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Abstract . We introduce a new origin of volat ility clustering in eco­
nomic time series generated by systems of interacting adaptive agents.
Each agent is assigned a random subset of a fixed collection of predic­
tors . At every time step each agent generates an action based upon
its assigned predictor s. Some agents are contrar ians, that is, t hey act
at variance with t he natural action suggested by a predictor . Agents
t hat perform poorly are replaced. At each t ime step the signal value
is generated solely by the cumulative act ions of the agents on the cur­
rent history of t he time series. We observe numerically tha t under
th e dynamics indu ced by the removal of poor performers, even when
cont rarians are int rodu ced at a very low density, the system evolves
to a state in which cont rarians comprise nearly half of the popula­
tion. Fur thermore, the t ime series generated by these systems exhibits
volat ility clustering. Elimination of either the cont rarian behavior or
th e removal of poor players precludes volat ility clustering.

1. Introduction

Many t ime series in economics and finance exhibit a phenomenon called clus­
te red volat ility, which refers to signals t hat disp lay high volati lity during some
intervals of time an d low vola ti lity at other t imes . Volati lity clustering has
been obse rved in stock returns and rela ted der ivative secur it ies [1, 2], int erest
rates [3], and foreign exchange rates [4] . A variety of t ime series mo dels have
been constructe d and used in these and ot her works in an effort to charact er­
ize such signals statistically. However , progress in un derst an ding t he origins
of clus te red volati lity has been limi ted . A t horough lit erature survey describ­
ing exist ing empirica l evidence of clust ered volatility and relat ed statis tical
ana lyses is contained in [5].

In t his pap er we consider a class of adapt ive sys te ms which , t hro ugh
t he actions of compe ti ng agents, self-organize to states in which t ime series
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with clustered volatility are generated . Like the systems in [6] discussed
below, each new value of th e signal is genera ted by th e act ions of players
making decisions based on a set of prescribed predictors applied to th e current
history of th e signal. However , the systems which we consider here have
two additional features. First , contrarians- players which act "against" the
natural act ion indicated by a predictor- are introduced. Also, players which
perform poorly are replaced. This second feature provides for an evolutionary
dynamics, which, in conjunct ion with cont rarians, yields interest ing behavior.
In par ticular , we observe that even when cont ra rians are introduced at a low
rate the systems equilibrate with densities of contrarians just under a half.
Furthermore, the result ing signals exhibit regions of high and low volatility,
that is, clustered volatility. To the best of our knowledge, th is is a new
mechanism for th e origin of th is phenom enon .

In addi t ion to the pur ely academic pur suit of understanding the origin
of clustered volatility, there are countless practical financial app licatio ns of
mod els which generate realistic signa ls. Statisticians and econometricians
frequent ly use tim e series mod els to capture relevant features of financial sig­
nals such as clustered volat ility, and then apply the result s to price derivat ive
secur ities. However, such meth ods are int rinsically limited to the modeler 's
ability to select a tractable class of tim e series models that est imate partic ular
attributes of the financial signal to a reasonable degree of accuracy. Adap­
t ive systems such as t hose discussed below could potent ially be calibra ted to
mod el financial signals direct ly.

The systems that we examine here are motivated by the work of VV. B.
Arthur. In [7], Arthur suggests the importance of the formation of beliefs
of economic agents in an induct ive procedure, and sketches a framework in
which one could const ruct a popu lation of "investors," each formulating its
current hypoth esis about the pre ent state of a market by applying a set of
predictors on the history of a financial signal. The signal itself is generated
by the act ions of the investors, which are boundedly rat ional. This tra in of
thought is one of a variety of suggested departures from equilibrium theory
and the associated assumpt ion of rational expectations, in which investors or
agents solve opt imizat ion prob lems given prescribed probabili ty distributions
on future events . For a sur vey of work related to bounded rationality in
economic systems see [8].

