Query Processing

Part 2: Dense and Sparse Indexes

“Field” means “attribute”
Terminology

o A sorted (or sequential) fileis stored (on a disk)
sequentially in sorted order
— We sort a file on a seguence (or sort) field
— Can also sort lexicographically on several fields

e A hegpis a file that is stored on a disk in no
particular order

e A search key is a field(s) on which we can search

efficiently for records with a given key value

— Search keys are implemented by dense & sparse
indexes, B+trees, hash tables

Two Types of Search Keys

e A file is organized according to a primary
search key that
— Determines the location of a record in the file
— Is used for insertions, deletions and updates
— Is usually called primary key, although it does not

necessarily define a record uniquely

o A secondary search key is used only for

searching (usually called seconaary key)

In the context of query processing, “key” usually
means “search key,” and it is not a key in the sense
of FDs, namely, duplicate values are possible

Dense and Sparse Indexes
for Primary Keys

Sequential File

10
20

30
40

50
60

/0
80

90
100

Dense Index

Sequential File

10

110

20

120

30

[

An index entry
for each record
of the file

40

[

30

50

40

T
T
T

60

50

/0

60

80

[1]]

/0

90

/

80

100

/

§
.

110

\\»

90

120

100

§

Sparse Index

Sequential File

10

Only one index
entry for each
block (for the
block’s first
value)

110

30

20

50

/0

30

40

90

/]

110

50

130

60

150

Given V/, follow
the pointer for
the largest K
s.t. K<V

170

190

210

/0

80

90

230

=,

100

Sparse 2nd level

Sequential File

10

> 110

110

90

30

20

170

50

250

330

410

490

570

/0

30

40

90

/]

110

130

150

170

190

210

230

50

60

/0

80

90

100

=/

Comments & Questions

The index blocks are not necessarily
contiguous, but they are chained in both
directions

Same for the blocks of a file

Can a
Shoulc

neap have a sparse index?
we sometimes use a dense index in the

Seconc

(or higher) level?

If the file is contiguous, we can compute the
pointers, instead of storing them in the index

9

K1
K2
K3
K4

R2

R3

R4

Works for Dense?
Sparse?

A block has
1024 Bytes

Find the K3 block by computing its offset:

(3-1)1024 = 2048 bytes

10

Duplicate Keys in the File

10

10

10

20

20

30

30

30

40

45

11

Dense Index for the File

10

o F———— .
10

10

10

> 110

20

30

> 120

20 —""" "

20

30 —mm

30

30

~130

> 130

Do we need repeated
keys in the index?

40

45

12

Keys Repeated in File
But not in Dense Index

Now it Is more

ike a sparse index

10

—

20

—

30

~—

40

=

Recall that the file’s
blocks are chained
(same for the index)

10

10

10

20

20

30

30

30

40

45

13

Sparse Index for a
File with Duplicate Keys

10

10

20

30

§

10

10

10

20

20

30

30

30

40

45

14

How to Search?

20| —

S
\>

Still 30]

Valid? x

Given V, follow the pointer
for the largest K s.t. K< V

10

10

10

20

20

30

30

30

40

45

15

Fixing the Problem

place first new key from block

10

—

20

_—

30

30

—
™~

x

10

10

10

20

20

30

30

30

40

45

16

Need Repeated Keys in Index?

place first new key from block

N —
should [10]| —
thisbe fo— ———

Recall that the file’s
blocks are chained
(same for the index)

10

10

10

20

20

30

30

30

40

45

17

To Sum Up

e Sparse index points to a block only if it
has a new value not seen before

e The smallest such value is associated
with the pointer to the block

During search, File
when do we N
have to Index — " d
continue to 3 / 3
the next block
of the file? |
v' Given V follow the pointer b
for the largest K s.t. K< V

Deletion from Sparse Index

delete record 40

10

—

30

_—

50

—

/0

90

110

\§

130

150

10

20

30

40

50

60

/0

80

19

Deletion from Sparse Index

delete record 40

10

—

30

_—

50

—

/0

90

110

130

\§

150

10

20

30

50

60

/0

80

20

Deletion from Sparse Index

delete record 30

10

—

30

_—

50

—

/0

90

110

\§

130

150

10

20

30

40

50

60

/0

80

21

Deletion from Sparse Index

delete record 30

40

10

—

20

_—

50

—

/0

™~

90

110

130

<
\

150

10

20

40

50

60

/0

80

22

Deletion from Sparse Index

delete record 30 & 40

10

—

30

_—

50

—

/0

90

110

\§

130

150

10

20

30

40

50

60

/0

80

23

Deletion from Sparse Index

delete record 30 & 40

10

—

30

_—

50

—

/0

90

110

130

\§

150

10

20

50

60

/0

80

24

Deletion from Sparse Index

delete record 30 & 40

 —’
10| —

50 3¢
70|56

130
150

Jari

Vi

10

20

50

60

/0

80

25

Deletion from Dense Index

delete record 30

10

—

10

20

—_—

20

30

> 130

40

140

50

50

60

. 160

/0

80

~1/0

" 180

26

Deletion from Dense Index

delete record 30

10

—

10

20

—_—

20

30

40

40

50

50

60

. 160

/0

80

~1/0

" 180

27

Deletion from Dense Index

delete record 30

10

—

10

20

—_—

20

2

40

40,307

50

50

60

. 160

/0

80

~1/0

" 180

Unlike sparse index, always
have to update the index

28

Insertion into Sparse Index

insert record 34

10

—

30

—_—

40

60

—
~

<
\

10

20

30

40

50

60

29

Insertion into Sparse Index

insert record 34

10

 —>
10| — 20
0[4—
40| — 30
60 \\ 34
40
50
Our lucky day! 60

We have free space
where we need it!

