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Brief Papers

Inductive Reasoning and Bounded Rationality Reconsidered
David B. Fogel, Kumar Chellapilla, and Peter J. Angeline

Abstract—Complex adaptive systems have historically been
studied using simplifications that mandate deterministic inter-
actions between agents or instead treat their interactions only
with regard to their statistical expectation. This has led to an
anticipation, even in the case of agents employing inductive
reasoning in light of limited information, that such systems may
have equilibria that can be predicted a priori. This hypothesis
is tested here using a simulation of a simple market economy
in which each agent’s behavior is based on the result of an
iterative evolutionary process of variation and selection applied
to competing internal models of its environment. The results
indicate no tendency for convergence to stability or a long-
term equilibrium and highlight fundamental differences between
deterministic and stochastic models of complex adaptive systems.

Index Terms—Bounded rationality, complex adaptive systems,
El Farol problem, inductive reasoning.

I. INTRODUCTION

BY their very nature, complex adaptive systems are diffi-
cult to analyze and their behavior is difficult to predict.

These systems, which include ecologies and economies, in-
volve a population of purpose-driven agents, each acting to
obtain required resources in an environment. The conditions
these agents face vary in time both as a consequence of
external disturbances (e.g., weather) and internal cooperative
and competitive dynamics. Moreover, such systems are often
extinctive, where those agents that consistently fail to acquire
necessary goods (e.g., food, shelter, monetary capital) are
eliminated from the population. The essential mechanisms that
govern the dynamics of complex adaptive systems are evo-
lutionary: random variation of agents’ behavior coupled with
selection in light of a nonlinear, possibly chaotic, environment.
By consequence, reductionist, linear piecemeal dissection of
complex adaptive systems rarely provides significant insight.
The behavior of each agent is almost always more than can
be assembled from the “sum of its parts” and interactions
with its predators and prey, its enemies and allies. The
fabric of these complex systems is tightly woven, and no
examination of single threads of the fabric in isolation, no
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matter how exacting, can provide a sufficient understanding
of the integrated tapestry.

Whereas the reductionism of traditional analysis fails to treat
the holistic qualities of complex adaptive systems, computer
simulations have been used to model low-level interactions
between agents explicitly [1], [2]. Given such a model, at-
tention is then focused on its emergent properties, patterns of
observed behavior that could not be predicted easily from a
linear analysis of agents’ interactions. It is hoped that intricate
computer simulations will provide useful tools for accurately
forecasting the behavior of systems governed by the interac-
tions of hundreds, or possibly thousands, of purposive agents
acting to achieve goals in chaotic, dynamic environments [3].

One such environment that has received considerable recent
attention is the market economy [4], [5]. The traditional view
of human behavior as completely rational has given way to
an alternative perspective of bounded rationality [6]. It is
recognized that economic decision making, like most human
judgment, is made in the face of incomplete knowledge both
of the extrinsic market conditions and the expected actions of
other entities. The cascade of suppositions about how other
actors in the environment will react to current and projected
circumstances might be best described as an “arms race of
uncertainty.” Rather than expect a stable outcome in the face
of perfect information that is globally available to all agents,
where each reasons correctly that there is only one best
allocation of resources and each allocation is obvious to all
involved, the more likely outcome for such market dynamics
would seem to be characterized by chaotic transgressions and
instability.

Surprisingly, one simulation of inductive reasoning and
bounded rationality that has gained recent attention evidenced
no such chaotic behavior [7]. Instead, the “economy” varied
consistently around a stable point, and it was conjectured that
aggregate behaviors in complex adaptive systems serve to
bring about “natural attractors” where these systems will tend
to return to a stable point when disturbed from equilibrium.
If true, this would be a remarkable insight because it would
imply that it may be possible to leverage traditional analytic
tools of evolutionary stable systems [8] and game theory [9]
to determine the equilibrium conditions of complex adaptive
systems. Unfortunately, as the current experiments indicate,
this is unlikely to be the case.

II. BACKGROUND

The economic system under investigation is an idealized
model of agents who must predict whether or not to commit
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a resource in light of the likely commitment of other agents
in the environment. Commitment is time dependent, iterated
over a series of interactions between the agents where previous
behavior can affect future decisions. To distill the essential
aspects of the model, Arthur [7] suggested the following
setting based on a bar, the El Farol in Santa Fe, NM, which
offers Irish music on Thursday nights.

