
INTRO2CS

Tirgul 7

2

What is recursion?

 Similar to mathematical induction

 A recursive definition is self-referential

 A larger, more complex instance of a problem
is defined in terms of a smaller, simpler
instance of the same problem

 A base case must be defined explicitly

3

When do we use recursion?

 We are given a large problem (say of size n)

 We notice that:
 There is some simple base case we know how to solve

directly (say n=0)

 The solution to the large problem is composed of
solutions to smaller problems of the same type

 If we could solve a smaller instance of the problem

 (say n-1), we could use that solution to solve the large
problem

4

How do we use recursion?

 A function may call itself

 Such a function is called recursive

 There must be some base case that is handled
explicitly, without a recursive call

 The other case has to make sure there is
progress towards the base case.

 The recursive function call will use
simpler/smaller arguments

The Three Laws of Recursion

1. A recursive algorithm must have a base

case.

2. A recursive algorithm must change its state

and move toward the base case.

3. A recursive algorithm must call itself,

recursively.

6

Recursive factorial

 n! = 1·2·3·…·n

 By definition, 0! = 1 (base case)

 Recursive definition: n! = (n-1)! · n

 For example:

 4! =

 3! · 4 =

 (2! · 3) · 4 =

 ((1! · 2) · 3) · 4 =

 (((0! · 1) · 2) · 3) · 4 =

 (((1 · 1) · 2) · 3) · 4 = 24

7

Recursive factorial

def factorial(n):

 if n == 0:

 return 1

 else:

 return n*factorial(n-1)

Base case

recursive call

8

What’s happening here?

i = factorial(4);

factorial(3)

factorial(1)

factorial(0)

1

2·1=2

1·1=1

3·2=6

factorial(2)

4·6=24

def factorial(n):

 if n == 0:

 return 1

 else:

 return n*factorial(n-1)

9

Iterative factorial

def iterative_factorial(n):

 res == 1:

 for i in range(1,n+1):

 res *= i

 return res

10

Recursion vs. loops

 We could have calculated factorial using a loop

 In general, loops are more efficient than
recursion

 However, sometimes recursive solutions are
much simpler than iterative ones

 Recursion can be a powerful tool for solving
certain types of problems

 Lets see a classic example

Recursive multiplication

 X = 10 *5
 How to solve recursively? Think Recursively!
 What will be the progression of the

algorithm?
 Divide to subproblems:
 X = 10 *5 = 10+10*4 = 10 + 10 + 3

 What will be our base case?
 Something that is easy to solve - a

mathematical rule maybe?
 X = X *1!

Recursive multiplication

def rmult(n1, n2):

if n1 == 1:

return n2

return n2 + rmult(n1 – 1, n2)

Base case

recursive call

#rec ...5*10 ==10+(4*10)==10+10+(3*10) ...

Is palindrome?

 [1,2,3,4,3,2,1] is a palindrome
 תוֹךְ כּוֹתֵב ילֶֶד לִי בְּ is also palindrom דְּ
 Why recursion?
 What’s the base case?

Is palindrome?

def is_pal(s):

if len(s) <= 1:

 return True

else:

return (s[0] == s[-1]) and

 is_pal(s[1:-1])

however…

def is_pal2(s):

 return s == s[::-1]

Pascal Triangle

 Why recursion?
 Let’s say we are interested on the n line in

 the triangle (pascal(n))
 What will be the base case?
 How to progress?

Pascal Triangle

import sys

def pascal(n):

 if n == 1:

 return [1]

 else:

 line = [1]

 previous_line = pascal(n-1)

 for i in range(len(previous_line)-1):

 line.append(previous_line[i] +

 previous_line[i+1])

 line += [1]

 return line

print(pascal(int(sys.argv[1])))

Fractals

A fractal is a never-ending pattern. Fractals
are infinitely complex patterns that are self-
similar across different scales. They are
created by repeating a simple process over
and over in an ongoing feedback loop.

Spiral

● Where’s the

base case?

● Where’s the

progress?

import turtle

def draw_spiral(tur, line_len):

if line_len > 0:

 tur.forward(line_len)

 tur.right(90)

 draw_spiral(tur, line_len-5)

tur = turtle.Turtle()

draw_spiral(tur,100)

Fractal trees

Draw a fractal tree:

the shape of this branch resembles the tree itself. This is known as
self-similarity, each part is a “reduced-size copy of the whole.”