An exceedingly simple system th at captures much of th e essence of [7], was
int roduced in [6]. Arthur describes the model in essentia lly the following way.
A bar has 50 seats and a population of 100 people who consider patronizing
the bar each night. Every individu al is "happy" if he chooses to visit the
bar on a night in which fewer t han 50 people arr ive (so that th e bar is not
too crowded), and is "unhappy" if 50 or more people attend. A pool of M
(say M = 20) ad hoc predictors is const ructed. For example, the predictors
could be: (1) th e same as last night ; (2) the same as two nights ago; (3) a
linear interpolation of the last three night s; and so on. Each individual is
randomly assigned a subset of L (1 ::; L ::; M ) predictors. The key f ature of
th e system is that the attendance (signal) at t ime n+1 is genera ted solely by
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Figure 1: Sample signal X n of 500 t ime steps for systems with L = 5
predictors held by each player out of a possible 40 after equilibration
of the system without contrarians (Peon = 0) and without removal
(8 = 00).
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the responses of t he players to information contained in the signa l up to time
n . Specifically, to generat e a signal at a given tim e step, all predictors are
evalua ted over a window of, say, the last 100 t ime steps, and ranked according
to the least square error in the predictions over this window. At each t ime
ste p, every player uses the pr edict ion genera ted by the best predictor (lowest
error) of the L that it has been assigned. The decision of each player is to
visit the bar if its best predictor predicts an attendance of fewer tha n 50 or
conversely, to stay home if its best predictor ant icipates attendance of 50 or
more. Aggregat e attendance is calculated, and the procedure is iterated .

This system clearly generates a stationary process. It is also clear that
if L = M , then each player is in possession of all predictors, and the signal
will boun ce between full attendan ce and zero attendance since the act ions of
all players must coincide. Arthur 's insight is that if L < M, then the inho­
mogeneity of beliefs can yield a more interest ing t ime series. A realization of
the signa l generated by a process which is essent ially identical to th e system
described above with M = 40 predictors and each player holding L = 5 is
shown in Figure 1 (a signa l value of zero in the figure corresponds to the
at tendance of half the players in the bar problem) . Another observation by
Arthur is th at the system does not reach a trivial stationa ry state , insofar as
the set of predictors being used at each t ime ste p does not reach a fixed point .
This nontrivial aspect of the stat ionary state is a consequence of the fact that
a good predictor is actively used by a large fract ion of the population, which
results in poor future perform ance.

The systems we consider here will add two important fea tures to the above
ystem: contra rians and an evolut ionary dynamics. These two elements are

essent ial to the appeara nce of volati lity clustering.
The fact that the signa l becomes trivial when every player possesses all

predictors motivates the addit ion of cont ra rian st ra tegies. Namely, if a given
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predictor has been the most successful at recent predict ions (i.e., its erro r is
smallest among all predictors), then in the origina l system the majority of
the population is using this predictor to make decisions. The exac t fraction
depends upo n Land iVI in a simple way. It would clearly be advantageous for
a player to use this predictor as a contra rian, that is, to make a decision at
variance with what the predictor suggests . Thi s would result in visiting the
bar duri ng nights of low attendance, and staying home when it is crowded , at
least while the system remains in the state where a large fract ion of players
are following the same predictor in t he usual pro t rarian way.

T he dist inct ion between pro t rar ians and cont rarians is cruc ial to wha t
follows. Allowing contra rian behav ior is not equivalent to doub ling th e pre­
dictor set . Specifically, a contrar ian using a predictor is not th e same as a
prot rarian using the reflection of the predictor , because the reflected predic­
tor will have a high error when the origina l predictor has a low error . When
a player is current ly using its best predictor as a pro trarian, it will attend if
this predictor suggests a low turnout ; if th e best predictor is being used as
a contrarian , th e player will atte nd if t his predictor suggests a high turnout .
The effect on the success of the predictor is manifest ly different in the two
cases. The actions of protrarians undermine t he success of a predictor, while
cont rarians enhance the success . In these systems, if the best predicto r hap­
pens to be used by nearly the same number of cont rarians and protrarians,
it can remain the best predictor for some time. Without contrarians, this is
not possible.

The second feature added to t hese systems is an evolut ionary dynamics:
players that perform poorly (e.g., too often at te nd on busy nights and stay
home on quiet nights) are replaced (see [9] for a discussion of the evolut ion
of st rategies in a model of stock tr aders). It is this at t ribute that allows
for interesting dynamics in the numb er of pro tr ar ians and contr ar ians using
given predictor s. Specifically, the density of cont ra rian st rategies converges
to a value much higher than the density at which it was int rod uced . The
signals generated by these systems are interest ing in th at clearly discern ible
regions of high and low volat ility arise. Figure 2 contains a realization of
such a time series for a system with M = 40 predictors, where each player
holds L = 25 predictors. This value of L is much larger than that used later
in this pap er , and was selected here solely to make th e volatility clust ering
clearly discern ible.