Let each of Irish music aficionados choose independently
whether or not they will go to the El Farol on a certain
Thursday night. Further, suppose that each attendee will enjoy
the evening if no more than a certain percentage of the
population are present, otherwise the bar is overcrowded.
To make considerations specific, let and let the
maximum number of people in the bar before becoming
overcrowded be 60. Each agent interested in attending cannot
collude with others to determine or estimate the density in
the bara priori; instead, they must predict how busy the bar
will be based on previous attendance. Presume that data on
prior weeks’ attendance are available to all individuals.
Based on these data, each person makes a prediction about the
likely attendance at the bar on the coming Thursday night. If
their prediction indicates fewer than 60 bargoers then they will
choose to attend; otherwise they will stay home. The potential
for paradoxical outcomes is clear: If everyone believes that
the bar will be relatively vacant then they will attend, and
instead it will be crowded; conversely, if everyone believes
the bar will be crowded, it will be empty. Of interest are the
dynamics of attendance over successive weeks.

Arthur [7] offered the following procedure for determining
this attendance. Each individual has predictive models
and chooses whether or not to attend the bar based on the
prediction offered by their current best (or active) model
measured in terms of how well it fit the available weekly
attendance. The active model is dependent on the historical
attendance, and in turn the attendance is dependent on each
individual’s active model. It is evident that the class of models
used for predicting the likely attendance can have an important
effect on the resulting dynamics. The specifics in [7] are not
clear on which models were used, but some were suggested,
including 1) use the last week’s attendance, 2) use an average
of the last four weeks, 3) use the value from two weeks
ago (a period two cycle detector), and so forth. Starting
from a specified set of models assigned to each of the
individuals, the dynamics were completely deterministic. The
results indicated a consistent tendency for the mean attendance
over time to converge to 60. Curiously, a mixed strategy of
forecasting above 60 with probability 0.4 and below 60 with
probability 0.6, which would engender a mean attendance
of 60 individuals, is a Nash equilibrium when the situation
is viewed in terms of game theory [7]. This result implies
that traditional game theory may be useful in explicating the
expected outcomes of such complex systems.

But people do not reason with a fixed set of models,
deterministically iterated over time. Indeed, inductive reason-
ing requires the introduction of potentially novel models that
generalize over observed data; restricting attention to a fixed
set of rules appears inadequate. A more appropriate model of
the El Farol problem would therefore include both a stochastic

element, where new models were created by randomly varying
existing ones, and a selective process that served to eliminate
models that were relatively ineffectual. Individuals would
thereby improve their predictive models in a manner akin to
the scientific method and evolution [10]. The results of this
variant on the method of [7] are qualitatively different and do
not reflect any tendency toward stability in the limit or on the
average.

III. M ETHODS

Following [7], was set equal to 100 and the bar was
considered overcrowded if attendance exceeded 60. Each
individual was given predictive models. For simplicity,
these models were autoregressive (AR) with their output
made unsigned and rounded. For theth individual, their th
predictor’s output was given by

where was the attendance on week , was the
number of lag terms in theth predictor of individual ,
was the coefficient for the lag steps in the past, and
represented a constant bias term. Taking the absolute value
and rounding the model’s output ensured nonnegative integer
values. Any predictions greater than 100 were set equal to 100
(predictions greater than the total population sizewere not
allowed). For each individual, the number of lag terms for each
of its ten models was chosen uniformly at random from the
integers {1, , 10}. The corresponding lag terms (including
the bias) were uniformly distributed over the continuous range
[ 1, 1].

Prior to predicting the current week’s attendance, each
individual evolved its set of models for ten generations. This
was somewhat arbitrary, but was chosen to allow a minimal
number of iterations for improving the existing models. The
evolution was conducted as follows.

1) For each individual one offspring was created from
each of its models (designated asparents). The
number of lag terms in the offspring from parentwas
selected with equal probability from . If

then was not allowed, and similarly if
then was not allowed (the number of lags was

constrained to be between one and ten, with this choice
also being somewhat arbitrary but sufficient to allow
considerable history to affect current predictions). The
number of AR terms in each offspring thus differed by
at most one from its parent. The AR coefficients of the
offspring were created by adding a zero mean Gaussian
random variable with standard deviation 0.1 [i.e.,(0,
0.1)] to each corresponding coefficient of its parent. Any
newly generated AR coefficients (due to an increase
in the number of lag terms) were chosen by sampling
from a (0, 0.1). When this step was completed, each
individual had ten parent and ten offspring AR models.

2) Each of the 20 models (ten parents and ten offspring)
in every individual were evaluated based on the sum of
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Fig. 1. The mean weekly attendance in the current simulation averaged
across all 300 trials.

their squared errors made in predicting the attendance
of the bar during the past 12 weeks. This duration
was chosen as being a sufficiently long period of time
to avoid a continual transient where the population of
individuals would have an insufficient sample size at
each step to allow for any reasonable prediction about
the current week’s attendance.