Fractal trees

import turtle

def tree(branch_len, tur):

 if branch_len > 5:

 trtle.forward(branch_len)

 trtle.right(20)

 tree(branch_len-15, trtle)

 trtle.left(40)

 tree(branch_len-15, trtle)

 trtle.right(20)

 trtle.backward(branch_len)

def main():

 t = turtle.Turtle()

 t.left(90)

 t.up()

 t.backward(250)

 t.down()

 tree(t, 100)

main()

Probabilistic trees

import turtle

import random

def prob_tree(branch_len, trtle):

 deg = random.uniform(0, 40)

 if branch_len > 5:

 trtle.forward(branch_len)

 trtle.right(deg)

 prob_tree(branch_len-15, trtle)

 trtle.left(40)

 prob_tree(branch_len-15, trtle)

 trtle.right(40-deg)

 trtle.backward(branch_len)

22

Exploring all states using recursion
Backtracking

 We can use recursion to go over many
options, and do something for each case.

 Example:

 printing all subsets of the set S = {0,…,n-1}
(printing the power set of S).

 Difficult to do with loops (but possible).

 Much simpler with recursion.

Power Set - The basic idea

 Lets decompose the problem to two smaller
problems of the same type.

 The recursive decomposition:
 Print all subsets that contain an item,

 Then print all the subsets that do not contain it.

 Keep track of our current “state”.
 items that are in the current subset,

 items not in the current subset,

 items we did not decide about yet.
23

24

Power Set – python code

def power_set(n):

 cur_set = [False]*n

 power_set_helper(cur_set, 0)

Holds the subset we are

currently building.

This is not the recursive

function. It calls the

recursive function that does

the real work.

The recursive function

25

Power Set – python code

def power_set_helper(cur_set, index):

 #base:we picked out all the items in the set

 if index==len(cur_set):

 print_power_set(cur_set)

 return

 #runs on all sets that include this index

 cur_set[index] = True

 power_set_helper(cur_set, index+1)

 #runs on all sets that does not include index

 cur_set[index] = False

 power_set_helper(cur_set, index+1)

26

Power Set – python code

def print_power_set(cur_set):

 print('{', end=' ')

 for (idx, in_cur_set) in enumerate(cur_set):

 if in_cur_set:

 print(idx, end=' ')

 print('}')

27

power_set and the stack

? ? ?

? ? t

? t t ? f t

t t t f t t t f t f f t

index=0

index=1

index=2

{0,1,2} {0,1} {0,2} {0}

28

power_set and the stack

? ? ?

? ? f ? ? t

? t t ? f t

t t t f t t t f t f f t

? t f ? f f

t t f f t f t f f f f f

{0,1,2} {0,1} {0,2} {0} {1,2} {1} {2} {}

Sort using recursion -
Quicksort

 A very efficient sorting algorithm
 A probabilistic algorithm:
 On average, the algorithm takes O(n log n)

comparisons to sort n items.
 In the worst case, it makes O(n2)

comparisons, though this behavior is rare.

Quick Sort

 Choose an element from the list called
pivot

 Partition the list:

 All elements < pivot will be on the left

 All elements ≥ pivot will be on the right

 Recursively call the quicksort function on
each part of the list

30

Quick Sort - implementation
31

Quick Sort – implementation (II)
32

Quick Sort – implementation (III)
33

Quick Sort – Runtime Analysis (I)

◻ On each level of the recursion, we go over lists
that contain total of n elements:

About n steps at each level

34

Quick Sort – Runtime Analysis (II)

 How many levels are there?

 It depends on the pivot value:

 Lets say we choose each time the median value

 Each time the list is divided by half:
⇒n/2

⇒n/4

⇒…

⇒1

 There will be log(n) levels, and each takes n steps
It would take about nlog(n) steps

35

Quick Sort – Runtime Analysis (III)

 Lets say we choose each time an extreme value
(smallest or largest) – it is unlikely

 Each time we get one list of size 1 and one of size n-1:
⇒n-1

⇒n-2

⇒…

⇒1

 There will be n levels, and each takes n steps

 The efficiency is depended on the pivot choice!

It would take about n2 steps

36

Bonus Slides

Sierpinski Triangle

 A fractal that exhibits the property of self-similarity is
the Sierpinski triangle

 Algorithm:
 Start with a single large triangle
 Divide this large triangle into four new triangles by

connecting the midpoint of each side.
 Ignore the middle triangle that

you just created
 apply the same procedure to each

of the three corner triangles
 The base is defined as the level of the

 triangle (how many inner triangeles)

Sierpinski Triangles

def draw_triangle(points, color, tur):

 tur.fillcolor(color)

 tur.up()

 tur.goto(points[0][0],points[0][1])

 tur.down()

 tur.begin_fill()

 tur.goto(points[1][0], points[1][1])

 tur.goto(points[2][0], points[2][1])

 tur.goto(points[0][0], points[0][1])

 tur.end_fill()

def get_mid(p1, p2):

 return ((p1[0]+p2[0]) / 2, (p1[1] + p2[1]) / 2)

