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What is recursion?  

 Similar to mathematical induction 

 A recursive definition is self-referential 

 A larger, more complex instance of a problem 
is defined in terms of a smaller, simpler 
instance of the same problem 

 A base case must be defined explicitly 
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When do we use recursion? 

 We are given a large problem (say of size n) 

 We notice that: 
 There is some simple base case we know how to solve 

directly (say n=0) 

 The solution to the large problem is composed of 
solutions to smaller problems of the same type 

 If we could solve a smaller instance of the problem  

  (say n-1), we could use that solution to solve the large 
problem 
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How do we use recursion? 

 A function may call itself 

 Such a function is called recursive 

 There must be some base case that is handled 
explicitly, without a recursive call 

 The other case has to make sure there is 
progress towards the base case. 

 The recursive function call will use 
simpler/smaller arguments 



The Three Laws of Recursion 

1. A recursive algorithm must have a base 

case. 

2. A recursive algorithm must change its state 

and move toward the base case. 

3. A recursive algorithm must call itself, 

recursively. 
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Recursive factorial 

 n! = 1·2·3·…·n 

 By definition, 0! = 1 (base case) 

 Recursive definition: n! = (n-1)! · n 

 For example: 

 4! =  

 3! · 4 =  

 (2! · 3) · 4 =  

 ((1! · 2) · 3) · 4 =  

 (((0! · 1) · 2) · 3) · 4 =  

 (((1 · 1) · 2) · 3) · 4 = 24 
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Recursive factorial 

def factorial(n): 

    if n == 0: 

        return 1 

    else: 

       return n*factorial(n-1) 

 

 

Base case 

recursive call 
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What’s happening here? 

i = factorial(4); 

factorial(3) 

factorial(1) 

factorial(0) 

1 

2·1=2 

1·1=1 

3·2=6 

factorial(2) 

4·6=24 

def factorial(n): 

    if n == 0: 

        return 1 

    else: 

     return n*factorial(n-1) 
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Iterative factorial 

def iterative_factorial(n): 

    res == 1: 

    for i in range(1,n+1): 

   res *= i 

    return res 
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Recursion vs. loops 

 We could have calculated factorial using a loop 

 In general, loops are more efficient than 
recursion 

 However, sometimes recursive solutions are 
much simpler than iterative ones 

 Recursion can be a powerful tool for solving 
certain types of problems 

 Lets see a classic example 



Recursive multiplication 

  X = 10 *5 
  How to solve recursively? Think Recursively!  
  What will be the progression of the  

algorithm? 
 Divide to subproblems: 
 X = 10 *5 = 10+10*4 = 10 + 10 + 3 

  What will be our base case? 
 Something that is easy to solve - a 

mathematical rule maybe? 
 X  = X *1! 

 



Recursive multiplication 

def rmult(n1, n2):    

   

if n1 == 1:   

return n2 

           

return n2 + rmult(n1 – 1, n2)  

 

 

 

      
     

    

   

Base case 

recursive call 

#rec ...5*10  ==10+(4*10)==10+10+(3*10) ... 



Is palindrome? 

 [1,2,3,4,3,2,1] is a palindrome 
 תוֹךְ כּוֹתֵב ילֶֶד   לִי בְּ  is also palindrom דְּ
 Why recursion? 
 What’s the base case? 

 



Is palindrome? 

def is_pal(s): 

if len(s) <= 1: 

   return True 

else: 

return (s[0] == s[-1]) and 

   is_pal(s[1:-1]) 

 

 

however… 

def is_pal2(s): 

 return s == s[::-1] 



Pascal Triangle 

 Why recursion? 
 Let’s say we are interested on the n line in 

 the triangle (pascal(n)) 
 What will be the base case? 
 How to progress? 

