
1

Programming in postgreSQL
with PL/pgSQL

Procedural Language extension to postgreSQL

1

Why a Programming Language?

• Some calculations cannot be made within a query
(examples?)

• Two options:

– Write a program within the database to calculate the
solution

– Write a program that communicates with the database
and calculates the solution

• Both options are useful, depending on the
circumstances.

– Option 1 reduces the communication need, and can be
faster!

2

PL/pgSQL

• Specific for Postgres (similar languages available for
other db systems)

• Allows using general programming tools with SQL,
for example: loops, conditions, functions, etc.

– This allows a lot more freedom than general SQL

• We write PL/pgSQL code in a regular file, for
example firstPl.sql, and load it with \i in the psql
console.

• Documentation available at:
http://www.postgresql.org/docs/8.1/static/plpgsql.h
tml#PLPGSQL-OVERVIEW

3

BASIC STRUCTURE OF A PL/PGSQL
PROGRAM

4

PL/pgSQL Blocks

PL/pgSQL code is built of Blocks, with a unique structure:

DECLARE (optional)

/* All Variables Declared Here*/

BEGIN (mandatory)

/* Executable statements (what the block
DOES!)*/

EXCEPTION (optional)

/* Exception handling*/

END; (mandatory)

5

Creating a Function

CREATE OR REPLACE FUNCTION
 funcName(varName1 varType1,…)
RETURNS returnVarType AS ‘

DECLARE (optional)

/* All Variables Declared Here*/

BEGIN (mandatory)

/* Executable statements (what the block
DOES!)*/

EXCEPTION (optional)

/* Exception handling*/

END; (mandatory)

 ’ language plpgsql 6

2

Example

Create or replace function
 myMultiplication(var1 integer, var2 integer) returns
integer as ‘
BEGIN
 return var1*var2;
END;
’ language plpgsql

7

The Function Body String

• The body of the function is a string, from the
standpoint of the db

• We can use quotes to create this string, or use dollar
string encoding (will be used from now on in
example)

Create or replace function
 myMultiplication(var1 integer, var2 integer)
 returns integer as $$
BEGIN
return var1*var2;
END;
$$ language plpgsql

8

The Return Value

• If the function returns a single parameter, you can
use the return syntax below

• Must use a return statement to return the value

• Functions can also return multiple values (details
omitted)

Create or replace function myMultiplication(var1
integer, var2 integer) returns integer as $$
BEGIN
return var1*var2;
END;
$$ language plpgsql

9

Calling Functions

Create or replace function

 addTax(price real) returns real as $$

begin

 Return price*1.155;

end;

$$language plpgsql;

first.sql:

In the psql console write: \i first.sql

Then you can call the function using, e.g., :

Insert into pricesTable values(addTax(20));

Select (addTax(price)) from catalog;

Perform addTax(20);
10

DECLARING VARIABLES

11

Defining Variables (1)

• All variables must be defined in the declare section.
• The general syntax of a variable declaration is:

name [CONSTANT] type [NOT NULL]
 [{DEFAULT | := } expression]

Examples:
user_id integer;
name CONSTANT integer := 10;
name CONSTANT integer DEFAULT 10;
url varchar NOT NULL := ‘http://www.abc.com’;

12

3

Declaring Variables (2):
The %TYPE Attribute

• Examples

DECLARE

 sname Sailors.sname%TYPE;

 fav_boat VARCHAR(30);

 my_fav_boat fav_boat%TYPE := 'Pinta';

13

Declaring Variables (3):
The %ROWTYPE Attribute

• Declare a variable with the type of a ROW of a
table.

