Graphs & Trees

Intro2CS — week 8-9

General Graphs

* Nodes (Objects) can have more than one reference.
 Example: think of implementing a Class “Person”

e Each Person has a list of friends, which are also of
the same “Person” class.

e A “Social Network”

class Person:
def __init__ (self,name):
self. name = name
self. 1list of friends=[]

def add_friend(self,other):
self. 1list of friends.append(other)

Graphs

* We generally think of the structure of these as a
general (directed) Graph G=(V,E)

 Vis called the set of Nodes or Vertices
e £ €V XV iscalled the set of Links, or Edges

(v{,v,) € E If and only if object v; € V has a link
to (%) el

Paths

* A Path in the graph (of length n) is a sequence
of vertices P = (v4, vV, ..., V) such that

e Vie{1,2..,n} v, €V
e VI € {1,2 ey, 1 — 1} (vi'vi+1) eEE

Traversing general graphs

e Suppose we wish to visit all nodes in a graph
and print their data (only once!)

e How do we do this?

class Node:
def 1nit (self,data=None):
self.data = data
self.neighbors = set ()

def add edge(self,other):
self.neighbors.add (other)

First attempt

def visit all from(node):

print (node.data)
for neighbor in node.neighbors:

visit all from(neighbor)

nodes = [Node (i) for i1 in range (5)]

*#** From Node 0O:
nodes[0] .add edge(nodes[1]) 0
nodes[0] .add edge (nodes[2]) ;
nodes[1l].add edge(nodes[2]) 3
nodes[2] .add edge(nodes[3]) j
print ("*** From Node 0:") **%* From Node 4:

4

visit all from(nodes[0])

print ("\n*** From Node 4:")

visit all from(nodes[4])

What went wrong?
What if we had a loop in the graph?

Fixing the problem

def visit all from(node):

def

visited = set ()

~visit helper (node,visited)

~visit helper (node,visited):

1f node in visited:

return

visited.add (node)
print (node.data)
for neighbor in node.neighbors:

~visit helper (neighbor, visited)

nodes = [Node (1) for 1 in range

nodes[0] .add edge (nodes[1])
nodes[0] .add edge (nodes[2])
nodes[1l].add edge(nodes[2])
nodes[2] .add edge(nodes[3])
print ("*** From Node 0:")

visit all from(nodes[O0])

print ("\n*** From Node 4:")

visit all from(nodes[4])

(5)]

**%* From Node 0:

o D

**%% From Node 4:
4

10

Trees

* Directed Rooted Trees are
one particularly useful
class of Graphs.

* They have a special node
called “the root”

* Thereis exactly one path (&
from the root to every
other node in the tree.

— No Cycles!

11

Tree Terminology
* A node that is directly linked

from v is often called of ©

v (and v is called)

— Example: 6,7 are children of 3 oJoXo
s © @

* A Node that has no outgoing
links is called ()

— Example: 4,6,7,8 are all leaves

Tree Terminology

is the length ©
of its path from the root (the root
is of height 0).

| ONONO
 Example: Node 5 has height 2.

o © @
is the a
length of the longest path.

 Example: the tree here has height
3 (due to the path to node 8)

Example: Trees that represent
expressions

* One thing to naturally represent with trees is
mathematical expressions: ()

ol

* Leaves are all literals, internal nodes are operators
* Notice that the order of the children matters

(5+8)x(6+(2/7))

14

In Python

class TreeNode:

self.data = data
self.left = left

def init (self,data,left=None,right=None):

self.right = right

exprl = TreeNode ("+",
TreeNode ("*",

TreeNode ("7"))

TreeNode ("3") , TreelNode ("4")),

15

Computing the value of an expression

def compute (root):
if root.data == "+";

return compute (root.left)t+tcompute (root.right)

elif root.data == "*";:
return compute (root.left) *compute (root.right)
elif root.data == "/":

return compute (root.left) /compute (root.right)
elif root.data == "-":

return compute (root.left)-compute (root.right)
else:

return float (root.data)

exprl = TreelNode ("+",
TreeNode ("*", TreeNode ("3"),TreeNode ("4")),
TreeNode ("7"))

print (compute (exprl))

