation theorem.
We now provide a constructive proof. Namely, we show that the EG algorithm can be
used to approximately find an optimal strategy both for the row player and the column
player.

We assume for simplicity that the entries of the matrix A belong to r0, 1s. Recall
that the column player wishes to minimize its loss. Consider a repeated game where
at each round, the column player chooses a probability vector qt and thereafter the
row player responds with its best (pure) response (the fact that the best response is
pure follows from Exercise (1.1.12)). We assume that the column player uses the EG
algorithm to maintain the probability vector qt. Let p̄ � 1

T

°T
t�1 pt and q̄ � 1

T

°T
t�1 qt.

Show that for any ε ¡ 0, there exists T such that after T rounds, both p̄JAq ¥ mM�ε
for all q and pJAq̄ ¤Mm� ε for all p. Conclude that Mm � mM .
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5.3 Multi-armed Bandit

We follow section 4.2 in [Shalev-Shwartz, 2011]. The bandit setting is very similar to
the standard experts setting. In both cases, at time t the learner chooses, possibly at
random an expert it P rds. Denoting the loss of expert i at time t by zt,i and letting wt
be the probability vector maintained by the learner, the loss incurred by the learner
is the expected loss of the chosen expert, i.e.,

Erftpwtqs � Eit�wt � zJt wt .

The only (important) difference is the received feedback. While in the experts setting
the learner gets to see the losses of all the experts (i.e., it observes the vector zt),
in the bandit setting the only available information to the learner is the loss of the
chosen learner it (i.e., the learner only observes zt,it). We call this problem multi-
armed Bandit due to its similarity to gambling, where each expert is viewed as a
single arm and the loss associated with each arm is the gain resulted from picking it.

This setting is very natural. Indeed, in many (learning) tasks we can only observe
the outcome of our choice. For instance, this is often the case in source routing and
web advertising tasks.4

Due to the limited feedback, the learner faces the fundamental exploration-exploitation
tradeoff. On one hand, the learner wishes to exploit the information received through-
out the learning process and follow the experts that seem most successful. On the
other hand, due the adversarial characteristic of our setting, the learner must sample
every expert from time to time.

5.3.1 Reducing the bandit setting to the experts setting by
devoting fixed amount of time to exploration

We next describe an algorithm named MAB that essentially reduces the bandit setting
to the standard setting.5 The main idea is as follows. Let us divide the time interval
T into k time subintervals of equal size. Roughly speaking, we will associate every
subinterval with a single round of the EG algorithm. As we describe below, at the
beginning of every subinterval Is (s P rks), MAB generates a random vector `s�1 P
r�1, 1sd which forms an unbiased estimate to the average loss of the experts during
the previous subinterval. Then it passes this vector to EG which in turn, uses this
feedback in order to update its weights over the arms. Throughout the following
subinterval, MAB chooses its actions according to this distribution except for randomly

4In source routing we need to find a path between a source and a target. The cost associated
with each path is the congestion along this path. Ad placement is the problem of deciding which
advertisement to display on a web page. The gain (or negative loss) is associated with the visitors’
actions (e.g., whether the user downloaded the software or not).

5This part is not covered in [Shalev-Shwartz, 2011].
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chosen d time steps6 in which it sample each arm once. The vector `s consists of
exactly these estimates. Note that indeed, for every j P rds, `s,j is an unbiased
estimate of the average loss of the j-th expert during the s-th interval. Note also that
the regret of EG w.r.t. to the sequence `1, . . . , `k is Opak logpdqq. By relating the
expected loss of EG to the expected loss of MAB , we are able to prove the following
result.

Theorem 5.3.1 Let the number of subintervals be k � pT {dq2{3 and assume that
k ¡ d. The expected regret of the suggested method is OpT 2{3pd logpdqq1{3q.

Note that to ensure that the average regret is at most ε, we need T to be of order
Ωpd{ε3q.

5.3.2 Exp3: Simultaneous exploration-exploitation

Instead of separting between exploration and exploitation, the Exp3 algrotithm pe-
forms these tasks simultaneously. Similarly to MAB, the Exp3 feeds the EG algorithms
with unbiased estimates of the losses. The main difference is that the size of each
interval is 1. Obviously, we can only sample one arm in each block. However, as we
next explain, we can still produce unbiased estimates of the loss. Recall that at time
t, the learner chooses an action it according to the (positive) probability vector wt.
Let

ẑt,i �
#

zt,i
wt,i

i � it

0 i � it

We next observe that ẑt,i is an unbiased estimate of zt. Indeed,

Erẑt,i|wts � P pit � iq � ẑt,i � P pit � iq � 0 � wt,i
zt,i
wt,i

� zt,i .

Next, we argue that the expected loss of the learner w.r.t. the sequence pẑtqTt�1 is
equal to the expected loss w.r.t. the sequence pztqTt�1. Indeed, by using the law of
total expectation as follows:

ErẑJt wts � ErErẑJt wt|wtss � ErzJt wts .

