
INTRO2CS

Tirgul 7

2

What is recursion?

 Similar to mathematical induction

 A recursive definition is self-referential

 A larger, more complex instance of a problem
is defined in terms of a smaller, simpler
instance of the same problem

 A base case must be defined explicitly

3

When do we use recursion?

 We are given a large problem (say of size n)

 We notice that:
 There is some simple base case we know how to solve

directly (say n=0)

 The solution to the large problem is composed of
solutions to smaller problems of the same type

 If we could solve a smaller instance of the problem

 (say n-1), we could use that solution to solve the large
problem

4

How do we use recursion?

 A function may call itself

 Such a function is called recursive

 There must be some base case that is handled
explicitly, without a recursive call

 The other case has to make sure there is
progress towards the base case.

 The recursive function call will use
simpler/smaller arguments

The Three Laws of Recursion

1. A recursive algorithm must have a base

case.

2. A recursive algorithm must change its state

and move toward the base case.

3. A recursive algorithm must call itself,

recursively.

6

Recursive factorial

 n! = 1·2·3·…·n

 By definition, 0! = 1 (base case)

 Recursive definition: n! = (n-1)! · n

 For example:

 4! =

 3! · 4 =

 (2! · 3) · 4 =

 ((1! · 2) · 3) · 4 =

 (((0! · 1) · 2) · 3) · 4 =

 (((1 · 1) · 2) · 3) · 4 = 24

7

Recursive factorial

def factorial(n):

 if n == 0:

 return 1

 else:

 return n*factorial(n-1)

Base case

recursive call

8

What’s happening here?

i = factorial(4);

factorial(3)

factorial(1)

factorial(0)

1

2·1=2

1·1=1

3·2=6

factorial(2)

4·6=24

def factorial(n):

 if n == 0:

 return 1

 else:

 return n*factorial(n-1)

9

Iterative factorial

def iterative_factorial(n):

 res == 1:

 for i in range(1,n+1):

 res *= i

 return res

10

Recursion vs. loops

 We could have calculated factorial using a loop

 In general, loops are more efficient than
recursion

 However, sometimes recursive solutions are
much simpler than iterative ones

 Recursion can be a powerful tool for solving
certain types of problems

 Lets see a classic example

Recursive multiplication

 X = 10 *5
 How to solve recursively? Think Recursively!
 What will be the progression of the

algorithm?
 Divide to subproblems:
 X = 10 *5 = 10+10*4 = 10 + 10 + 3

 What will be our base case?
 Something that is easy to solve - a

mathematical rule maybe?
 X = X *1!

Recursive multiplication

def rmult(n1, n2):

if n1 == 1:

return n2

return n2 + rmult(n1 – 1, n2)

Base case

recursive call

#rec ...5*10 ==10+(4*10)==10+10+(3*10) ...

Is palindrome?

 [1,2,3,4,3,2,1] is a palindrome
 תוֹךְ כּוֹתֵב ילֶֶד לִי בְּ is also palindrom דְּ
 Why recursion?
 What’s the base case?

Is palindrome?

def is_pal(s):

if len(s) <= 1:

 return True

else:

return (s[0] == s[-1]) and

 is_pal(s[1:-1])

however…

def is_pal2(s):

 return s == s[::-1]

Pascal Triangle

 Why recursion?
 Let’s say we are interested on the n line in

 the triangle (pascal(n))
 What will be the base case?
 How to progress?

Pascal Triangle

import sys

def pascal(n):

 if n == 1:

 return [1]

 else:

 line = [1]

 previous_line = pascal(n-1)

 for i in range(len(previous_line)-1):

 line.append(previous_line[i] +

 previous_line[i+1])

 line += [1]

 return line

print(pascal(int(sys.argv[1])))

Fractals

A fractal is a never-ending pattern. Fractals
are infinitely complex patterns that are self-
similar across different scales. They are
created by repeating a simple process over
and over in an ongoing feedback loop.

Spiral

● Where’s the

base case?

● Where’s the

progress?

import turtle

def draw_spiral(tur, line_len):

if line_len > 0:

 tur.forward(line_len)

 tur.right(90)

 draw_spiral(tur, line_len-5)

tur = turtle.Turtle()

draw_spiral(tur,100)

Fractal trees

Draw a fractal tree:

the shape of this branch resembles the tree itself. This is known as
self-similarity, each part is a “reduced-size copy of the whole.”

