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What is recursion?  

 Similar to mathematical induction 

 A recursive definition is self-referential 

 A larger, more complex instance of a problem 
is defined in terms of a smaller, simpler 
instance of the same problem 

 A base case must be defined explicitly 
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When do we use recursion? 

 We are given a large problem (say of size n) 

 We notice that: 
 There is some simple base case we know how to solve 

directly (say n=0) 

 The solution to the large problem is composed of 
solutions to smaller problems of the same type 

 If we could solve a smaller instance of the problem  

  (say n-1), we could use that solution to solve the large 
problem 
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How do we use recursion? 

 A function may call itself 

 Such a function is called recursive 

 There must be some base case that is handled 
explicitly, without a recursive call 

 The other case has to make sure there is 
progress towards the base case. 

 The recursive function call will use 
simpler/smaller arguments 



The Three Laws of Recursion 

1. A recursive algorithm must have a base 

case. 

2. A recursive algorithm must change its state 

and move toward the base case. 

3. A recursive algorithm must call itself, 

recursively. 
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Recursive factorial 

 n! = 1·2·3·…·n 

 By definition, 0! = 1 (base case) 

 Recursive definition: n! = (n-1)! · n 

 For example: 

 4! =  

 3! · 4 =  

 (2! · 3) · 4 =  

 ((1! · 2) · 3) · 4 =  

 (((0! · 1) · 2) · 3) · 4 =  

 (((1 · 1) · 2) · 3) · 4 = 24 
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Recursive factorial 

def factorial(n): 

    if n == 0: 

        return 1 

    else: 

       return n*factorial(n-1) 

 

 

Base case 

recursive call 
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What’s happening here? 

i = factorial(4); 

factorial(3) 

factorial(1) 

factorial(0) 

1 

2·1=2 

1·1=1 

3·2=6 

factorial(2) 

4·6=24 

def factorial(n): 

    if n == 0: 

        return 1 

    else: 

     return n*factorial(n-1) 
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Iterative factorial 

def iterative_factorial(n): 

    res == 1: 

    for i in range(1,n+1): 

   res *= i 

    return res 
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Recursion vs. loops 

 We could have calculated factorial using a loop 

 In general, loops are more efficient than 
recursion 

 However, sometimes recursive solutions are 
much simpler than iterative ones 

 Recursion can be a powerful tool for solving 
certain types of problems 

 Lets see a classic example 



Recursive multiplication 

  X = 10 *5 
  How to solve recursively? Think Recursively!  
  What will be the progression of the  

algorithm? 
 Divide to subproblems: 
 X = 10 *5 = 10+10*4 = 10 + 10 + 3 

  What will be our base case? 
 Something that is easy to solve - a 

mathematical rule maybe? 
 X  = X *1! 

 



Recursive multiplication 

def rmult(n1, n2):    

   

if n1 == 1:   

return n2 

           

return n2 + rmult(n1 – 1, n2)  

 

 

 

      
     

    

   

Base case 

recursive call 

#rec ...5*10  ==10+(4*10)==10+10+(3*10) ... 



Is palindrome? 

 [1,2,3,4,3,2,1] is a palindrome 
 תוֹךְ כּוֹתֵב ילֶֶד   לִי בְּ  is also palindrom דְּ
 Why recursion? 
 What’s the base case? 

 



Is palindrome? 

def is_pal(s): 

if len(s) <= 1: 

   return True 

else: 

return (s[0] == s[-1]) and 

   is_pal(s[1:-1]) 

 

 

however… 

def is_pal2(s): 

 return s == s[::-1] 



Pascal Triangle 

 Why recursion? 
 Let’s say we are interested on the n line in 

 the triangle (pascal(n)) 
 What will be the base case? 
 How to progress? 