• And how do we access the fields in
reserves_record?

reserves_record Reserves%ROWTYPE;

reserves_record.sid := 9;

Reserver_record.bid := 877;
14

Declaring Variables (4):
Records

• A record is similar to row-type, but we don’t
have to predefine its structure

unknownRec record;

15

COMMON OPERATIONS WITHIN
FUNCTION BODY

16

Some Common Operations

• In this part we discuss:

– Using the result of a query within a function

– Conditionals (if/then/else)

– Loops

– Exceptions

17

Select Into

• We will often wish to run a query, and take a
query result, store it in a variable, and
perform further calculations

• Storing the result in a variable is done using
the Select Into command

• Note in the following slides what happens
when applied to queries that return multiple
rows

18

4

Select Into

1. If select returns more than one result, the first row will be
put into sp_var

2. If no rows were returned, nulls will be put in sp_var
Notice that unless ‘Order by’ was specified, the first row is not
well defined

Create or replace function
 sillyFunc(var1 integer) returns integer as $$
DECLARE
 s_var sailors%rowtype;
BEGIN
 select * into s_var from sailors;
 return s_var.age*var1;
END;
 $$language plpgsql

19

Select Into Strict

• In this case, if more or less than one row is returned,
a run-time error will occur

Create or replace function
 sillyFunc(var1 integer) returns integer as $$
DECLARE
 s_var sailors%rowtype;
BEGIN
 select * into strict s_var from sailors;
 return sp_var.age*var1;
END;
 $$language plpgsql

20

Using Records in Select Into

DECLARE

v record;

BEGIN

 select * into v
 from Sailors S, Reserves R

 where S.sname=‘Sam’ and S.sid = R.sid

END;

21

Checking if a Row was Returned
By Select Into

Declare

 v record;

Begin

Select * into v from Sailors where age=4;

If not found then…

22

Conditioning

IF boolean-expression

THEN statements

END IF;

…
IF v_age > 22
THEN
 UPDATE employees
 SET salary = salary+1000
 WHERE eid = v_sid;
END IF;

…

Assume variables in blue were defined above the code fragment 23

More Conditioning

IF boolean-expression

 THEN statements

ELSIF boolean-expression

 THEN statements

ELSIF boolean-expression

 THEN statements

 …

 ELSE statements

 END IF ;

24

5

Example

Select assessRate(6.7);

CREATE or replace FUNCTION
 assessRate(rating real) RETURNS text AS $$
BEGIN
 if rating>9 then return 'great';
 elsif rating>7 then return 'good';
 elsif rating>5 then return 'keep on working';
 elsif rating>3 then return 'work harder!';
 else return 'you are hopeless';
 end if;
END;
$$ LANGUAGE plpgsql;

25

Another Example

num_run who

3 Peter

4 John

2 Moshe

• Write a function that when
called by a user:

– if user is already in table
mylog, increment num_run.

– Otherwise, insert user into
table

mylog

26

CREATE FUNCTION
 updateLogged() RETURNS void AS $$
DECLARE
 cnt integer;
BEGIN
 Select count(*) into cnt
 from mylog where who=user;
 If cnt>0 then
 update mylog
 set num_run = num_run + 1
 where who = user;
 else
 insert into mylog values(user, 1);
 end if;
end;
$$ LANGUAGE plpgsql;

27

Simple loop

LOOP

statements

END LOOP;

• Terminated by Exit or return

• Exit: only causes termination of the loop

• Can be specified with a condition: Exit when …

28

Examples

 LOOP

-- some computations
IF count > 0 THEN EXIT;
END IF;
END LOOP;

LOOP

-- some computations
EXIT WHEN count > 0;
 END LOOP;

29

Continue
• The next iteration of the loop is begun

 Create or replace function
myTest(var1 integer) returns integer as $$

DECLARE

 i integer;
BEGIN

 i:=1;
 loop

 exit when i>var1;
 i=i+1;
 continue when i<20;
 raise notice 'num is %',i;
 end loop;
 return i*var1;
END

 $$language plpgsql

What does this print for myTest(30)?
30

6

While loop

WHILE expression

LOOP

--statements

END LOOP ;

WHILE money_amount > 0 AND happiness < 9
LOOP

-- buy more
 END LOOP;

31

For loop
FOR var IN [REVERSE] stRange ..endRange

LOOP

statements

END LOOP;

FOR i IN 1..10 LOOP

 RAISE NOTICE 'i is %', i;
END LOOP;

FOR i IN REVERSE 10..1 LOOP

-- some computations here
END LOOP;

The variable
var is not
declared in
the declare
section for
this type of
loop.