In the next sect ion, we describ e the precise dynami cs of t he two systems.
Th e third sect ion describes simulat ion results. Here we show realizations of
the processes as the number of predictor s assigned t o each player varies, and
as the probabi lity of genera t ing cont ra rians is adjusted . We will also show
how the density of contra rian st rategies converges to limiting values which
are relatively independent of the rate at which contra rians are generated. In
addit ion, we discuss the dist ributions of the signal values and block variances .
Most importantly, we show plots of th e conditional variance of the next
signal value given the previous value. These plots establish the appearance
of clustered volat ility when contr ar ians are present.
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Figure 2: Sample signal X n of 500 time steps for systems with L = 25
predictors held by each player out of a possible 40 after equilibration of
the system with contrarians ( P eon = .5) and with removal (8 = 100).

2. Th e systems

T he systems we consider generate signals with values in the interval [-1, 1].
T here will be a total of M possible predictors <Pj , 1 ::::: j ::::: M , which are
funct ions that map the history of the signal to the interval [- 1, 1]:

(1)

These funct ions genera te the predictions at each t ime ste p. Typically t he
<p/s used in our simulations are generated randomly from some rest ricted
class of funct ions (this results in a quenched disord er in the syst em). Each
predictor <Pj is also accompanied by an err or denoted by ej , the evolut ion of
which will be described shortly.

T he numb er of players in the game will be denoted by N . Each player
is assigned L predictors. We will view each player as being defined by a
vector of length L , (i l , .. . , i L ) , where the magnitude of the ent ries prescribes
the predictors and the sign indicates protrari an / contrari an modes. So, for
example, if L = 3 and a player is defined by the vector (-3 , 5, 8) , then it has
predictors 3, 5, and 8 at it s disposal. It is a contra rian with respect to 3 and
a protrari an with respect to 5 and 8. Initially, each player is generated by
assigning L random ly selected predictor s, and making each of the predictor s
cont rarian wit h probabi lity Peon . Here Peon is a parameter which denotes the
probability that a newly assigned predictor will be used in cont rarian mode.
Note that Peon need not be, and in fact is typ ically very different from, the
stat ionary density of predictors used by the players in contra rian mode, as
will be seen later .

Based upon the actions of its predictors on the history (. .. , Xn -I , X n)
each player i will adopt a state si (n + 1) tha t is eit her 1 or -1 (analogous
to visiting the bar or stay ing home). This is done in the following way.
Each player i selects th e predictor with the lowest err or from its available
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predictors <Pi, . . . , <PL' This predictor, denoted by eI>:" generat es a prediction
for the next value of the signal: X'~+ 1 = eI>~ [( ... ,X n - 1, X n ) ]. The player then
acts in the following way:

(A) If player i is protraruui with respect to eI>:" then si (n + 1) takes the
opposit e sign of the predictio n X~+l '

(B) If player i is contrarian with respect to eI>:" then s, (n + 1) takes the
same sign of the prediction X~+I '

Remark. Actions (A) and (B) are analogous to the concept of each player
visiting th e bar (prot rar ian mode) or staying home (contrarian mode) when
its active predictor predicts a less crowded night.

The value of the signal at t he next time t = n + 1 is th e average

1 N
X n+1 = N L si (n + 1). (2)

i= 1

Once thi s new signal value is generat ed, two things must be done:

(i) P layers doing well duri ng this time step are rewarded.

(ii) The updated predictor err ors are calculated.

Regarding the first task (i) , player i is considered to have "won" if the
sign of si (n + 1) is different than X n+1 . This is analogous to visit ing the
bar during a time of low attendance or st aying home dur ing a busy t ime.
An import ant feature of the system is that players th at perform poorly are
replaced. Thi s can be done in a variety of ways without significant changes in
the propert ies of the syste m. The meth od used here is to prescribe a t hreshold
integer 8. As th e system evolves, a count er for each individual is updated
t ha t denotes the difference between the num ber of "wins" and the numb er
of "losses," bounded in magnitu de by 8. When an indi vidu al's counter drops
below -8 it is replaced with a randomly chosen set of L predictors, again
with probability P eon that a predictor being used is in cont rar ian mode. T he
count er is th en reset to zero .

