Part-of-Speech Tagging, Syntactic Parsing

Human Language from a Computational Perspective April 5, 2016

Part-of-Speech Tagging

Language Models Reminder

Use an *n*-gram model to predict the next token:

* My only **wish I** My only **wish is**

Bigram counts

(starting with WISH):

wish I	8
WISH IS	6
WISH THEY	4
WISH WAS	4
WISH THAT	2
WISH YOU	1

Lexical Ambiguity

The word wISH is ambiguous

wish (verb): לבקש, לאחל

wish (noun): משאלה

Some Context Helps

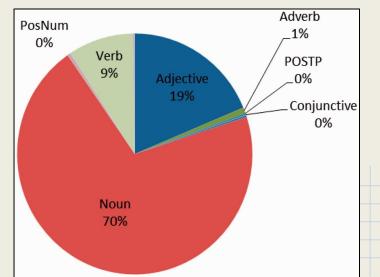
Verb: How I wish you were here Careful what you wish for Wish you a happy birthday

Noun:

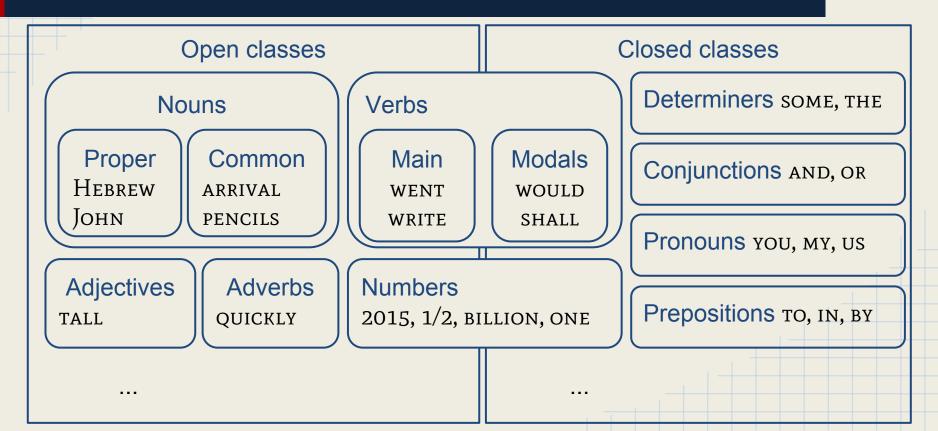
Your **wish** is my command If you could have one **wish** Make a **wish**

But Sometimes It Doesn't

SQUAD HELPS DOG BITE VICTIM


בסוף המרוץ הוא נפל מהסוס. הוא לא פרש.

Parts of Speech


Words can roughly be divided into

distributional categories based on their

syntactic roles.

Part-of-Speech Hierarchy

Part-of-Speech Tags

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	"	Left quote	(' or ")
POS	Possessive ending	's	"	Right quote	(' or '')
PP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
PP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),},>)
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ; – -)
RP	Particle	up, off			

Tag guide: https://catalog.ldc.upenn.edu/docs/LDC99T42/tagguid1.pdf

Penn Treebank Part-of-Speech Tags for English, Jurafsky & Martin 2009

Language Variations

AD	adverb	还
AS	aspect marker	着
BA	把 in ba-construction	把,将
$\mathbf{C}\mathbf{C}$	coordinating conjunction	和
CD	cardinal number	一百
\mathbf{CS}	subordinating conjunction	虽然
DEC	的 in a relative-clause	的
DEG	associative 的	的
DER	得 in V-de const. and V-de-R	得
DEV	地 before VP	地
DT	determiner	这
ETC	for words 等, 等等	等,等等
\mathbf{FW}	foreign words	ISO
IJ	interjection	প্রনি
$\mathbf{J}\mathbf{J}$	other noun-modifier	男,共同
\mathbf{LB}	被 in long bei-const	被给
\mathbf{LC}	localizer	里
м	measure word	个
MSP	other particle	所

NN	common noun	书
NR	proper noun	美国
NT	temporal noun	今天
OD	ordinal number	第一
ON	onomatopoeia	哈哈, 哗哗
Р	preposition excl. 被 and 把	从
PN	pronoun	他
PU	punctuation	• ? •
SB	被 in short bei-const	被,给
\mathbf{SP}	sentence-final particle	吗
VA	predicative adjective	紅
\mathbf{VC}	是	是
VE	有 as the main verb	有
VV	other verb	走

Penn Treebank Part-of-Speech Tags

for Mandarin Chinese, Xia 2000

Part-of-Speech Tagging

- Tag the following text for POS:
- ALICE WAS BEGINNING TO GET VERY TIRED
 - NNP VBD VBG TO VB RB JJ

Statistical POS Tagging

We can use counts from the corpus to

tag text for POS,

but it requires **annotation**:

just the text is not enough.