 



Pascal Triangle 

import sys 

 

def pascal(n): 

 if n == 1: 

      return [1] 

 else: 

      line = [1] 

      previous_line = pascal(n-1) 

      for i in range(len(previous_line)-1): 

           line.append(previous_line[i] +  

 previous_line[i+1]) 

      line += [1] 

 return line 

 

print(pascal(int(sys.argv[1]))) 

 

 

 

 



Fractals 

A fractal is a never-ending pattern. Fractals 
are infinitely complex patterns that are self-
similar across different scales. They are 
created by repeating a simple process over 
and over in an ongoing feedback loop. 



Spiral  

● Where’s the 

base case? 

● Where’s the 

progress? 

 

import turtle 

 

def draw_spiral(tur, line_len): 

if line_len > 0: 

      tur.forward(line_len) 

      tur.right(90) 

      draw_spiral(tur, line_len-5) 

 

tur = turtle.Turtle() 

draw_spiral(tur,100) 

 

 



Fractal trees 

Draw a fractal tree: 
 

the shape of this branch resembles the tree itself. This is known as 
self-similarity, each part is a “reduced-size copy of the whole.” 



Fractal trees 

import turtle 

 

def tree(branch_len, tur): 

 if branch_len > 5: 

     trtle.forward(branch_len) 

     trtle.right(20) 

     tree(branch_len-15, trtle) 

     trtle.left(40) 

     tree(branch_len-15, trtle) 

     trtle.right(20) 

     trtle.backward(branch_len) 

def main(): 

 t = turtle.Turtle() 

 t.left(90) 

 t.up() 

 t.backward(250) 

 t.down() 

 tree(t, 100) 

 

main() 



Probabilistic trees 

import turtle 

import random 

 

def prob_tree(branch_len, trtle): 

 deg = random.uniform(0, 40) 

 if branch_len > 5: 

     trtle.forward(branch_len) 

     trtle.right(deg) 

     prob_tree(branch_len-15, trtle) 

     trtle.left(40) 

     prob_tree(branch_len-15, trtle) 

     trtle.right(40-deg) 

     trtle.backward(branch_len) 
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Exploring all states using recursion 
Backtracking 

 We can use recursion to go over many 
options, and do something for each case. 

 

 Example: 

 printing all subsets of the set S = {0,…,n-1} 
(printing the power set of S). 

 Difficult to do with loops (but possible). 

 Much simpler with recursion.  



Power Set - The basic idea 

 Lets decompose the problem to two smaller 
problems of the same type. 

 

 The recursive decomposition: 
 Print all subsets that contain an item,  

 Then print all the subsets that do not contain it. 

 

 Keep track of our current “state”. 
 items that are in the current subset,  

 items not in the current subset, 

 items we did not decide about yet. 
23 
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Power Set – python code 

def power_set(n): 

 

 

 

 

    cur_set = [False]*n 

 

    power_set_helper(cur_set, 0) 

 

Holds the subset we are 

currently building. 

This is not the recursive 

function. It calls the 

recursive function that does 

the real work. 

The recursive function 
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Power Set – python code 

def power_set_helper(cur_set, index): 

 

    #base:we picked out all the items in the set 

    if index==len(cur_set): 

        print_power_set(cur_set) 

        return 

 

    #runs on all sets that include this index 

    cur_set[index] = True 

    power_set_helper(cur_set, index+1) 

 

    #runs on all sets that does not include index 

    cur_set[index] = False 

    power_set_helper(cur_set, index+1) 



26 

Power Set – python code 

def print_power_set(cur_set): 

 

    print('{', end=' ') 

    for (idx, in_cur_set) in enumerate(cur_set): 

        if in_cur_set: 

            print(idx, end=' ') 

    print('}') 
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power_set and the stack 

? ? ? 

? ? t 

? t t ? f t 

t t t f t t t f t f f t 

index=0 

index=1 

index=2 

{0,1,2} {0,1} {0,2} {0} 
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power_set and the stack 

? ? ? 

? ? f ? ? t 

? t t ? f t 

t t t f t t t f t f f t 

? t f ? f f 

t t f f t f t f f f f f 

{0,1,2} {0,1} {0,2} {0} {1,2} {1} {2} {} 



Sort using recursion -  
Quicksort 

 A very efficient sorting algorithm 
 A probabilistic algorithm: 
 On average, the algorithm takes O(n log n)  

comparisons to sort n items.  
 In the worst case, it makes O(n2) 

comparisons, though this behavior is rare. 