 



Pascal Triangle 

import sys 

 

def pascal(n): 

 if n == 1: 

      return [1] 

 else: 

      line = [1] 

      previous_line = pascal(n-1) 

      for i in range(len(previous_line)-1): 

           line.append(previous_line[i] +  

 previous_line[i+1]) 

      line += [1] 

 return line 

 

print(pascal(int(sys.argv[1]))) 

 

 

 

 



Fractals 

A fractal is a never-ending pattern. Fractals 
are infinitely complex patterns that are self-
similar across different scales. They are 
created by repeating a simple process over 
and over in an ongoing feedback loop. 



Spiral  

● Where’s the 

base case? 

● Where’s the 

progress? 

 

import turtle 

 

def draw_spiral(tur, line_len): 

if line_len > 0: 

      tur.forward(line_len) 

      tur.right(90) 

      draw_spiral(tur, line_len-5) 

 

tur = turtle.Turtle() 

draw_spiral(tur,100) 

 

 



Fractal trees 

Draw a fractal tree: 
 

the shape of this branch resembles the tree itself. This is known as 
self-similarity, each part is a “reduced-size copy of the whole.” 



Fractal trees 

import turtle 

 

def tree(branch_len, tur): 

 if branch_len > 5: 

     trtle.forward(branch_len) 

     trtle.right(20) 

     tree(branch_len-15, trtle) 

     trtle.left(40) 

     tree(branch_len-15, trtle) 

     trtle.right(20) 

     trtle.backward(branch_len) 

def main(): 

 t = turtle.Turtle() 

 t.left(90) 

 t.up() 

 t.backward(250) 

 t.down() 

 tree(t, 100) 

 

main() 



Probabilistic trees 

import turtle 

import random 

 

def prob_tree(branch_len, trtle): 

 deg = random.uniform(0, 40) 

 if branch_len > 5: 

     trtle.forward(branch_len) 

     trtle.right(deg) 

     prob_tree(branch_len-15, trtle) 

     trtle.left(40) 

     prob_tree(branch_len-15, trtle) 

     trtle.right(40-deg) 

     trtle.backward(branch_len) 
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Exploring all states using recursion 
Backtracking 

 We can use recursion to go over many 
options, and do something for each case. 

 

 Example: 

 printing all subsets of the set S = {0,…,n-1} 
(printing the power set of S). 

 Difficult to do with loops (but possible). 

 Much simpler with recursion.  



Power Set - The basic idea 

 Lets decompose the problem to two smaller 
problems of the same type. 

 

 The recursive decomposition: 
 Print all subsets that contain an item,  

 Then print all the subsets that do not contain it. 

 

 Keep track of our current “state”. 
 items that are in the current subset,  

 items not in the current subset, 

 items we did not decide about yet. 
23 
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Power Set – python code 

def power_set(n): 

 

 

 

 

    cur_set = [False]*n 

 

    power_set_helper(cur_set, 0) 

 

Holds the subset we are 

currently building. 

This is not the recursive 

function. It calls the 

recursive function that does 

the real work. 

The recursive function 
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Power Set – python code 

def power_set_helper(cur_set, index): 

 

    #base:we picked out all the items in the set 

    if index==len(cur_set): 

        print_power_set(cur_set) 

        return 

 

    #runs on all sets that include this index 

    cur_set[index] = True 

    power_set_helper(cur_set, index+1) 

 

    #runs on all sets that does not include index 

    cur_set[index] = False 

    power_set_helper(cur_set, index+1) 
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Power Set – python code 

def print_power_set(cur_set): 

 

    print('{', end=' ') 

    for (idx, in_cur_set) in enumerate(cur_set): 

        if in_cur_set: 

            print(idx, end=' ') 

    print('}') 
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power_set and the stack 

? ? ? 

? ? t 

? t t ? f t 

t t t f t t t f t f f t 

index=0 

index=1 

index=2 

{0,1,2} {0,1} {0,2} {0} 
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power_set and the stack 

? ? ? 

? ? f ? ? t 

? t t ? f t 

t t t f t t t f t f f t 

? t f ? f f 

t t f f t f t f f f f f 

{0,1,2} {0,1} {0,2} {0} {1,2} {1} {2} {} 



Sort using recursion -  
Quicksort 

 A very efficient sorting algorithm 
 A probabilistic algorithm: 
 On average, the algorithm takes O(n log n)  

comparisons to sort n items.  
 In the worst case, it makes O(n2) 

comparisons, though this behavior is rare. 