Annotated Corpus Example

The/AT grand/JJ jury/NN commented/VBD on/IN a/AT number/NN of/IN other/AP topics/NNS ,/, AMONG/IN them/PPO the/AT Atlanta/NP and/CC Fulton/NP-tl County/NN-tl purchasing/VBG departments/NNS which/WDT it/PPS said/VBD ``/`` ARE/BER well/QL operated/VBN and/CC follow/VB generally/RB accepted/VBN practices/NNS which/WDT inure/VB to/IN the/AT best/JJT interest/NN of/IN both/ABX governments/NNS ''/'' ./.

Lexical POS Counts

Simple method: count the times each word occurred with each POS in the corpus

POS Tagging Algorithm

Find POS sequence of token sequence

Given: ["WHAT", "IS", "THE", "ANSWER", "?"]

Return: ["wp", "vbz", "dt", "NN", "."]

POS Tagging Algorithm 1

Tag_POS_Simple(Tokens, CountsL): for Index \leftarrow 1 to length(Tokens): Tags_Index \leftarrow **Max2**(Tokens_Index, CountsL) return Tags

> TOKENS is a sequence of strings COUNTSL is a table of [string, string]→number Returns a sequence of strings

Auxiliary Algorithm

```
Max2(Token, CountsL):
Max \leftarrow 0
FOR EACH [T_1, T_2] in CountsL:
   IF (T_1 = TOKEN) AND (COUNTSL[T_1, T_2] > MAX):
       Max \leftarrow CountsL[T_1, T_2]
       Best \leftarrow T_{r}
                                                       TOKEN is a string
                                COUNTSL is a table of [string, string]→number
RETURN BEST
                                                       Returns a string
```

Auxiliary Algorithm

Max2 is very similar to the BIGRAM algorithm for LM text generation. It just returns the T, with the highest count among entries with $T_1 = TOKEN$.

Surprising Accuracy

This simple approach actually gets about 90% of the POS tags correctly! Most words almost always appear with

the same POS.

Problem: Variability

NN

Use the most common POS for each word

- THE FISH SLEEP IN THAT WELL
- DT NN NN IN HN RB

But the correct tags are:

DT NNS VBP IN DT

State of the Art

The best methods today get slightly

more than 97% accuracy,

so 90% is not so bad.

Problem: Unknown Words

'T WAS BRILLIG, AND THE SLITHY TOVES VBD CC DT First stanza of DID GYRE AND GIMBLE IN THE WABE; Jabberwocky from Through **VBD** CC IN DT the Looking-ALL MIMSY WERE THE BOROGOVES, Glass, and What Alice DT VBD DT Found There AND THE MOME RATHS OUTGRABE. (1871) by Lewis Carroll CC DT

Solutions

Context (above the word level)

• Morphology (below the word level)

Transition Counts

Count the times each tag follows another tag. These are tag bigram counts (transition counts).

		1	1
NN	NN	\rightarrow	312
NN	IN	\rightarrow	690
NN	DT	\rightarrow	113
IN	NN	\rightarrow	262
DT	NN	\rightarrow	1256
PRP	VBD	\rightarrow	847
VBD	DT	\rightarrow	464

POS Tagging Algorithm 2

Tag_POS(Tokens, CountsL, CountsT): Tags₁ \leftarrow **Max2**(Tokens₁, CountsL) for Index \leftarrow 2 to length(Tokens): Tags_{Index} \leftarrow **Max3**(Tokens_{Index}, Tags_{Index - 1}, CountsL, CountsT) return Tags

> TOKENS is a sequence of strings COUNTSL and COUNTST are tables of [string, string]→number Returns a sequence of strings

Combining the Counts

How to implement Max3?