3) The ten models in each individual’s collection having the
lowest prediction error on the past 12 weeks of data were
selected to be parent models for the next generation.

4) If fewer than ten generations had been conducted, the
process reverted to Step 1; otherwise each individual
used their best current model (lowest error) to predict the
current week’s attendance. For each individual, if their
prediction fell below 60 they went to the bar, otherwise
they stayed home.

5) If the maximum number of weeks was exceeded, the
simulation was halted, designating the completion of
one trial; otherwise, the attendance for the week was
recorded, the time incremented to the following week,
and the process returned to Step 1.

During the first 12 weeks, attendance at the bar was ini-
tialized with truncated samples from a Gaussian random
variable with mean 60 and standard deviation of five. This
was meant to start the system with a sufficient sample for
each individual’s predictors while not biasing the mean away
from the previously observed average [7] and not imposing
an overwhelming variability so as to make the attendance
fluctuate wildly. In all, 300 independent trials were conducted,
each being executed over 982 weeks (18.83 years) so as to
observe the long-term dynamics of the evolutionary system.

IV. RESULTS

Fig. 1 shows the mean weekly attendance at the bar av-
eraged across all 300 trials. The first 12 weeks exhibited a
mean close to 59.5 resulting from the random initialization (the
0.5 decrement from 60 was an artifact caused by truncating
samples to integer values). For roughly the next 50 weeks, the
mean attendance exhibited large oscillations. This “transient”
state transpired completely by about the one-hundredth week,
with weeks 101–982 displaying more consistent statistical
behavior. For notational convenience, consider this period to
be described as the “steady state.” The mean attendance for the

Fig. 2. The attendance observed in a typical trial.

steady state was 56.3155 with a standard deviation of 1.0456.
This is statistically significantly different from the
previously observed mean attendance of 60 offered in [7].
Further, as a mean over 300 trials, the variability depicted
in Fig. 1 is more than an order-of-magnitude lower than that
of each single trial and the individual dynamics of each trial
have been averaged out. Fig. 2 depicts the results of a typical
trial having a mean steady-state attendance of 56.3931 and a
standard deviation of 17.6274. None of the 300 trials showed
convergence to an equilibrium behavior around the crowding
limit of 60 as observed in [7], nor were any obvious cycles
or trends apparent in the weekly attendance.1 The introduction
of evolutionary learning to the system of agents had a marked
impact on the observed behavior: The overall result was one of
chaos and large oscillations rather than stability and equilibria.
Indeed, describing the dynamics of a system with behavior as
shown in Fig. 2 in terms of its mean does not appear useful.

Rather than seek explanations of the stochastic system’s
behavior in terms of stable strategies, the essential character
of the weekly attendance (i.e., the system’s “state”) can be
captured as a simple first-order random process (higher-order
effects are present because of the available time window
for each agent, but as shown below, these effects are not
essential to describing the behavior of the system). These
stochastic models have proved useful in describing the long-
term behavior of many evolutionary optimization algorithms
(commonly viewed as Markov chains) [11]. Such procedures
are typically designed such that only the current composition
of individuals in the evolving population provides a basis for
determining the next-state transition probabilities, and these
probabilities are invariant for a particular population regardless
of time. These characteristics would also appear to hold for
the agent-based system governing attendance at the bar (with
the above caveat).

Each of the first-order attendance transitions from week to
week across all 300 trials were tabulated. These are shown
in Fig. 3 as a normalized state transition matrix. Under the
assumption that the transition probabilities are stationary and
no memory of states traversed prior to the current state

1The attendance data from weeks 101 to 982 were examined in each trial
using 1) their spectral density to test for cycles, 2) regression analysis to test
for a slope significantly different from zero, and 3) a computation of their
fractal dimension to test for chaotic properties. None of these tests revealed
any statistically significant positive findings.
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Fig. 3. The normalized one-step state transition matrix generated by tabulating all first-order transitions observed across all 300 trials from weeks 101
to 982. The color intensity reflects the normalized frequency of occurrence.

