
1

Query Processing

Part 2: Dense and Sparse Indexes

2

Terminology
• A sorted (or sequential) file is stored (on a disk) sequentially in sorted order

– We sort a file on a sequence (or sort) field
– Can also sort lexicographically on several fields

• A heap is a file that is stored on a disk in no particular order
• A search key is a field(s) on which we can search efficiently for records with a given key value

– Search keys are implemented by dense & sparse indexes, B+trees, hash tables

“Field” means “attribute”

3

Two Types of Search Keys
• A file is organized according to a primary search key that

– Determines the location of a record in the file
– Is used for insertions, deletions and updates
– Is usually called primary key, although it does not necessarily define a record uniquely

• A secondary search key is used only for searching (usually called secondary key)
In the context of query processing, “key” usually means “search key,” and it is not a key in the sense of FDs, namely, duplicate values are possible

4

Dense and Sparse Indexesfor Primary Keys

5

2010

4030

6050

8070

10090

Sequential File

6

Sequential File
2010

4030

6050

8070

10090

Dense Index
10203040
50607080
90100110120

An index entry for each record of the file

7

Sequential File
2010

4030

6050

8070

10090

Sparse Index
10305070
90110130150
170190210230

Only one index entry for each block (for the block’s first value)
Given V, follow the pointer for the largest K, s.t. K  V

8

Sequential File
2010

4030

6050

8070

10090

Sparse 2nd level
10305070
90110130150
170190210230

1090170250
330410490570

9

Comments & Questions
• The index blocks are not necessarily contiguous, but they are chained in both directions
• Same for the blocks of a file
• Can a heap have a sparse index?
• Should we sometimes use a dense index in the second (or higher) level?
• If the file is contiguous, we can compute the pointers, instead of storing them in the index

10

K1

K3
K4

K2

R1

R2

R3

R4

Find the K3 block by computing its offset:(3-1)1024 = 2048 bytes

A block has 1024 Bytes

Works for Dense? Sparse?

11

Duplicate Keys in the File
1010

2010

3020

3030

4540

12

1010

2010

3020

3030

4540

10101020
20303030

1010

2010

3020

3030

4540

10101020
20303030

Dense Index for the File

Do we need repeated keys in the index?

13

1010

2010

3020

3030

4540

10203040

Keys Repeated in FileBut not in Dense Index
Now it is more like a sparse index

Recall that the file’s blocks are chained (same for the index)

14

1010

2010

3020

3030

4540

10102030

Sparse Index for aFile with Duplicate Keys

15

1010

2010

3020

3030

4540

10102030

Given V, follow the pointer for the largest K, s.t. K  V

How to Search?

Still Valid?

16

1010

2010

3020

3030

4540

10203030

place first new key from block
Fixing the Problem

17

1010

2010

3020

3030

4540

10203030

shouldthis be40?

Need Repeated Keys in Index?
place first new key from block

Recall that the file’s blocks are chained (same for the index)

18

To Sum Up
• Sparse index points to a block only if it has a new value not seen before
• The smallest such value is associated with the pointer to the block

File
Index
a

aa
b
.
.

Given V, follow the pointer for the largest K, s.t. K  V

During search, when do we have to continue to the next block of the file?

19

Deletion from Sparse Index
2010

4030

6050

8070

10305070
90110130150

delete record 40

20

2010

4030

6050

8070

10305070
90110130150

Deletion from Sparse Index
delete record 40

21

2010

4030

6050

8070

10305070
90110130150

Deletion from Sparse Index
delete record 30

22

2010

4030

6050

8070

10305070
90110130150

4040

Deletion from Sparse Index
delete record 30

23

2010

4030

6050

8070

10305070
90110130150

Deletion from Sparse Index
delete record 30 & 40

24

2010

4030

6050

8070

10305070
90110130150

Deletion from Sparse Index
delete record 30 & 40

25

2010

4030

6050

8070

10305070
90110130150

50
70

Deletion from Sparse Index
delete record 30 & 40

26

2010

4030

6050

8070

10203040
50607080

Deletion from Dense Index
delete record 30

27

2010

4030

6050

8070

10203040
50607080

40

Deletion from Dense Index
delete record 30

28

2010

4030

6050

8070

10203040
50607080

4040

Deletion from Dense Index
delete record 30

Unlike sparse index, always have to update the index

29

2010
30

5040
60

10304060

Insertion into Sparse Index
insert record 34

30

2010
30

5040
60

10304060 34

Our lucky day!We have free spacewhere we need it!