Quick Sort 

 Choose an element from the list called 
pivot 

 Partition the list: 

 All elements < pivot  will be on the left 

 All elements ≥ pivot  will be on the right  

 Recursively call the quicksort  function on 
each part of the list 

 

30 



Quick Sort - implementation 
31 



Quick Sort – implementation (II) 
32 



Quick Sort – implementation (III) 
33 



Quick Sort – Runtime Analysis (I) 

◻ On each level of the recursion, we go over lists 
that contain total of n elements: 

About n steps at each level 

34 



Quick Sort – Runtime Analysis (II) 

 How many levels are there? 

 It depends on the pivot value: 

 Lets say we choose each time the median value 

 Each time the list is divided by half: 
⇒n/2 

⇒n/4 

⇒… 

⇒1 

 There will be log(n) levels, and each takes n steps 
It would take about nlog(n) steps 
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Quick Sort – Runtime Analysis (III) 

 Lets say we choose each time an extreme value 
(smallest or largest) – it is unlikely 

 Each time we get one list of size 1 and one of size n-1: 
⇒n-1 

⇒n-2 

⇒… 

⇒1 

 There will be n levels, and each takes n steps 

 

 The efficiency is depended on the pivot choice! 

 

It would take about n2 steps 
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Bonus Slides 



Sierpinski Triangle 

 A fractal that exhibits the property of self-similarity is 
the Sierpinski triangle 

 Algorithm: 
 Start with a single large triangle 
 Divide this large triangle into four new triangles by 

connecting the midpoint of each side. 
 Ignore the middle triangle that  

you just created 
 apply the same procedure to each  

of the three corner triangles 
 The base is defined as the level of the 

 triangle (how many inner triangeles) 
 



Sierpinski Triangles  

 
def draw_triangle(points, color, tur): 

 tur.fillcolor(color) 

 tur.up() 

 tur.goto(points[0][0],points[0][1]) 

 tur.down() 

 tur.begin_fill() 

 tur.goto(points[1][0], points[1][1]) 

 tur.goto(points[2][0], points[2][1]) 

 tur.goto(points[0][0], points[0][1]) 

 tur.end_fill() 

 

def get_mid(p1, p2): 

 return ( (p1[0]+p2[0]) / 2, (p1[1] + p2[1]) / 2) 



Sierpinski Triangles  

 
def sierpinski(points, degree, tur): 
 colormap = ['blue', 'red', 'green', 'white', 'yellow', 'violet', 'orange'] 
 draw_triangle(points, colormap[degree], tur) 
 if degree > 0: 
     sierpinski([points[0], get_mid(points[0], points[1]),  

get_mid(points[0], points[2])], 
degree-1, tur) 

     sierpinski([points[1], get_mid(points[0], points[1]), 
                       get_mid(points[1], points[2])], 
                  degree-1, tur) 
     sierpinski([points[2], get_mid(points[2], points[1]), 
                        get_mid(points[0], points[2])], 
                  degree-1, tur) 

middle triangle 

triangle 1 

triangle 2 

triangle 3 



Understanding the Traceback 

# in file t.py: 

def a(L): 

    return b(L) 

 

def b(L): 

    return L.len() #should have been len(L) 

# in the python shell we try 

a(L) 

Traceback (most recent call last): 

  File "<pyshell#4>", line 1, in <module> 

    a(L) 

NameError: name 'L' is not defined 



Understanding the Traceback 

# in file t.py: 

def a(L): 

    return b(L) 

 

def b(L): 

    return L.len() #should have been len(L) 

# in the python shell we try 

a([1,2,3]) 

Traceback (most recent call last): 

  File "<pyshell#6>", line 1, in <module> 

    a(L) 

  File ”…/t.py", line 2, in a 

    return b(L) 

  File ”…/t.py", line 6, in b 

    return L.len() 