Multiply lexical count (from COUNTSL)


with transition count (from COUNTST)

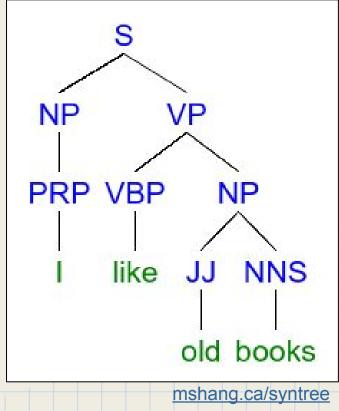
Auxiliary Algorithm

Max3(Token, Tag, CountsL, CountsT): $Max \leftarrow 0$ FOR EACH $[T_1, T_2]$ in CountsL: IF $(T_1 = TOKEN)$: Score \leftarrow CountsL[T₁, T₂] \times CountsT[Tag, T₂] IF (SCORE > MAX): $Max \leftarrow Score$ $Best \leftarrow T_{2}$ TOKEN and TAG are strings COUNTSL and COUNTST are tables of [string, string]→number **RETURN BEST** Returns a string

Syntactic Parsing

Unlabeled Bracketing

Labeled Bracketing

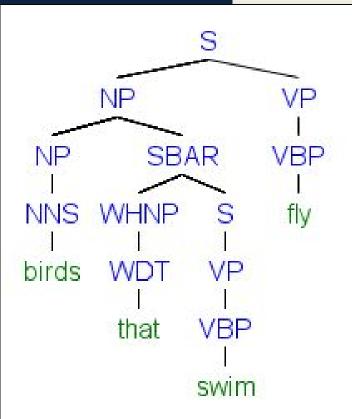

- Annotates each constituent with a label,
- and each token with a part-of-speech tag

[**S** [**NP** [**PRP** I]] [**VP** [**VBP** LIKE] [**NP** [**JJ**] OLD] [**NNS** BOOKS]]]]]

Phrase Structure (Constituency Parsing)

- Represents text structure as
- a tree: tokens are leaves
- (Equivalent to labeled bracketing)

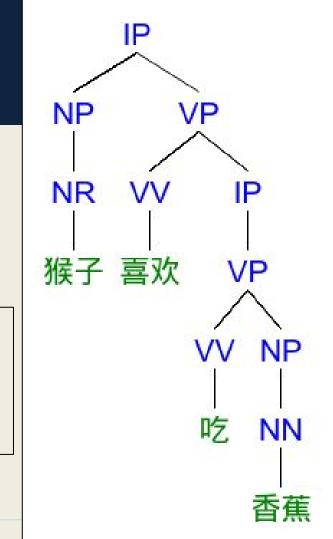
[**S** [**NP** [**PRP** I]] [**VP** [**VBP** LIKE] [**NP** [**JJ** OLD] [**NNS** BOOKS]]]]]

