INTRO2CS

What is recursion?

Similar to mathematical induction
A recursive definition is self-referential

A larger, more complex instance of a problem
is defined in terms of a smaller, simpler
instance of the same problem

A base case must be defined explicitly

When do we use recursion?

We are given a large problem (say of size n)

We notice that:

There is some simple base case we know how to solve
directly (say n=0)

The solution to the large problem is composed of
solutions to smaller problems of the same type

If we could solve a smaller instance of the problem

(say n-1), we could use that solution to solve the large
problem

How do we use recursion?

A function may call itself
Such a function is called recursive

There must be some base case that is handled
explicitly, without a recursive call

The other case has to make sure there is
progress towards the base case.

The recursive function call will use
simpler/smaller arguments

The Three Laws of Recursion

1. A recursive algorithm must have a base
case.

2. A recursive algorithm must change its state
and move toward the base case.

3. Arecursive algorithm must call itself,
recursively.

Recursive factorial

nl=1-2-3-...n

By definition, O! = 1 (base case)
Recursive definition: nl = (n-1)! - n
For example:

4] =

3.4 =

(2!-3)-4 =
(11-2)-3)-4=
(((0!-1)-2)-3)-4 =
(((1-1)-2)-3)-4=24

Recursive factorial
7

def factorial(n):

1 n ==

I ST

else:

return n*factorial (n-1)

i

What's happening here?

4 -6=24

i

= factorial (4);

l T3'2=6

factorial (3)

i T2'1=2

factorial (2)

i T1'1=1

factorial (1)

' E

factorial (0)

factorial (n) :

n == 0:

1

n*factorial (n-1)

Iterative factorial
o 5

def iterative factorial(n):
res ==
for 1 in range(l,n+l):
res *= 1

return res

Recursion vs. loops

We could have calculated factorial using a loop

In general, loops are more efficient than
recursion

However, sometimes recursive solutions are
much simpler than iterative ones

Recursion can be a powerful tool for solving
certain types of problems

Lets see a classic example

Recursive multiplication

X=10%5
How to solve recursively? Think Recursively!
What will be the progression of the
algorithm?
Divide to subproblems:
X=10"5=10+10"4=10+ 10+ 3
What will be our base case?
Something that is easy to solve - a

mathematical rule maybe?
X =X*1!

Recursive multiplication
_

def rmult(nl, n2):

T e

1f nl ==
return n’?

return n2 + rmult(nl - 1, n2)

i

#frec ...5*10 ==10+(4*10)==10+10+(3*10)

Is palindrome?

[1,2,3,4,3,2,1]is a palindrome

27 in2 2Nid 17! is also palindrom
Why recursion?

What's the base case?

ls palindrome?

- !
def 1s pal(s):
1f len(s) <= 1:
return True

else:
return (s[0] == s[-1]) and
is pal(s[1:-1])
however...

def is pal2(s):

return s == gs[::-1]

Pascal Triangle

Why recursion?

Let’'s say we are interested on the nline in
the friangle (pascal(n))

What will be the base case?

How to progress? 1

1 1
1 2 1
1 3 3 1
14 6 4 1
1510 10 5 1

Pascal Triangle
S =

import sys

def pascal (n):
1f n ==
return [1]
else:
line = [1]
previous line = pascal (n-1)
for 1 in range(len(previous line)-1):
line.append (previous line[i] +
previous line[i+1])
line += [1]
return line

print (pascal (int(sys.argv[1l])))

Fractals

A fractal is a never-ending pattern. Fractals
are infinitely complex patterns that are self-
similar across different scales. They are
created by repeating a simple process over
and over in an ongoing feedback loop.

Spiral =
=
turtle
draw spiral (tur, line len): e \Where's the
line len > O0: base case?
tur.forward(line len) e \Where's the
tur.right (90) progress?

draw _spiral (tur, line len-95)

tur = turtle.Turtle ()
draw spiral (tur, 100)

Fractal trees

S =
Draw a fractal tree:

)
9

the shape of this branch resembles the free itself. This is known as
self-similarity, each part is a “reduced-size copy of the whole.”

Fractal trees
T e

import turtle
def main() :
def tree(branch len, tur): t = turtle.Turtle ()
1f branch len > 5: t.left (90)
trtle.forward (branch len) t.up ()
t
t

trtle.right (20) .backward (250)

tree (branch len-15, trtle) .down ()
trtle.left (40) tree(t, 100)
tree (branch len-15, trtle)

trtle.right (20) main ()

trtle.backward (branch len)

Probabilistic trees
]

turtle
random

prob tree (branch len, trtle):
deg = random.uniform (0, 40)

branch len > 5:
trtle.forward (branch len)
trtle.right (deg)
prob tree (branch len-15, trtle)
trtle.left (40)
prob tree (branch len-15, trtle)
trtle.right (40-deqg)
trtle.backward (branch len)

EXxploring all states using recursion
Backtracking

We can use recursion fo go over many
options, and do something for each case.