Similarly, the expected loss of any fixed competitor u P te1, . . . , edu w.r.t. pẑtq is equal
to the expected loss w.r.t. the sequence pztqTt�1. Finally, the same argument holds for
the regret. Therefore, it suffices to bound the expected regret of EG w.r.t. pẑtq. To
this end, we need the following refined analysis of EG’s regret. To simplify matters,
we assume that the losses are nonnegative.

6Namely, the d chosen time steps are chosen uniformly at random. We do not require that the d
choices would be independent so it is easy to make sure that there are no collisions.
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Theorem 5.3.2 For any sequence of nonnegative loss vectors pztqTt�1, the regret of
the EG algorithm is bounded above by

RT ¤ logpdq
η

� η
Ţ

t�1

ḑ

i�1

wt,iz
2
t,i .

The proof is outlined in the exercises. Recall that the bound obtained using the
general bound of RFTL is

RT ¤ logpdq
η

� η
Ţ

t�1

}zt}2
8 .

The refined bound replaces the `8 norm of each ẑt (which corresponds to the Lips-
chitzness of the loss w.t.t. the `1 norm) with the expression

°d
i�1wt,iẑ

2
t,i. Please note

that since wt has positive coordinates, the map z ÞÑ
b°d

i�1wiz
2
i is a norm. It is

called the local norm induced by wt and we denote it by } � }wt

In order to bound the expected regret of the Exp3 algorithm, it remains to bound
Er}ẑt}2

wt
s for each t. Using again the law of total expectation, we obtain

E

�
ḑ

i�1

wt,iẑ
2
t,i

�
� E

�
ḑ

i�1

wt,i � Erẑ2
t,i|wts

�
� E

�
ḑ

i�1

wt,ipwt,i �
z2
t,i

w2
t,i

� 0q
�

�
ḑ

i�1

z2
t,i ¤ d ,

(recall that |zt,i| ¤ 1 for all i). We summarize the above in the next theorem.

Theorem 5.3.3 The regret of the Exp3 algorithm is bounded above by

RT ¤ logpdq
η

� ηTd .

By choosing η �
b

logpdq
Td

, we obtain that

RT ¤ 2
a
Td logpdq .

Note that to ensure that the average regret is at most ε, we need T to be of order
Ωpd{ε2q. Therefore, we improve over MAB in factor 1{ε.

Exercises

Exercise 5.3.1 Prove Theorem 5.3.1. (Hint: a) The overall regret during the explo-
ration rounds is trivially bounded by 2kd. b) Show that the expected regret of MAB at
the exploitation rounds is at most T {k times the expected regret of EG on the sequence
`1, . . . , `k.)



79 5.3 Multi-armed Bandit

Exercise 5.3.2 Explain why the bound in Theorem 5.3.2 is indeed better than the
bound obtained using the RFTL bound.

Exercise 5.3.3 In the question we prove Theorem 5.3.2. We first introduce some
useful notation. Define the unnormalized weight vectors w̃t by

w̃t � p1, . . . , 1q, w̃t�1,i � w̃t,i expp�ηzt,iq

Also, let W̃t �
°d
i�1 w̃t,i. Note that wt,i � w̃t,i{W̃t. Denote the expected loss of the

learner at time t by ˆ̀
t � wJ

t zt and let ˆ̀2
t �

°d
i�1wt,iz

2
t,i. The proof is divided into two

parts. The first part relate W̃t to the loss of the learner. The second part related W̃t

to the loss of any fixed expert.

1. Show that for any t, W̃t�1 � W̃t

°d
i�1wt,i expp�ηzt,iq.

2. Use the inequalities expp�xq ¤ 1� x� x2 and 1� x ¤ expp�xq which holds for
all x in order to deduce the inequality

W̃T�1 ¤ d expp�η
Ţ

t�1

ˆ̀
t � η2

Ţ

t�1

ˆ̀2
t q .

3. Show that for any expert j P rds, W̃T�1 ¥ expp�η°T
t�1 zt,jq

4. Deduce the theorem.
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5.4 Stochastic Dual Coordinate Ascent

The main resource for this lecture is [Shalev-Shwartz, 2016].



Chapter 6

Bibliographic Remarks

1. The Condition number: In the optimization literatue, a rate that scales
logarithmically with 1{ε (as in Theorem 4.1.1) is often called a linear rate. This
stems from the fact that every “new right digit of the answer” takes constant
number of iterations.

2. Accelearation using Conhugate Gradient: We say that a set of vectors
tu1, . . . , uiu are A-conjugate if the set tu1, . . . , uiu is orthogonal according to
x�, �yA. This explains the name of the CG method. The presentation in this sec-
tion is inspired by [Vishnoi, 2012] and [Sachdeva and Vishnoi, 2013]. TODO:
reference to the lower bound (Nemirovski & Yudin, Yossi, Agrawal).

3. Smooth Convex Optimization: TODO: reference to Hazan’s survey.
AGD and its variants The improved reduction detailed in Exercise (4.3.5�)
is from [Allen-Zhu and Hazan, 2016].
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