Insertion into Sparse Index
insert record 34

31

2010
30

5040
60

10304060

Insertion into Sparse Index
insert record 15

32

2010
30

5040
60

10304060

15
2030

20

Insertion into Sparse Index
insert record 15

• Immediate reorganization of both the file and the index

33

• Can add a new block to the file’s chain between the first and second blocks
Also need to add new entry to the index

• But blocks will no longer be contiguous

2010
30

5040
60

10304060

15
2030

20

What if we now have to insert 13?

34

2010
30

5040
60

10304060

Alternative: Use Overflow Blocks
insert record 25

35

2010
30

5040
60

10304060

25
overflow blocks(reorganize later...)

Alternative: Use Overflow Blocks
insert record 25

No need to update the index

36

Insertion into Dense Index
• Similar but often more expensive, because we have to update the index after every insertion

37

Dense Indexesfor Secondary Keys
An index for a secondary key is sometimes called a secondary index

38

Sequence field
5030

7020

4080

10100

6090

Secondary Indexes
• Only the primary (i.e., organizing) index can determine the physical order of the records on the disk
• Secondary index is on an unsorted field

39

Sequence field
5030

7020

4080

10100

6090

302080100
90...

Sparse Secondary Indexes

40

Sequence field
5030

7020

4080

10100

6090

302080100
90...

does not make sense!

Sparse Secondary Indexes

41

Sequence field
5030

7020

4080

10100

6090

Secondary Index Must be Dense

42

Sequence field
5030

7020

4080

10100

6090

10203040
506070...

Dense Secondary Index

43

Sequence field
5030

7020

4080

10100

6090

10203040
506070...

105090...
sparsehighlevel

But Higher Levels are Sparse

44

Duplicate Values & Secondary Indexes
1020

4020

4010

4010

4030

45

1020

4020

4010

4010

4030

10101020
20304040
4040...

one option...
Duplicate Values & Secondary Indexes

46

1020

4020

4010

4010

4030

10101020
20304040
4040...

one option...

Problem:excess overhead!• disk space• search time

Duplicate Values & Secondary Indexes

47

1020

4020

4010

4010

4030

10
another option...

4030

20

Duplicate Values & Secondary Indexes

48

1020

4020

4010

4010

4030

10
another option...

4030

20Problem:Variable-sizerecords inindex!

Duplicate Values & Secondary Indexes

49

1020

4020

4010

4010

4030

10203040
5060...

buckets

An Intermediate Level of Buckets

50

Why “Bucket” Idea is Useful
Indexes Records
Name: primary EMP (name,dept,floor,...)
Dept: secondary
Floor: secondary

51

Query: Get employees in (Toy Dept) ^ (2nd floor)
Dept. index EMP Floor index

Toy 2nd

52

Query: Get employees in (Toy Dept) ^ (2nd floor)
Dept. index EMP Floor index

Toy 2nd

 Intersect toy bucket and 2nd Floor bucket to get the set of matching EMP’s

53

Summary of Dense & Sparse Indexes
• Both are simple (as long as there is just one level)
• Sparse is more efficient, because the index is smaller and more of it can be kept in memory
• Insertions are expensive when performed (if immediate reorganization is done), or over time (since performance deteriorates due to overflow)

– More of a problem in a dense index, because every insertion also changes the index
• Secondary indexes must be dense
• Sometimes dense indexes improve efficiency by intersecting sets of pointers before accessing file

54

Something to Think About
• To shorten an index, can we use pointers just to blocks (instead of to records)? In which cases?
• In a relational system, can we organize a relation according to a field which is not a key in the FD sense? How?

– If so, what is the advantage of doing that?
– If so, how would we enforce the constraint that there should not be two records with the same key?

55

Note
• If a file is stored in sorted order on some field, then that field must be the primary search key
• If the file is stored as a heap (i.e., not sorted on any field), then the index for the primary search key must be dense
• If the primary search key is based on a lexicographic order of several fields and the file is sorted accordingly, then any prefix of those fields is a secondary search key

