12/9/2012

Finding All Keys

Part 1 of the Algorithm

RemoveRedundant(S,F)

Input: Attributes S and FDs F

Output: Minimal T such that Tc Sand S < T*¢
* T:=S

* Foreach Ae S do
—If Ae (T-A)*r then T:=T-A

* RetunT
|What does this remind you of? ,
Part 2 of the Algorithm
All Keys(R.F) Example
Input: Schema R and FDs F
Output: All keys of R with respect to F * R=ABCD

» Keys:= {RemoveRedundant(R,F)}
* Foreach K e Keys do
— Foreach X->A e F for which A € Kdo
+ SI=K-{A} U X
« If S does not contain any J € Keys then
— S’ := RemoveRedundant(S,F)
—Add S’ to Keys
* Return Keys

+ F={AB—> C,C —» DA, BD - C, AD — B}
* Find all the keys of R

Correctness

Claim: Every K added to Keys is a key of R

Proof: By induction. Let K; be the i-th key added to

Keys

— Base Case: i=1. Then, K, is obviously a key by the
definition of remove redundant.

— Induction Step: Assume for j<i. Let K; for some j<i and X
A e F be such that K; returned from
RemoveRedundant(K-A L X,F). By the induction
hypothesis, K;is a key. It immediately follows that Ki-A U

Xis a superkey, and RemoveRedundant(Ki-A L X,F) is a

key.

5

Correctness

» Claim: Every key K is eventually added to Keys

* Proof:

— First, observe that at least one key will be added to Keys.

— Now, suppose that there is some key K’ that is not in Keys.

— We will show that the algorithm will find some additional
key to add to Keys.

— Let K” be a maximal subset of R containing K’, but not
containing any key in Keys.

— Since K” does not contain any key in Keys and Keys is not
empty, there is some attribute in R that is not in K”.




12/9/2012

Correctness (cont)

Since K"+ contains all attributes, there must be some
functional dependency X—A such that XcK”, but AgK”.

By the choice of K”, we have that K”UA contains some key
Kin Keys.

During its iteration over K and X—A, the set K-AuX will be
computed.

Note that Xc K” and K-Ac K”, and therefore K-AuX c K”.

Since K” does not contain any key in Keys, K-AuX also
does not and a new key will be generated by the algorithm.

Runtime

* Runs in polynomial time in the size of the
input and output, i.e., in the size of R,F,Keys.
» For each K in Keys and each FD in F we:
— iterate over Keys (to check containment)

— call RemoveRedundant