Quick Sort 

 Choose an element from the list called 
pivot 

 Partition the list: 

 All elements < pivot  will be on the left 

 All elements ≥ pivot  will be on the right  

 Recursively call the quicksort  function on 
each part of the list 
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Quick Sort - implementation 
31 



Quick Sort – implementation (II) 
32 



Quick Sort – implementation (III) 
33 



Quick Sort – Runtime Analysis (I) 

◻ On each level of the recursion, we go over lists 
that contain total of n elements: 

About n steps at each level 

34 



Quick Sort – Runtime Analysis (II) 

 How many levels are there? 

 It depends on the pivot value: 

 Lets say we choose each time the median value 

 Each time the list is divided by half: 
⇒n/2 

⇒n/4 

⇒… 

⇒1 

 There will be log(n) levels, and each takes n steps 
It would take about nlog(n) steps 
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Quick Sort – Runtime Analysis (III) 

 Lets say we choose each time an extreme value 
(smallest or largest) – it is unlikely 

 Each time we get one list of size 1 and one of size n-1: 
⇒n-1 

⇒n-2 

⇒… 

⇒1 

 There will be n levels, and each takes n steps 

 

 The efficiency is depended on the pivot choice! 

 

It would take about n2 steps 
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Bonus Slides 



Sierpinski Triangle 

 A fractal that exhibits the property of self-similarity is 
the Sierpinski triangle 

 Algorithm: 
 Start with a single large triangle 
 Divide this large triangle into four new triangles by 

connecting the midpoint of each side. 
 Ignore the middle triangle that  

you just created 
 apply the same procedure to each  

of the three corner triangles 
 The base is defined as the level of the 

 triangle (how many inner triangeles) 
 



Sierpinski Triangles  

 
def draw_triangle(points, color, tur): 

 tur.fillcolor(color) 

 tur.up() 

 tur.goto(points[0][0],points[0][1]) 

 tur.down() 

 tur.begin_fill() 

 tur.goto(points[1][0], points[1][1]) 

 tur.goto(points[2][0], points[2][1]) 

 tur.goto(points[0][0], points[0][1]) 

 tur.end_fill() 

 

def get_mid(p1, p2): 

 return ( (p1[0]+p2[0]) / 2, (p1[1] + p2[1]) / 2) 



Sierpinski Triangles  

 
def sierpinski(points, degree, tur): 
 colormap = ['blue', 'red', 'green', 'white', 'yellow', 'violet', 'orange'] 
 draw_triangle(points, colormap[degree], tur) 
 if degree > 0: 
     sierpinski([points[0], get_mid(points[0], points[1]),  

get_mid(points[0], points[2])], 
degree-1, tur) 

     sierpinski([points[1], get_mid(points[0], points[1]), 
                       get_mid(points[1], points[2])], 
                  degree-1, tur) 
     sierpinski([points[2], get_mid(points[2], points[1]), 
                        get_mid(points[0], points[2])], 
                  degree-1, tur) 

middle triangle 

triangle 1 

triangle 2 

triangle 3 



Understanding the Traceback 

# in file t.py: 

def a(L): 

    return b(L) 

 

def b(L): 

    return L.len() #should have been len(L) 

# in the python shell we try 

a(L) 

Traceback (most recent call last): 

  File "<pyshell#4>", line 1, in <module> 

    a(L) 

NameError: name 'L' is not defined 



Understanding the Traceback 

# in file t.py: 

def a(L): 

    return b(L) 

 

def b(L): 

    return L.len() #should have been len(L) 

# in the python shell we try 

a([1,2,3]) 

Traceback (most recent call last): 

  File "<pyshell#6>", line 1, in <module> 

    a(L) 

  File ”…/t.py", line 2, in a 

    return b(L) 

  File ”…/t.py", line 6, in b 

    return L.len() 

