Query Processing

Part 2: Dense and Sparse Indexes




“Field” means “attribute”
Terminology

o A sorted (or sequential) fileis stored (on a disk)
sequentially in sorted order
— We sort a file on a seguence (or sort) field
— Can also sort lexicographically on several fields

e A hegpis a file that is stored on a disk in no
particular order

e A search key is a field(s) on which we can search

efficiently for records with a given key value

— Search keys are implemented by dense & sparse
indexes, B+trees, hash tables




Two Types of Search Keys

e A file is organized according to a primary
search key that
— Determines the location of a record in the file
— Is used for insertions, deletions and updates
— Is usually called primary key, although it does not

necessarily define a record uniquely

o A secondary search key is used only for

searching (usually called seconaary key)

In the context of query processing, “key” usually
means “search key,” and it is not a key in the sense
of FDs, namely, duplicate values are possible




Dense and Sparse Indexes
for Primary Keys
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Dense Index
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Sparse Index

Sequential File
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Sparse 2nd level

Sequential File
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Comments & Questions

The index blocks are not necessarily
contiguous, but they are chained in both
directions

Same for the blocks of a file

Can a
Shoulc

neap have a sparse index?
we sometimes use a dense index in the

Seconc

(or higher) level?

If the file is contiguous, we can compute the
pointers, instead of storing them in the index
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K1
K2
K3
K4

R2

R3

R4

Works for Dense?
Sparse?

A block has
1024 Bytes

Find the K3 block by computing its offset:

(3-1)1024 = 2048 bytes
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Duplicate Keys in the File
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Dense Index for the File
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Keys Repeated in File
But not in Dense Index

Now it Is more

ike a sparse index
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Sparse Index for a
File with Duplicate Keys
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How to Search?
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Fixing the Problem

place first new key from block
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Need Repeated Keys in Index?

place first new key from block
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To Sum Up

e Sparse index points to a block only if it
has a new value not seen before

e The smallest such value is associated
with the pointer to the block

During search, File
when do we N
have to Index — " d
continue to 3 / 3
the next block
of the file? |
v' Given V follow the pointer b
for the largest K s.t. K< V




Deletion from Sparse Index
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Deletion from Sparse Index

delete record 40
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Deletion from Sparse Index

delete record 30
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Deletion from Sparse Index

delete record 30
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Deletion from Sparse Index

delete record 30 & 40
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Deletion from Sparse Index

delete record 30 & 40
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Deletion from Sparse Index

delete record 30 & 40
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Deletion from Dense Index
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Deletion from Dense Index
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Deletion from Dense Index
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Insertion into Sparse Index

insert record 34
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Insertion into Sparse Index

insert record 34
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Insertion into Sparse Index

insert record 15
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Insertion into Sparse Index

insert record 15
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e Immediate reorganization of
both the file and the index
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What if we now have to insert 137
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e Can add a new block to the file’s chain
between the first and second blocks

»Also need to add new entry to the index
e But blocks will no longer be contiguous .,




Alternative: Use Overflow Blocks
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Alternative: Use Overflow Blocks

Insert recorc
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Insertion into Dense Index

e Similar but often more expensive,
because we have to update the index
after every insertion
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Dense Indexes
for Secondary Keys

An index for a secondary key is
sometimes called a seconaary index
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Secondary Indexes

e Only the primary (i.e.,
organizing) index can
determine the physical

order of the records on
the disk

e Secondary index is on an
unsorted field
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Sparse Secondary Indexes
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Sparse Secondary Indexes
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Secondary Index Must be Dense

Squence field
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Dense Secondary Index
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But Higher Levels are Sparse

10

\

20

30

10| -~

30

50

50| ~

40

/AN WA N

20

90

/0

50

AN

sparse
high
level

60

80

40

/0

100

10

90

60

Sequence field

43




Duplicate Values & Secondary Indexes
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Duplicate Values & Secondary Indexes

one option...
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Duplicate Values & Secondary Indexes

one option...
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Duplicate Values & Secondary Indexes

another option...
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Duplicate Values & Secondary Indexes

another option...
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An Intermediate Level of Buckets
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Why “"Bucket” Idea is Useful

Indexes

Records

Name: primary
Dept: secondary
Floor: secondary

EMP (name,dept,floor...)
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Query: Get employees in
(Toy Dept) A (2nd floor)

Dept. index EMP Floor index
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Query: Get employees in
(Toy Dept) A (2nd floor)

Dept. index EMP Floor index
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o
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— Intersect toy bucket and 2nd Floor
bucket to get the set of matching EMP’s
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Summary of Dense & Sparse Indexes

e Both are simple (as long as there is just one level)

e Sparse is more efficient, because the index is
smaller and more of it can be kept in memory

e Insertions are expensive when performed (if
immediate reorganization is done), or over time
(since performance deteriorates due to overflow)
— More of a problem in a dense index, because every

insertion also changes the index

e Secondary indexes must be dense

e Sometimes dense indexes improve efficiency by
intersecting sets of pointers before accessing file
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Something to Think About

e To shorten an index, can we use
pointers just to blocks (instead of to
records)? In which cases?

e In a relational system, can we organize
a relation according to a field which is
not a key in the FD sense? How?

— If so, what is the advantage of doing that?

— If so, how would we enforce the constraint
that there should not be two records with
the same key?
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Note

o If a file is stored in sorted order on some field,
then that field must be the primary search key

o If the file is stored as a heap (i.e., not sorted on
any field), then the index for the primary search
key must be dense

o If the primary search key is based on a
lexicographic order of several fields and the file
is sorted accordingly, then any prefix of those
fields is a secondary search key
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