Fractal trees

import turtle

def tree(branch_len, tur):

 if branch_len > 5:

 trtle.forward(branch_len)

 trtle.right(20)

 tree(branch_len-15, trtle)

 trtle.left(40)

 tree(branch_len-15, trtle)

 trtle.right(20)

 trtle.backward(branch_len)

def main():

 t = turtle.Turtle()

 t.left(90)

 t.up()

 t.backward(250)

 t.down()

 tree(t, 100)

main()

Probabilistic trees

import turtle

import random

def prob_tree(branch_len, trtle):

 deg = random.uniform(0, 40)

 if branch_len > 5:

 trtle.forward(branch_len)

 trtle.right(deg)

 prob_tree(branch_len-15, trtle)

 trtle.left(40)

 prob_tree(branch_len-15, trtle)

 trtle.right(40-deg)

 trtle.backward(branch_len)

22

Exploring all states using recursion
Backtracking

 We can use recursion to go over many
options, and do something for each case.

 Example:

 printing all subsets of the set S = {0,…,n-1}
(printing the power set of S).

 Difficult to do with loops (but possible).

 Much simpler with recursion.

Power Set - The basic idea

 Lets decompose the problem to two smaller
problems of the same type.

 The recursive decomposition:
 Print all subsets that contain an item,

 Then print all the subsets that do not contain it.

 Keep track of our current “state”.
 items that are in the current subset,

 items not in the current subset,

 items we did not decide about yet.
23

24

Power Set – python code

def power_set(n):

 cur_set = [False]*n

 power_set_helper(cur_set, 0)

Holds the subset we are

currently building.

This is not the recursive

function. It calls the

recursive function that does

the real work.

The recursive function

25

Power Set – python code

def power_set_helper(cur_set, index):

 #base:we picked out all the items in the set

 if index==len(cur_set):

 print_power_set(cur_set)

 return

 #runs on all sets that include this index

 cur_set[index] = True

 power_set_helper(cur_set, index+1)

 #runs on all sets that does not include index

 cur_set[index] = False

 power_set_helper(cur_set, index+1)

26

Power Set – python code

def print_power_set(cur_set):

 print('{', end=' ')

 for (idx, in_cur_set) in enumerate(cur_set):

 if in_cur_set:

 print(idx, end=' ')

 print('}')

27

power_set and the stack

? ? ?

? ? t

? t t ? f t

t t t f t t t f t f f t

index=0

index=1

index=2

{0,1,2} {0,1} {0,2} {0}

28

power_set and the stack

? ? ?

? ? f ? ? t

? t t ? f t

t t t f t t t f t f f t

? t f ? f f

t t f f t f t f f f f f

{0,1,2} {0,1} {0,2} {0} {1,2} {1} {2} {}

Sort using recursion -
Quicksort

 A very efficient sorting algorithm
 A probabilistic algorithm:
 On average, the algorithm takes O(n log n)

comparisons to sort n items.
 In the worst case, it makes O(n2)

comparisons, though this behavior is rare.

Quick Sort

 Choose an element from the list called
pivot

 Partition the list:

 All elements < pivot will be on the left

 All elements ≥ pivot will be on the right

 Recursively call the quicksort function on
each part of the list

30

Quick Sort - implementation
31

Quick Sort – implementation (II)
32

Quick Sort – implementation (III)
33

Quick Sort – Runtime Analysis (I)

◻ On each level of the recursion, we go over lists
that contain total of n elements:

About n steps at each level

34

Quick Sort – Runtime Analysis (II)

 How many levels are there?

 It depends on the pivot value:

 Lets say we choose each time the median value

 Each time the list is divided by half:
⇒n/2

⇒n/4

⇒…

⇒1

 There will be log(n) levels, and each takes n steps
It would take about nlog(n) steps

35

Quick Sort – Runtime Analysis (III)

 Lets say we choose each time an extreme value
(smallest or largest) – it is unlikely

 Each time we get one list of size 1 and one of size n-1:
⇒n-1

⇒n-2

⇒…

⇒1

 There will be n levels, and each takes n steps

 The efficiency is depended on the pivot choice!

It would take about n2 steps

36

Bonus Slides

Sierpinski Triangle

 A fractal that exhibits the property of self-similarity is
the Sierpinski triangle

 Algorithm:
 Start with a single large triangle
 Divide this large triangle into four new triangles by

connecting the midpoint of each side.
 Ignore the middle triangle that

you just created
 apply the same procedure to each

of the three corner triangles
 The base is defined as the level of the

 triangle (how many inner triangeles)

Sierpinski Triangles

def draw_triangle(points, color, tur):

 tur.fillcolor(color)

 tur.up()

 tur.goto(points[0][0],points[0][1])

 tur.down()

 tur.begin_fill()

 tur.goto(points[1][0], points[1][1])

 tur.goto(points[2][0], points[2][1])

 tur.goto(points[0][0], points[0][1])

 tur.end_fill()

def get_mid(p1, p2):

 return ((p1[0]+p2[0]) / 2, (p1[1] + p2[1]) / 2)