30

Insertion into Sparse Index

insert record 15

10

—

30

—_—

40

60

—
~

<
\

10

20

30

40

50

60

31

Insertion into Sparse Index

insert record 15

R
] 29115
000 ——
40| — 20
60 \\ 30
40
50
60

e Immediate reorganization of
both the file and the index

32

What if we now have to insert 137

T 10
_ 20115
00—
40| — 20
60 \\ 30
40
o0
60

e Can add a new block to the file’s chain
between the first and second blocks

»Also need to add new entry to the index
e But blocks will no longer be contiguous .,

Alternative: Use Overflow Blocks
25

Insert recorc

10

10

30

20

40

30

60

40

50

-
N

60

34

Alternative: Use Overflow Blocks

Insert recorc

25

10

10

5125

30

20

40

30

overflow blocks

60

(reorganize later...)

40

50

o
N

60

No need to update the index

35

Insertion into Dense Index

e Similar but often more expensive,
because we have to update the index
after every insertion

36

Dense Indexes
for Secondary Keys

An index for a secondary key is
sometimes called a seconaary index

37

Secondary Indexes

e Only the primary (i.e.,
organizing) index can
determine the physical

order of the records on
the disk

e Secondary index is on an
unsorted field

Sequence field

\

30

50

20

/0

80

40

100

10

90

60

38

Sparse Secondary Indexes

30

20

80

100

/]

90

7/

Sequence field

\

30

50

20

/0

80

40

100

10

90

60

39

Sparse Secondary Indexes

Squence field

30
50

20
/0

80
40

100
10

90
60

40

Secondary Index Must be Dense

Squence field

30

50

20

/0

80

40

100

10

90

60

41

Dense Secondary Index

10

Sequence field

\

20

30

30

50

40

/AN WA N

20

/0

50

AN

60

80

40

/0

100

10

90

60

42

But Higher Levels are Sparse

10

\

20

30

10| -~

30

50

50| ~

40

/AN WA N

20

90

/0

50

AN

sparse
high
level

60

80

40

/0

100

10

90

60

Sequence field

43

Duplicate Values & Secondary Indexes

20

10

20

40

10

40

10

40

30

40

44

Duplicate Values & Secondary Indexes

one option...

10

10

20

10

20

20

30

40

40

\

40

\

40

/

.

10

20

40

10

40

10

40

30

40

45

Duplicate Values & Secondary Indexes

one option...

10 20
o N0

10
\ 20
Problem: 20 20
excess overhead! §8 . o
e disk space 28 - 40
e search time 10
40| - 40
\ 40

46

Duplicate Values & Secondary Indexes

another option...

20
10

20
40

10
40

10
40

30
40

10

| |/

\

20

\

30
40

\ /1 \l/

|

47

Duplicate Values & Secondary Indexes

another option...

20
10

20
Problem: 20 40

Variable-size 10
records in 30 40

index! 40 10
40

30
40

10

| |/

\

\

\ /1 \l/

|

48

An Intermediate Level of Buckets

10

20

30

40

50

60

mlle

\’g
\»/

S\

buckets

20

10

20

40

10

40

10

40

30

40

49

Why “"Bucket” Idea is Useful

Indexes

Records

Name: primary
Dept: secondary
Floor: secondary

EMP (name,dept,floor...)

50

Query: Get employees in
(Toy Dept) A (2nd floor)

Dept. index EMP Floor index

g — // \\
-

Toy| N P 2nd

o
I

51

Query: Get employees in
(Toy Dept) A (2nd floor)

Dept. index EMP Floor index

g — // \\
-

Toy| N P 2nd

o
I

— Intersect toy bucket and 2nd Floor
bucket to get the set of matching EMP’s

52

Summary of Dense & Sparse Indexes

e Both are simple (as long as there is just one level)

e Sparse is more efficient, because the index is
smaller and more of it can be kept in memory

e Insertions are expensive when performed (if
immediate reorganization is done), or over time
(since performance deteriorates due to overflow)
— More of a problem in a dense index, because every

insertion also changes the index

e Secondary indexes must be dense

e Sometimes dense indexes improve efficiency by
intersecting sets of pointers before accessing file

53

Something to Think About

e To shorten an index, can we use
pointers just to blocks (instead of to
records)? In which cases?

e In a relational system, can we organize
a relation according to a field which is
not a key in the FD sense? How?

— If so, what is the advantage of doing that?

— If so, how would we enforce the constraint
that there should not be two records with
the same key?

o4

Note

o If a file is stored in sorted order on some field,
then that field must be the primary search key

o If the file is stored as a heap (i.e., not sorted on
any field), then the index for the primary search
key must be dense

o If the primary search key is based on a
lexicographic order of several fields and the file
is sorted accordingly, then any prefix of those
fields is a secondary search key

95