Printing the expression

def tree to expr(tree root):
if tree root.left:
return " (" + tree to expr(tree root.left) + \
tree root.data +\
tree to expr(tree root.right) + ")"
else:

return tree_root.data

exprl = TreeNode ("+",
TreeNode ("*", TreeNode ("3"), TreeNode ("4")),
TreeNode ("7"))

print (tree to expr(exprl))

17

Polish Notation

e Polish notation (also called prefix notation) is just a
different way to write mathematical expressions

 The operator is always written to the left.
* |Instead of (2+3) write:

 We never need parentheses when writing this way.
Order of operations is always well defined:

+x34-25
(+(x34)(-25))

In “regular” notation: (3 x4) + (2-5)

def tree to polish(tree root):
result = tree root.data

if tree_root.left:

return result

result += " " + tree to polish(tree root.left) + \
+ tree to polish(tree root.right)

exprl = TreeNode ("+",
TreeNode ("*",
TreeNode ("7"))
print (tree to expr(exprl))
print (tree to polish(exprl))

TreeNode ("3") , TreeNode ("4")),

19

Traversing a tree

The order of visiting a tree can be defined
(recursively)

* Pre order: print the root, then print the subtrees

— Example: when we were printing an expr in polish
notation

* |n order: left subtree, root, right subtree
— Example: when we were printing a “regular expression”

* Post order: print the subtrees, then the root
— Example: reverse polish notation

20

(Extra) Parsing Polish Notation

def p polish helper (polish expr):

1f lelSh_EKpI[D] 1n {'II+'IIr'II_'IIr'II*'Ilr'Ilf'II} .
argl, remainder = p polish helper(polish expr[l:])
argZ2, remainder = p polish helper (remainder)

return TreeNode (polish expr[0], argl, argl), remainder
else:

return TreeNode (polish expr[0]), polish expr[l:]

def parse polish (text):
tree, leftovers = p polish helper (text.split (" "))
1f leftovers:
print ("There were extra symbols left over.")

return tree

Trees — Twenty Questions

Does it have four legs? v
s it really large? vy

s it an elephant? n
guessed wrong.

What did you have in mind? a rhino

Please enter a question to differentiate between an
elephant and a rhino: does it have a horn?

an elephant. does it have a horn? n

Do you want to play again? vy

22

Four legs?

PN

Really large?

/\

elephant

dog

Has wings?

23

Four legs?

PN

Really large?

/\

Has horn? dog

X

elephant

Has wings?

24

def get yes no an
while True:
answer =

if answer

swer (question) :

input (question + " ")
== YES:

return True

elif answer == NO:

return False

else:
print

("I did not understand.

||:|

25

class Question:

def init (self,question text, yes answer=None,
self. question text = question text
self. on yes answer = yes answer

self. on no answer = no answer

no answer=None) :

26

def ask question(self):
if self. on yes answer 1s not None:
i1f get yes no answer (self. dquestion text):
self. on yes answer.ask question()
else:

self. on no answer.ask question()

else:
i1f get yes no answer("is it " + self. dquestion text + "?"):
print ("I knew it!")
else:

print ("I guessed wrong.")
self. add new gquestion()

27

def add new dquestion(self):

other answer = input ("What did you have in mind? ")
new question = input ("Please enter a question to differentiate between " +)\
self. question text + " and " + other answer + ": ")
if get yes no answer(self. question text+". "+new question):
self. on yes answer = Question(self. dguestion text)
self. on no answer = Question(other answer)
else:

self. on yes answer = Question(other answer)
self. on no answer = Question(self. dquestion text)
self. question text = new question

28

def play twenty questions():
root question = Question("a sparrow")

print ("Let's play twenty questions. Think of something...")

print ("I'll guess it!")

root question.ask question()

while get yes no answer ("\n\nDo you want to play again?"):
root question.ask question()

print ("\n\nHere are all the possible answers entered into the game:")
root question.print all answers()

if name == " main ":

play twenty questions()

29

- —
— -

def print all answers(self):

1f self. on yes answer 1s None:
print(self. question text)
else:

on no answer.print all answers ()

—

w

()]
iD

f. on yes answer.print all answers ()

i
(D

30