Sierpinski Triangles

def sierpinski(points, degree, tur):
 colormap = ['blue', 'red', 'green', 'white', 'yellow', 'violet', 'orange']
 draw_triangle(points, colormap[degree], tur)
 if degree > 0:
 sierpinski([points[0], get_mid(points[0], points[1]),

get_mid(points[0], points[2])],
degree-1, tur)

 sierpinski([points[1], get_mid(points[0], points[1]),
 get_mid(points[1], points[2])],
 degree-1, tur)
 sierpinski([points[2], get_mid(points[2], points[1]),
 get_mid(points[0], points[2])],
 degree-1, tur)

middle triangle

triangle 1

triangle 2

triangle 3

Understanding the Traceback

in file t.py:

def a(L):

 return b(L)

def b(L):

 return L.len() #should have been len(L)

in the python shell we try

a(L)

Traceback (most recent call last):

 File "<pyshell#4>", line 1, in <module>

 a(L)

NameError: name 'L' is not defined

Understanding the Traceback

in file t.py:

def a(L):

 return b(L)

def b(L):

 return L.len() #should have been len(L)

in the python shell we try

a([1,2,3])

Traceback (most recent call last):

 File "<pyshell#6>", line 1, in <module>

 a(L)

 File ”…/t.py", line 2, in a

 return b(L)

 File ”…/t.py", line 6, in b

 return L.len()

AttributeError: 'list' object has no attribute 'len'

Understanding the Traceback

in file t.py:

def c(L):

 print((L[0])

 print(“bye”)

in the python shell we try

a([])

Traceback (most recent call last):

 File "<pyshell#4>", line 1, in <module>

 c([])

 File “…\t.py", line 10, in c

 print(L[0])

IndexError: list index out of range

Understanding the Traceback

in file t.py:

def c(L):

 print((L(0))

 print(“bye”)

in the python shell we try

c([1,2,3])

Traceback (most recent call last):

 File "<pyshell#7>", line 1, in <module>

 c([1,2,3])

 File “…\t.py", line 9, in c

 print(L(0))

TypeError: 'list' object is not callable

Understanding the Traceback

in file t.py:

def c(L):

 print((L[0])

 print(“bye”)

invalid syntax (but the next line is marked)

or unexpected EOF while parsing if this is the last line in the

Tips

 Pay attention to indentation (and other idle
formatting issues) – it might imply on bugs

 Make sure you are in the right range when
working with containers

 Adding printouts might be helpful

 You can use Google with the error name (e.g.
TypeError: 'list' object is not callable)

Exploring all states using backtracking

◻ A backtracking alg. can be used to find a solution (or all
solutions) to a combinatorial problem.

◻ Solutions are constructed incrementally

◻ If there are several options to advance incrementally, the
algorithm will try one option, then backtrack and try more
options.

◻ If you reach a state where you know the path will not lead
you to the solution, backtrack!

47

48

N-Queens

◻ The problem:
◻ On an NxN chess board, place N queens so that no

queen threatens the other (no other queen allowed
in same row,col or diagonal).

◻ Print only one such board.

◻ Simplifying step:
◻ Place 1 queen somewhere in an available column

then solve the problem of placing all other queens.

◻ Base case:
◻ All queens have been placed.

The N-Queen Problem - helper
functions

def illegal_placement(board, row, col):

 #Note: it is enough to look for threatening queens in lower columns

 for delta in range(1,col+1):

 #Check for queen in the same row or in upper diagonal or in lower diagonal

 if (board[row][col-delta] or

 (row-delta>=0 and board[row-delta][col-delta]) or

 (row+delta<len(board) and board[row+delta][col-delta])):

 return True

 return False

def print_board(board):

 for row in board:

 for q in row:

 print('Q',end=' ') if q else print('-',end=' ')

 print()

The N-Queen Problem - the
recursion function

def place_queen_at_col(board, col):

 #Base case: we have passed the last column

 if col == len(board[0]):

 return True

 #Iterate over rows until it is okay to place a queen

 for row in range(len(board)):

 if illegal_placement(board, row, col):

 continue

 #place the queen

 board[row][col] = True

 #Check if we can fill up the remaining columns

 if place_queen_at_col(board, col+1):

 return True

 #If not, remove the queen and keep iterating

 board[row][col] = False

 #If no placement works, give up

 return False

The N-Queen Problem - calling
the recursive function

#This function uses a recursive helper method that really does
the work

def place_queens(board_size):

 board = []

 for i in range (board_size):

 board.append([])

 for j in range (board_size):

 board[i].append(False)

if place_queen_at_col(board, 0):

 print_board(board)

 else:

 print("No Placement Found!")

what would happen
if we were trying to
do it using:
 # board =
[[False]*board_size]
*board_size

52

Output of N-Queens

Q - - - - - - -

- - - - - - Q -

- - - - Q - - -

- - - - - - - Q

- Q - - - - - -

- - - Q - - - -

- - - - - Q - -

- - Q - - - - -