AttributeError: 'list' object has no attribute 'len' 



Understanding the Traceback 

# in file t.py: 

def c(L): 

    print((L[0]) 

    print(“bye”) 

# in the python shell we try 

a([]) 

 

Traceback (most recent call last): 

  File "<pyshell#4>", line 1, in <module> 

    c([]) 

  File “…\t.py", line 10, in c 

    print(L[0]) 

IndexError: list index out of range 



Understanding the Traceback 

# in file t.py: 

def c(L): 

    print((L(0)) 

    print(“bye”) 

# in the python shell we try 

c([1,2,3]) 

 

Traceback (most recent call last): 

  File "<pyshell#7>", line 1, in <module> 

    c([1,2,3]) 

  File “…\t.py", line 9, in c 

    print(L(0)) 

TypeError: 'list' object is not callable 



Understanding the Traceback 

# in file t.py: 

def c(L): 

    print((L[0]) 

    print(“bye”) 

 

invalid syntax (but the next line is marked) 

or unexpected EOF while parsing if this is the last line in the  



Tips 

 Pay attention to indentation (and other idle 
formatting issues) – it might imply on bugs 

 

 Make sure you are in the right range when 
working with containers 

 

 Adding printouts might be helpful 

 

 You can use Google with the error name    (e.g. 
TypeError: 'list' object is not callable) 

 



Exploring all states using backtracking 

◻ A backtracking alg. can be used to find a solution (or all 
solutions) to a combinatorial problem. 

 

◻ Solutions are constructed incrementally 

 

◻ If there are several options to advance incrementally, the 
algorithm will try one option, then backtrack and try more 
options. 

 

◻ If you reach a state where you know the path will not lead 
you to the solution, backtrack! 

47 



48 

N-Queens 

◻ The problem: 
◻ On an NxN chess board, place N queens so that no 

queen threatens the other (no other queen allowed 
in same row,col or diagonal).  

◻ Print only one such board. 

◻ Simplifying step:  
◻ Place 1 queen somewhere in an available column 

then solve the problem of placing all other queens. 

◻ Base case: 
◻ All queens have been placed.  



The N-Queen Problem - helper 
functions 

def illegal_placement(board, row, col): 

    #Note: it is enough to look for threatening queens in lower columns   

    for delta in range(1,col+1): 

        #Check for queen in the same row or in upper diagonal or in lower diagonal 

        if (board[row][col-delta] or  

            (row-delta>=0 and board[row-delta][col-delta]) or  

            (row+delta<len(board) and board[row+delta][col-delta])): 

            return True 

    return False 

 

def print_board(board): 

    for row in board: 

        for q in row: 

            print('Q',end=' ') if q else print('-',end=' ') 

        print() 

 



The N-Queen Problem - the 
recursion function 

def place_queen_at_col(board, col): 

    #Base case: we have passed the last column 

    if col == len(board[0]): 

        return True 

    #Iterate over rows until it is okay to place a queen 

    for row in range(len(board)): 

        if illegal_placement(board, row, col): 

            continue 

        #place the queen 

        board[row][col] = True 

        #Check if we can fill up the remaining columns 

        if place_queen_at_col(board, col+1): 

            return True 

        #If not, remove the queen and keep iterating 

        board[row][col] = False 

    #If no placement works, give up 

    return False 



The N-Queen Problem - calling 
the recursive function  

#This function uses a recursive helper method that really does 
the work 

def place_queens(board_size): 

    board = [] 

    for i in range (board_size): 

        board.append([]) 

        for j in range (board_size): 

            board[i].append(False) 

if place_queen_at_col(board, 0): 

        print_board(board) 

    else: 

        print("No Placement Found!") 

# what would happen 
if we were trying to 
do it using: 
    # board = 
[[False]*board_size]
*board_size 
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Output of N-Queens 

Q - - - - - - -  

- - - - - - Q -  

- - - - Q - - -  

- - - - - - - Q  

- Q - - - - - -  

- - - Q - - - -  

- - - - - Q - -  

- - Q - - - - -  