Fig. 4. The probability associated with each possible state [0–100] obtained
by iterating the state transition matrix to its limiting distribution.

is involved, the limiting probabilities of each state can be
determined by raising the transition matrix to theth power
as Beyond some value of the rows of the
transition matrix converge to the limiting probabilities (i.e.,
the starting or current state is irrelevant to the long-term
probabilistic behavior of the Markov chain). Fig. 4 shows the
probability mass function indicating this limiting behavior,
which settled to successive differences of less than 10
after 18 iterations. To provide an independent test of the
hypothesis that the behavior of the stochastic agent-based
system could be captured as a Markov chain, 300 additional
trials were executed and each final weekly attendance at week
982 was recorded. Fig. 5 shows the cumulative frequency of

Fig. 5. The cumulative frequency of attendance in week 982 observed over
300 additional independent trials (solid) depicted against the cumulative
distribution function obtained by summing the limiting probabilities of each
state (dashed) as shown in Fig. 5.

these attendance figures, which appears to be in agreement
with the cumulative distribution function obtained by summing
the limiting probability masses for each state (see Fig. 4). A
Kolmogorov–Smirnov test indicated no statistically significant
difference between the proffered limiting distribution and the
observed data however, one assumption for the test
is that the variables in question should be continuous. Thus
to provide an additional examination, the observed and ex-
pected frequencies of attendance in the ranges [0–24], [25–50],
[51–75], [76–100] were determined and a chi-square test
again indicated no statistically significant difference between
the observed and expected frequencies For final
corroboration, all of the weekly attendance figures for weeks
83–982 in each of the new 300 trials were tabulated. The
histogram of these data appears in Fig. 6 and provides clear
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Fig. 6. The histogram of weekly attendance over weeks 83–982 observed
over 300 additional independent trials. For comparison, the solid line repre-
sents the expected limiting probabilities generated by the prior 300 trials under
the assumption that the system dynamics are captured as a Markov chain.

agreement with the frequencies anticipated when viewing the
process as a Markov chain. Convergence to an equilibrium
should not be expected from a system that is well described
as a Markov chain with these limiting probabilities.

V. DISCUSSION

The system studied here is only slightly more complex
than that offered in [7]. It is certainly a highly idealized
simulation of a market economy. Each agent in a constant-size
population was only allowed linear predictive models with an
AR form and a window into the past that was restricted to no
more than three months. Moreover, the process for generating
new models was a relatively simple mutation of existing
coefficients and model structure. One could easily imagine
variations that allowed agents to migrate to and from the city,
employ generalized nonlinear predictive models, collaborate or
collude with other agents, and so forth. Yet none of these more
sophisticated procedures were required to generate statistically
significantly different behavior from that obtained in [7].

Arthur [7] recognized the potential deficiency of mandating
strictly deterministic models but suggested that any qualitative
change from the previous observations would be surprising.
In retrospect, perhaps there really should be no surprise.
In every case of simulating complex adaptive systems, the
emergent properties are strictly dependent on the “rules”
preprogrammed by the investigator. Unfortunately, the results
of the interactions of agents in light of even mildly complicated
rules can lead to behaviors that are “surprising.” This merely
reflects our own ignorance, our own inability to foresee what
was predestined. This inability is heightened when faced with
stochastic as opposed to deterministic models. Consequently,
the traditional approach in such circumstances is to either
assume away the noise or average it out of consideration.

For example, in the analysis of evolutionary stable strategies
(ESS’s) there is often an assumption that no mutation occurs
during reproduction [8], and yet this must surely be an
important if not mandatory consideration in predicting the

behavior of evolutionary systems. Further, in similar analyses,
the outcome of encounters is often based on the mean reward
to each individual. In the classic hawk-dove game, when two
hawks meet, with equal probability one hawk wins and the
other loses and is injured. Typical fitness values assigned
are 50 and 100, respectively [13]. But the evolutionarily
stable outcome, the ESS, is determined by manipulating all
hawk-hawk encounters to offer a mean score of25 to each
hawk, even though neither hawk ever receives this payoff in
the actual game. Models that act only on the expectation of
statistical outcomes can generate altogether different behaviors
than those that explicitly treat the randomness that is inherent
to such circumstances [13]. When random effects are known
to exist in the physical system being modeled, there must
be compelling reasons for abstracting out that randomness
in simulation; otherwise, the results should be viewed with
caution, if not skepticism.

All models are by necessity incomplete. But there appears
to be an important qualitative difference between even simple
models of complex adaptive systems that rely on random
variation and selection, as opposed to those that rely solely
on the deterministic manipulation of fixed rules of behavior.
The latter can be limited to explore only a small portion of the
available space of possible strategies, while the former can be
constructed such that no path is impossible [14]. The introduc-
tion of even a small degree of random variation can result in a
markedly different process, stochastic in nature, with little or
no qualitative agreement to the deterministic version. Models
of complex adaptive systems that include agents with inductive
reasoning in the face of limited information and capabilities
(i.e., bounded rationality) which predict convergence to stable
behavior areipso factosuspect.
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