32

Looping Through Query Results
FOR target IN query
LOOP
statements
END LOOP;
 CREATE or replace FUNCTION

assessRates() RETURNS void AS $$
DECLARE
 i record;
BEGIN
 For i in select rating from ratings order by rating loop
 if i.rating>9 then raise notice 'great';
 elsif i.rating>7 then raise notice 'good';
 elsif i.rating>5 then raise notice 'keep on working';
 elsif i.rating>3 then raise notice 'work harder!';
 else raise notice 'you are hopeless';
 end if;
 end loop;
END; $$ LANGUAGE plpgsql;

33

Trapping exceptions

DECLARE
declarations
BEGIN
statements
EXCEPTION
WHEN condition [OR condition ...] THEN

handler_statements
WHEN condition [OR condition ...] THEN

handler_statements
...
END;

See http://www.postgresql.org/docs/8.1/static/
errcodes-appendix.html for a list of all exceptions

34

Exception Example
Create or replace function
errors(val integer) returns real as $$
Declare
 val2 real;
BEGIN
 val2:=val/(val-1);
 return val2;
Exception
 when division_by_zero then
 raise notice 'caught a zero division';
 return 0;
End;
$$ LANGUAGE plpgsql;

35

Triggers

36

7

Triggers

• A trigger defines an action we want to take
place whenever some event has occurred.

• When defining a trigger, you have to define:

1. Triggering Event

2. Trigger Timing

3. Trigger Level

37

Triggering Event

• When defining a trigger, you must choose an event
(or events) upon which you want the trigger to be
automatically called

• Possible events:

– Update of a specific table

– Insert into a specific table

– Delete from a specific table

• For example, if you define a trigger on inserting into
table R, then whenever an insert is performed your
trigger will be called by the database!

38

Trigger Timing

• Triggers run when a predefined event has
occurred.

• The trigger can run before or after the event

• For example, if you define a trigger before
insert on R, then after the user calls an insert
command on R, but before it has been
executed, your trigger will be called

39

Trigger Level

• Triggers run when a predefined event has occurred.

• The trigger level determines the number of times
that the trigger will run.

• If the trigger level is statement, then the trigger will
run once for the triggering event

• If the trigger level is row, then the trigger will run
once for each row changed by the triggering event

• For example, a statement level trigger, defined upon
delete will run once, for each delete statement. A
row level trigger will run once for each row deleted
by the delete statement

40

Defining Triggers

• There are two parts to defining a trigger:

1. Writing a trigger function, i.e., a function with
return type trigger

2. Calling create trigger, defining triggering events,
trigger timing and level, and using the trigger
function

• We first explain #2, and then #1

41

CREATE TRIGGER name { BEFORE | AFTER }

 { event [OR ...] } ON table

 [FOR EACH ROW |STATEMENT]

 EXECUTE PROCEDURE funcname (arguments)

Create Trigger: Timing

CREATE TRIGGER emp_trig
BEFORE INSERT OR UPDATE ON employee
FOR EACH ROW
EXECUTE PROCEDURE emp_trig_func)(;

42

8

CREATE TRIGGER name { BEFORE | AFTER }

 { event [OR ...] } ON table

 [FOR EACH ROW |STATEMENT]

 EXECUTE PROCEDURE funcname (arguments)

Create Trigger: Triggering Event

CREATE TRIGGER emp_trig
BEFORE INSERT OR UPDATE ON employee
FOR EACH ROW
EXECUTE PROCEDURE emp_trig_func)(;

43

CREATE TRIGGER name { BEFORE | AFTER }

 { event [OR ...] } ON table

 [FOR EACH ROW |STATEMENT]

 EXECUTE PROCEDURE funcname (arguments)

Create Trigger: Trigger Level

CREATE TRIGGER emp_trig
BEFORE INSERT OR UPDATE ON employee
FOR EACH ROW
EXECUTE PROCEDURE emp_trig_func)(;