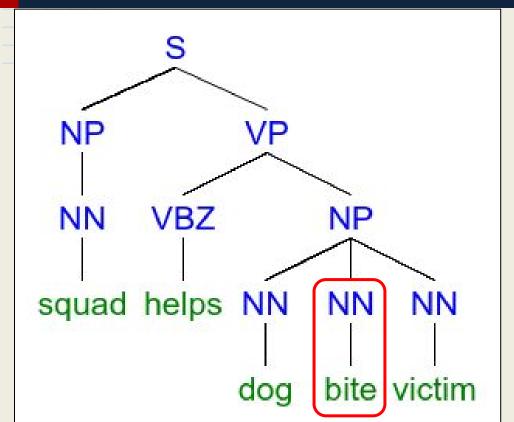

More Complicated Example

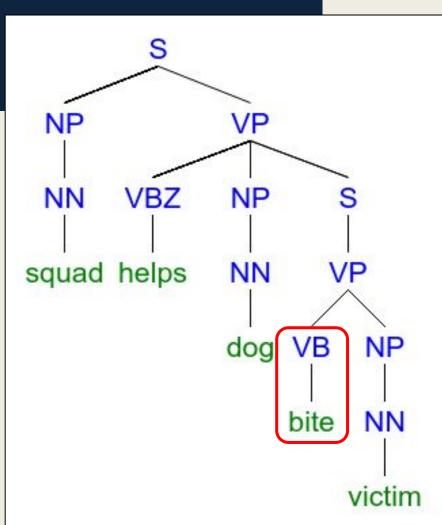
Relative clauses introduce

SBAR nodes and are parsed too

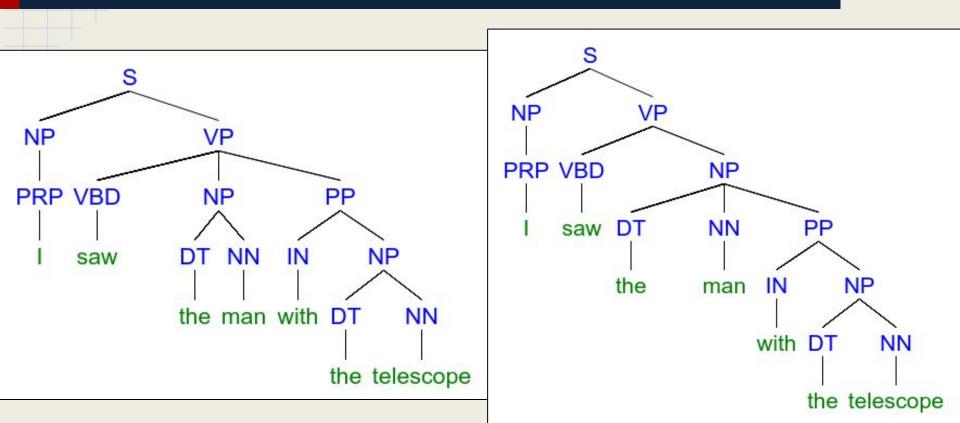
http://cs.jhu.edu/~jason/465/hw-parse/treebank-manual.pdf


[S [NP [NP [NNS BIRDS]] [SBAR [WHNP [WDT THAT]] [S [VP [VBP SWIM]]]]] [VP [VBP FLY]]]]


Chinese Example

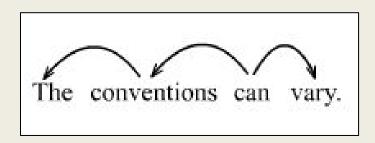

- Different rules/labels are
- used for different languages

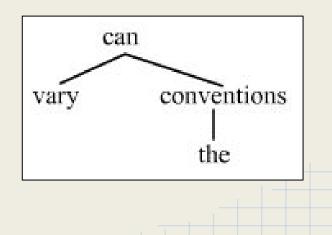
[IP [NP [NR 猴子]] [VP [VV 喜欢] [IP [VP [VV 吃] [NP [NN 香蕉]]]]]]



Lexical Ambiguity

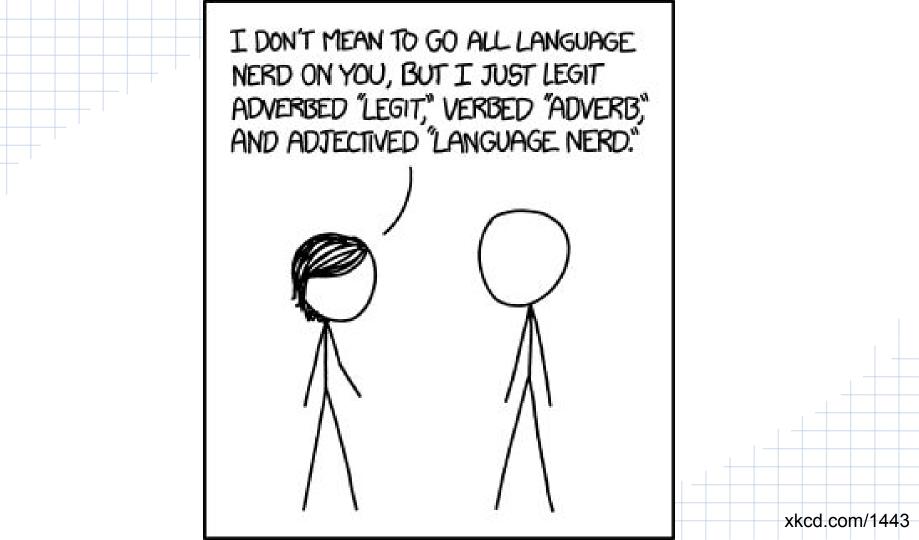
Syntactic Ambiguity


Penn Treebank


- Started in 1989
- More than 4.5 million tokens
- Mostly Wall Street Journal
- Constituency-parsed by humans
- Used to train/test parsers

Dependency Parsing

Represents text structure as a **tree**:


tokens are all the nodes (not just leaves)

References

- NLP class on Coursera: <u>class.coursera.org/nlp</u>
- Parts of speech: <u>en.wikipedia.org/wiki/Part_of_speech</u>
- Jurafsky, Daniel, and James H. Martin. 2009. Speech and Language Processing: An Introduction to Natural Language Processing, Speech Recognition, and Computational Linguistics. 2nd edition. Prentice-Hall. Pg. 295.