Sierpinski Triangles

def sierpinski(points, degree, tur):
 colormap = ['blue', 'red', 'green', 'white', 'yellow', 'violet', 'orange']
 draw_triangle(points, colormap[degree], tur)
 if degree > 0:
 sierpinski([points[0], get_mid(points[0], points[1]),

get_mid(points[0], points[2])],
degree-1, tur)

 sierpinski([points[1], get_mid(points[0], points[1]),
 get_mid(points[1], points[2])],
 degree-1, tur)
 sierpinski([points[2], get_mid(points[2], points[1]),
 get_mid(points[0], points[2])],
 degree-1, tur)

middle triangle

triangle 1

triangle 2

triangle 3

Understanding the Traceback

in file t.py:

def a(L):

 return b(L)

def b(L):

 return L.len() #should have been len(L)

in the python shell we try

a(L)

Traceback (most recent call last):

 File "<pyshell#4>", line 1, in <module>

 a(L)

NameError: name 'L' is not defined

Understanding the Traceback

in file t.py:

def a(L):

 return b(L)

def b(L):

 return L.len() #should have been len(L)

in the python shell we try

a([1,2,3])

Traceback (most recent call last):

 File "<pyshell#6>", line 1, in <module>

 a(L)

 File ”…/t.py", line 2, in a

 return b(L)

 File ”…/t.py", line 6, in b

 return L.len()

AttributeError: 'list' object has no attribute 'len'

Understanding the Traceback

in file t.py:

def c(L):

 print((L[0])

 print(“bye”)

in the python shell we try

a([])

Traceback (most recent call last):

 File "<pyshell#4>", line 1, in <module>

 c([])

 File “…\t.py", line 10, in c

 print(L[0])

IndexError: list index out of range

Understanding the Traceback

in file t.py:

def c(L):

 print((L(0))

 print(“bye”)

in the python shell we try

c([1,2,3])

Traceback (most recent call last):

 File "<pyshell#7>", line 1, in <module>

 c([1,2,3])

 File “…\t.py", line 9, in c

 print(L(0))

TypeError: 'list' object is not callable

Understanding the Traceback

in file t.py:

def c(L):

 print((L[0])

 print(“bye”)

invalid syntax (but the next line is marked)

or unexpected EOF while parsing if this is the last line in the

Tips

 Pay attention to indentation (and other idle
formatting issues) – it might imply on bugs

 Make sure you are in the right range when
working with containers

 Adding printouts might be helpful

 You can use Google with the error name (e.g.
TypeError: 'list' object is not callable)

Exploring all states using backtracking

◻ A backtracking alg. can be used to find a solution (or all
solutions) to a combinatorial problem.

◻ Solutions are constructed incrementally

◻ If there are several options to advance incrementally, the
algorithm will try one option, then backtrack and try more
options.

◻ If you reach a state where you know the path will not lead
you to the solution, backtrack!

47

48

N-Queens

◻ The problem:
◻ On an NxN chess board, place N queens so that no

queen threatens the other (no other queen allowed
in same row,col or diagonal).

◻ Print only one such board.

◻ Simplifying step:
◻ Place 1 queen somewhere in an available column

then solve the problem of placing all other queens.

◻ Base case:
◻ All queens have been placed.

The N-Queen Problem - helper
functions

def illegal_placement(board, row, col):

 #Note: it is enough to look for threatening queens in lower columns

 for delta in range(1,col+1):

 #Check for queen in the same row or in upper diagonal or in lower diagonal

 if (board[row][col-delta] or

 (row-delta>=0 and board[row-delta][col-delta]) or

 (row+delta<len(board) and board[row+delta][col-delta])):

 return True

 return False

def print_board(board):

 for row in board:

 for q in row:

 print('Q',end=' ') if q else print('-',end=' ')

 print()

The N-Queen Problem - the
recursion function

def place_queen_at_col(board, col):

 #Base case: we have passed the last column

 if col == len(board[0]):

 return True

 #Iterate over rows until it is okay to place a queen

 for row in range(len(board)):

 if illegal_placement(board, row, col):

 continue

 #place the queen

 board[row][col] = True

 #Check if we can fill up the remaining columns

 if place_queen_at_col(board, col+1):

 return True

 #If not, remove the queen and keep iterating

 board[row][col] = False

 #If no placement works, give up

 return False

The N-Queen Problem - calling
the recursive function

#This function uses a recursive helper method that really does
the work

def place_queens(board_size):

 board = []

 for i in range (board_size):

 board.append([])

 for j in range (board_size):

 board[i].append(False)

if place_queen_at_col(board, 0):

 print_board(board)

 else:

 print("No Placement Found!")

what would happen
if we were trying to
do it using:
 # board =
[[False]*board_size]
*board_size

52

Output of N-Queens

Q - - - - - - -

- - - - - - Q -

- - - - Q - - -

- - - - - - - Q

- Q - - - - - -

- - - Q - - - -

- - - - - Q - -

- - Q - - - - -