44

Writing a Trigger Function

CREATE FUNCTION funcName() RETURNS trigger AS $$

• There are several variables automatically available for
the trigger function:

– New: Available for row level triggers, defined upon insert or
update. Is a record containing the new values for the row

– Old: Available for row level triggers, defined upon delete or
update. Is a record containing the old values for the row

– TG_OP: Name of the operation which caused the trigger

– …

 45

CREATE FUNCTION toUpper() RETURNS trigger AS $$
BEGIN
 new.sname := UPPER(new.sname);
 return new;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER toUpperTrig
BEFORE INSERT or UPDATE on Sailors
FOR EACH ROW execute procedure toUpper();

Example

46

Important!
Row Level Triggers, BEFORE

• A return value of null signals to the trigger manager
to skip the rest of the operation for this row

– subsequent triggers are not fired for this row

– the INSERT/UPDATE does not occur for this row.

• A return value that is non-null causes the operation
to proceed with that row value.

– Returning a row value different from the original value of
NEW alters the row that will be inserted or updated (but
has no direct effect in the DELETE case).

47

Important!
All Other Types of Triggers

• The return value of a BEFORE or AFTER
statement-level trigger or an AFTER row-level
trigger is always ignored;

– it may as well be null.

• However, any of these types of triggers can
still abort the entire operation by raising an
error.

48

9

Another Example

CREATE TABLE emp (

 empname text,

 salary integer,

 last_date timestamp,

 last_user text);

49

CREATE FUNCTION emp_stamp() RETURNS trigger AS $$
BEGIN
-- Check that empname and salary are given
IF NEW.empname IS NULL THEN RAISE EXCEPTION 'empname cannot be

null';
END IF;
IF NEW.salary IS NULL THEN RAISE EXCEPTION '% cannot have null salary',

NEW.empname;
END IF;
IF NEW.salary < 0 THEN RAISE EXCEPTION '% cannot have a negative salary',

NEW.empname;
END IF;
NEW.last_date := current_timestamp;
NEW.last_user := current_user;
RETURN NEW;
END; $$ LANGUAGE plpgsql;

CREATE TRIGGER emp_stamp
BEFORE INSERT OR UPDATE ON emp
FOR EACH ROW EXECUTE PROCEDURE emp_stamp)(;

50

CREATE TABLE emp (

 empname text NOT NULL,

 salary integer);

CREATE TABLE emp_backup(
 operation char(1) NOT NULL,
 stamp timestamp NOT NULL,
 userid text NOT NULL,
 empname text NOT NULL,
 salary integer);

Another Example: Backing Up Information

51

CREATE OR REPLACE FUNCTION process_emp_backup() RETURNS
TRIGGER AS $$

BEGIN
IF (TG_OP = 'DELETE') THEN
 INSERT INTO emp_backup
 SELECT 'D', current_timestamp, current_user, OLD.*;
 RETURN null;
ELSIF (TG_OP = 'UPDATE') THEN
 INSERT INTO emp_backup
 SELECT 'U', current_timestamp, current_user, NEW.*;
 RETURN null;
ELSIF (TG_OP = 'INSERT') THEN
 INSERT INTO emp_backup
 SELECT 'I', current_timestamp, current_user, NEW.*;
 RETURN null;
END IF;
RETURN NULL;
END; $$ LANGUAGE plpgsql;

52

Example (cont)

CREATE TRIGGER emp_backup

AFTER INSERT OR UPDATE OR DELETE ON emp FOR EACH
ROW

EXECUTE PROCEDURE process_emp_backup)(;

53

Statement Trigger Example

CREATE FUNCTION
shabbat_trig_func() RETURNS trigger AS $$
BEGIN

 if (TO_CHAR(current_date,'DY')='SAT') then
 raise exception ‘no work on shabbat!’;

 end if;
Return null;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER no_work_on_shabbat_trig
BEFORE INSERT or DELETE or UPDATE on sailors
for each statement
execute procedure shabbat_trig_func(); 54