Example:

printing all subsets of the set S ={0,...,n-1}
(printing the power set of S).

Difficult fo do with loops (but possible).
Much simpler with recursion.

Power Set - The basic ided

Lets decompose the problem to two smaller
problems of the same type.

The recursive decomposition:
Print all subsets that contain an item,
Then print all the subsets that do not contain it.

Keep track of our current “state”.
items that are in the current subset,
items not in the current subset,
items we did not decide about yet.

Power Set — python code
_

power set(n):

power set helper (cur set, 0)

Power Set — python code
_

power set helper (cur set, index):

#base:we picked out all the items in the set
index==len (cur_set):
print power set(cur_ set)

#runs on all sets that include this index
cur_set[index] =
power set helper (cur set, index+l)

#runs on all sets that does not include index
cur_set[index] =
power set helper (cur set, index+l)

Power Set — python code
S

print power set(cur_set):

print('{', end=' ")
(idx, in cur set) enumerate (cur_set):
in cur set:
print (idx, end=' ')
print('}")

power set andthe stack

{0,1,2} {0,1} {0,2} {0}
tlt v{}t el [t flt|lf]flt
21t]t 21 [t
22t

power set dndthe stack

{0,1,2} {0,1} {0,2} {0} {1,2} {1} {2} {}
tlelt][flt f f t t f f
2t [t ? 2

Sort using recursion -
Quicksort

A very efficient sorting algorithm

A probabilistic algorithm:

On average, the algorithm takes O(n log n)
comparisons to sort n items.

In the worst case, it makes O(n2)
comparisons, though this behavior is rare.

Quick Sort

Choose an element from the list called
pivort
Partition the list:
All elements < pivof will be on the left
All elements = pivor will be on the right

Recursively call the quicksorf function on
each part of the list

Quick Sort - implementation
_ 31|

def quicksort(data):
quicksort helper(data, @ , len(data))

def quicksort _helper(data, start, end):
if(start < end-1):
pivot idx = partition(data, start, end)
quicksort helper(data, start, pivot idx)
quicksort _helper(data, pivot idx+1l, end)

Quick Sort — implementation (ll)
32|

def partition(data, start, end):
pivot _idx = random.randint(start, end-1) 318(1(0|5(|9(4|6]|7

pivot = data[pivot_idx]

swap(data,pivot idx, end-1) éi &i
pivot idx = end-1 3(8l110ls5l9lal2|716
end -= 1
while(start < end): S &%
if(data[start] < pivot): 3/811lo0lsl9lal217!6
start += 1
elif(data[end-1] >= pivot): il, ‘Q;
end -= 1 3|sl1]o|s]olal2]7
else:
swap(data, start, end-1) &i Q%
start +=1 3(2(1]0|5|9|4a|8]|7
end -= 1
swap(data,pivot_idx, start) éi, &i
return start 3/211l0lsl9lalgl7

def swap(data,indl,ind2):
data[indl],data[ind2] = data[ind2],data[ind1]

Quick Sort — implementation (lll)

def partition(data, start, end):
pivot _idx = random.randint(start, end-1)
pivot = data[pivot_idx]
swap(data,pivot idx, end-1)
pivot idx = end-1
end -= 1
while(start < end):
if(data[start] < pivot):
start += 1
elif(data[end-1] >= pivot):
end -= 1
else:
swap(data, start, end-1)
start += 1
end -= 1
swap(data,pivot _idx, start)
return start

% (@) (a1| ® (]

Quick Sort — Runtime Analysis (l)

On each level of the recursion, we go over lists
that contain total of n elements:

About n sfeps af each leve/

X Level 1

X X Level 2

X X X Level 3

X X X Level 4

Level 5

Quick Sort — Runtime Analysis (ll)

How many levels are there?

It depends on the pivot value:

Lets say we choose each time the median value

Each time the list is divided by half:
ﬂ/2 X Level 1
n/4 X X Level 2

X X X X Level 3

Level 4
'I L

There will be log(n) levels, and each takes n steps
It would take about nlog(n) steps

Quick Sort — Runtime Analysis (lll)

Lets say we choose each time an extreme value
(smallest or largest) — it is unlikely

Each time we get one list of size 1 and one of size n-1:
n--l Level 1

X

n_2 X Level 2

X Level 3

'I X Level 4

There will be n levels, and each takes n steps

— /fwould fake about n? steps
The efficiency is depended on the pivot choice!

