
12/9/2012

1

1

Finding All Keys

2

Part 1 of the Algorithm

 RemoveRedundant(S,F)

 Input: Attributes S and FDs F

 Output: Minimal T such that T S and S  T+
F

• T:=S

• Foreach A S do

– If A (T-A)+
F then T:=T-A

• Return T

What does this remind you of?

3

Part 2 of the Algorithm

 All Keys(R,F)

 Input: Schema R and FDs F

 Output: All keys of R with respect to F

• Keys:= {RemoveRedundant(R,F)}

• Foreach K  Keys do

– Foreach XA  F for which A  K do

• S:=K-{A}  X

• If S does not contain any J  Keys then

– S’ := RemoveRedundant(S,F)

– Add S’ to Keys

• Return Keys
4

Example

• R = ABCD

• F = {AB C, C  DA, BD  C, AD  B}

• Find all the keys of R

Correctness

• Claim: Every K added to Keys is a key of R

• Proof: By induction. Let Ki be the i-th key added to

Keys

– Base Case: i=1. Then, K1 is obviously a key by the

definition of remove redundant.

– Induction Step: Assume for j<i. Let Kj for some j<i and X

A  F be such that Ki returned from

RemoveRedundant(Kj-A  X,F). By the induction

hypothesis, Kj is a key. It immediately follows that Kj-A 

X is a superkey, and RemoveRedundant(Kj-A  X,F) is a

key. 5

Correctness

• Claim: Every key K is eventually added to Keys

• Proof:

– First, observe that at least one key will be added to Keys.

– Now, suppose that there is some key K’ that is not in Keys.

– We will show that the algorithm will find some additional

key to add to Keys.

– Let K’’ be a maximal subset of R containing K’, but not

containing any key in Keys.

– Since K’’ does not contain any key in Keys and Keys is not

empty, there is some attribute in R that is not in K’’.

6

12/9/2012

2

Correctness (cont)

• Since K’’+ contains all attributes, there must be some

functional dependency XA such that XK’’, but AK’’.

• By the choice of K’’, we have that K’’A contains some key

K in Keys.

• During its iteration over K and XA, the set K-AX will be

computed.

• Note that X K’’ and K-A K’’, and therefore K-AX  K’’.

• Since K’’ does not contain any key in Keys, K-AX also

does not and a new key will be generated by the algorithm.

7

Runtime

• Runs in polynomial time in the size of the

input and output, i.e., in the size of R,F,Keys.

• For each K in Keys and each FD in F we:

– iterate over Keys (to check containment)

– call RemoveRedundant

8