AttributeError: 'list' object has no attribute 'len' 



Understanding the Traceback 

# in file t.py: 

def c(L): 

    print((L[0]) 

    print(“bye”) 

# in the python shell we try 

a([]) 

 

Traceback (most recent call last): 

  File "<pyshell#4>", line 1, in <module> 

    c([]) 

  File “…\t.py", line 10, in c 

    print(L[0]) 

IndexError: list index out of range 



Understanding the Traceback 

# in file t.py: 

def c(L): 

    print((L(0)) 

    print(“bye”) 

# in the python shell we try 

c([1,2,3]) 

 

Traceback (most recent call last): 

  File "<pyshell#7>", line 1, in <module> 

    c([1,2,3]) 

  File “…\t.py", line 9, in c 

    print(L(0)) 

TypeError: 'list' object is not callable 



Understanding the Traceback 

# in file t.py: 

def c(L): 

    print((L[0]) 

    print(“bye”) 

 

invalid syntax (but the next line is marked) 

or unexpected EOF while parsing if this is the last line in the  



Tips 

 Pay attention to indentation (and other idle 
formatting issues) – it might imply on bugs 

 

 Make sure you are in the right range when 
working with containers 

 

 Adding printouts might be helpful 

 

 You can use Google with the error name    (e.g. 
TypeError: 'list' object is not callable) 

 



Exploring all states using backtracking 

◻ A backtracking alg. can be used to find a solution (or all 
solutions) to a combinatorial problem. 

 

◻ Solutions are constructed incrementally 

 

◻ If there are several options to advance incrementally, the 
algorithm will try one option, then backtrack and try more 
options. 

 

◻ If you reach a state where you know the path will not lead 
you to the solution, backtrack! 

47 
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N-Queens 

◻ The problem: 
◻ On an NxN chess board, place N queens so that no 

queen threatens the other (no other queen allowed 
in same row,col or diagonal).  

◻ Print only one such board. 

◻ Simplifying step:  
◻ Place 1 queen somewhere in an available column 

then solve the problem of placing all other queens. 

◻ Base case: 
◻ All queens have been placed.  



The N-Queen Problem - helper 
functions 

def illegal_placement(board, row, col): 

    #Note: it is enough to look for threatening queens in lower columns   

    for delta in range(1,col+1): 

        #Check for queen in the same row or in upper diagonal or in lower diagonal 

        if (board[row][col-delta] or  

            (row-delta>=0 and board[row-delta][col-delta]) or  

            (row+delta<len(board) and board[row+delta][col-delta])): 

            return True 

    return False 

 

def print_board(board): 

    for row in board: 

        for q in row: 

            print('Q',end=' ') if q else print('-',end=' ') 

        print() 

 



The N-Queen Problem - the 
recursion function 

def place_queen_at_col(board, col): 

    #Base case: we have passed the last column 

    if col == len(board[0]): 

        return True 

    #Iterate over rows until it is okay to place a queen 

    for row in range(len(board)): 

        if illegal_placement(board, row, col): 

            continue 

        #place the queen 

        board[row][col] = True 

        #Check if we can fill up the remaining columns 

        if place_queen_at_col(board, col+1): 

            return True 

        #If not, remove the queen and keep iterating 

        board[row][col] = False 

    #If no placement works, give up 

    return False 



The N-Queen Problem - calling 
the recursive function  

#This function uses a recursive helper method that really does 
the work 

def place_queens(board_size): 

    board = [] 

    for i in range (board_size): 

        board.append([]) 

        for j in range (board_size): 

            board[i].append(False) 

if place_queen_at_col(board, 0): 

        print_board(board) 

    else: 

        print("No Placement Found!") 

# what would happen 
if we were trying to 
do it using: 
    # board = 
[[False]*board_size]
*board_size 
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Output of N-Queens 

Q - - - - - - -  

- - - - - - Q -  

- - - - Q - - -  

- - - - - - - Q  

- Q - - - - - -  

- - - Q - - - -  

- - - - - Q - -  

- - Q - - - - -  