Bonus Slides
T e

Sierpinski Triangle

A fractal that exhibits the property of self-similarity is
the Sierpinski friangle
Algorithm:
Start with a single large triangle
Divide this large triangle into four new triangles by
connecting the midpoint of each side.
Ignore the middle triangle that
you just created
apply the same procedure to each
of the three corner triangles
The base is defined as the level of the
triangle (how many inner triangeles)

TAVAVA AVAVAVA

AA AA
AVAVAV A A A /S
o e & A
AVA AVA AYA AVA
e A
AV AV AWV AV AVAV Vi AV

Sierpinski Triangles

draw_triangle (points, color, tur):
tur.fillcolor (color)
tur.up ()
tur.goto (points[0] [0],points[0] [1])
tur.down ()
tur.begin fill ()
tur.goto (points[1][0], points[1l][1])
tur.goto (points[2] [0], points[2][1])
tur.goto (points[0] [0], points[0][1])
tur.end fill ()

get mid(pl, p2):
((pl[0]+p2([0]) / 2, (p1l[1l] + p2[1]) / 2)

Sierpinski Triangles

sierpinski(points, degree, tur):
colormap = ['blue’, 'red’, 'green’, 'white', 'yellow', 'violet', 'orange']
draw_triangle(points, colormap[degree], tur)

degree > 0: \
sierpinski([points[0], get_mid(points[Q], pom’rs

middle trlangle

get_mid(points[0], points[2 \/L
degree-1, tur) triangle 1

sierpinski([points[1], get_mid(points[0], points[1]),
get_mid(points[1], points[2])],

degree-1, tur)
sierpinski([points[2], get_mid(points[2], points[1]),

triangle 2

J

get_mid(points[0], points[2])],

degree-1, tur) \/L triangle 3

Understanding the Traceback

_ 1
in file t.py:

def a(L):
return b (L)

def b(L):

return L.len() #should have been len (L)
in the python shell we try
a(L)

Traceback (most recent call last):
File "<pyshell#4>", line 1, in <module>
a(L)
NameError: name 'L' is not defined

Understanding the Traceback

]
in file t.py:
a(L):
b (L)
b (L) :

L.len() #should have been len (L)
in the python shell we try
a([1l,2,3])

Traceback (most recent call last):
File "<pyshell#6>", line 1, in <module>
a(lL)
File ”.../t.py", line 2, in a
return b(L)
File ”.../t.py", line 6, in b
return L.len()
AttributeError: 'list' object has no attribute 'len’

Understanding the Traceback

]
in file t.py:

c (L) :

print ((L[0])

print (“bye”)
in the python shell we try
a([l)

Traceback (most recent call last):
File "<pyshell#4>", line 1, in <module>
c([])
File “.. \t.py", line 10, inc
print(L[O])
IndexError: list index out of range

Understanding the Traceback

]
in file t.py:

c (L) :

print ((L(0))

print (“bye”)
in the python shell we try
c([1,2,3])

Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
c([1,2,3])
File “.. \t.py", line 9, in c
print(L(0))
TypeError: 'list' object is not callable

Understanding the Traceback

-1
in file t.py:

def c(L):
print ((L[O0])
print (“bye”)

invalid syntax (but the next line is marked)
or unexpected EOF while parsing if this is the last line in the

Tips

Pay aftention to indentation (and other idle
formatting issues) — it might imply on bugs

Make sure you are in the right range when
working with containers

Adding printouts might be helpful

You can use Google with the error name (e.g.
TypekError: 'list' object is not callable)

Exploring all states using backtracking

A backtracking alg. can be used to find a solution (or all
solutions) to a combinatorial problem.

Solutions are constructed incrementally

If there are several options to advance incrementally, the
algorithm will try one option, then backtrack and try more
options.

If you reach a state where you know the path will not lead
you to the solution, backtrack!

N-Queens

The problem:

On an NxN chess board, place N queens so that no
queen threatens the other (no other queen allowed
in same row,col or diagonal).

Print only one such board.
Simplifying step:

Place 1 queen somewhere in an available column
then solve the problem of placing all other queens.

Base case:
All gueens have been placed.

The N-Queen Problem - helper
functions

illegal placement(board, row, col):

#Note: it is enough to look for threatening queens in lower columns
delta range (1,col+1):
#Check for queen in the same row or in upper diagonal or in lower diagonal
(board[row] [col-delta]
(row-delta>=0 board[row-delta] [col-delta])
(row+delta<len (board) board[row+delta] [col-delta])):

print board(board) :

row board:
q row:
print('Q' ,end=" ") q print('-',end="' ')

print()

The N-Queen Problem - the
recursion function

place _queen_at col (board, col):
#Base case: we have passed the last column
col == len(board[0]):

#Iterate over rows until it is okay to place a queen
row range (len (board)) :
illegal placement (board, row, col):

#place the queen

board[row] [col] = True

#Check if we can fill up the remaining columns
place queen_at col (board, col+l):

#If not, remove the queen and keep iterating
board[row] [col] =
#If no placement works, give up

The N-Queen Problem - calling
_ the recursive function

#This function uses a recursive helper method that really does
the work

<=’ place queens (board size):
board = []
for 1 °n range (board size):

board.append([])
for j °n range (board size):
board[i] .append (False)
T place _queen at col(board, 0):
print board (board)

else:
print ("No Placement Found!")

Output of N-Queens