To accomplish the second task (ii), the errors ofthe predictor s are updated
according to the rule

ej (n + 1) = aej (n ) + (3j (n + 1) + zj(n + 1) (3)

where 0 < a < 1 and

(3 (n + 1) = {O if sign{<Pj [(. . . ,Xn~l , X n)]} = sign (Xn +d · (4)
J 1 oth erwise

Therefore, predictor <Pj is hur t by predict ing a value of the wrong sign. The
parameter a specifies the memory of the predictors. The last term in (3) ,
Zj (n + 1), is a sequence of independent rando m variables with a uni form dis­
tribution on [0,5] which elimina tes degeneracies ar ising from th e simple form
of {3j in (4). T he width of the distributions 5 can be arbit rarily small without
affecting the results (we t ake 5 = .01 in our simulat ions). The Markovian
form of the error upd at e is particularly convenient both in simulat ion and
analysis.
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(5)

For our simulations we restr ict our attent ion to a class of Linear Predictor
Models in which the predictors <Pj are linear functions mapping a finite range
R of the history of the signal to a real number corresponding to the projected
value of the signal in the next t ime step:

R

<Pj [( .. . , X n - 1 , X n )] = L "(jk Xn-k .

k=l

The coefficients "(j k are generated randomly. For example, in the simulat ions
discussed below these coefficients are independently selected from a normal
dist ribut ion with mean zero and standard deviation 0.4 as the system i ini­
tialized , an d remain fixed for the duration of the simulat ion. T his par t icular
space of predictors contains many of th e ad hoc pr edictors used by Arthur .

Unless otherwise sta ted, the following parameters are fixed:

(i) The numb er of players: N = IDOL

(ii) The number of predictor : M = 40.

(iii) T he range of the predictors: R = 4.

(iv) The threshold for removal: e= 100.

R emark. The qualitat ive nature of the results does not seem to depend
in any significant way on the precise values of these parameters. Further­
more, the phenomena described below are also observed i n systems where
the predictors are selected from different function spaces . For example, we
have exam ined a class of systems wit h predictors selected from a class of
non linear functions which only act on the last value of the signa l (R = 1),
and the qualitative behavior of these systems app ears similar to that of the
Linear Pr edictor Models discussed here.

T hose parameters which have a significant effect on the behavior of the
syste m are:

(i) Peon: the probability of a newly assigned predictor being used in con­
t rar ian mode.

(ii) L: the numb er of predictors assigned to each player.

T he qualitat ive nature of the results is as follows. In the absence of con­
trarians (i.e., with Peon = 0), the signal does not exhibit clust ered volat ility.
In the presence of cont ra rians (Peon> 0), the distri bu tion of the number of
predictors in cont ra rian mode increases from an initial density of Peon to a
limiting value which is just under a half, and is rath er independent of the
value of Peon. The time series genera ted by systems with Peon > 0 show clus­
tered volat ility (described in more detail below) to a degree which seems to
increase with L.

Next we discuss the detailed results.
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Figure 3: Sample signals X n of 500 time steps for systems with L = 5
predictors held by each player out of a possible 40 after equilibrat ion of
the system. 3(a) is for the system with Peon = 0 (without contrarians);
3(b) is with Peon = .5. Note that the signal values X n are reduced
considerably with the addition of contrarians.

3.1 Sample signals

Figur es 3 and 4 contain realiza tions of the time series generated by the system
for severa l parameter values. In Figur es 3(a) and 3(b), we show the system
where each player has L = 5 predictor s out of 40 possible with Peon = 0
and Peon = .5, respect ively. Note that in each case th e signal seems roughly
centered around zero. However, the standard deviation for the system with
Peon = 0 is approxima tely 0.3458 while th e standa rd deviation takes a much
smaller value of 0.0201 when P eon = .5. Figures 4(a) and 4(b ) show the
same plots for th e system with L = 15. Once again the signa ls are roughly
centered at zero, but have very different standa rd deviations: 0.5835 and
0.0238, respectively. In each case , visual comp ar ison seems to point to more
struc ture in the presence of contrarians.

3 .2 Density of contrarians and equilibration

Before discussing det ailed statist ics of the stationary processes generated by
these systems we first ment ion an interesting feature which was used to as­
certain if the systems have reached their stat ionary states . In Figures 5(a)
and 5(b) , we show the fraction of predictors used in contra rian mode as a
function of time for the syst ems with L = 5 and L = 15, respectively, for
various values of P eon . The density of cont rar ians at time t , denoted by c(t ),
is calculated by averaging th e fraction of predictors used in cont rarian mode
over consecut ive t ime intervals of sizes 2k x 104 ending at t. An inte rest ing
feature is tha t the density converges to a limiting density which can be sig­
nificant ly different from Peon . Wh en Peon = .5, the system decreases to an
equilibrium density of cont ra rians which is approximately .489. The fact that
the limit ing dens ity is less than .5 is a real feature and not merely a conse-
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Figure 4: Sample signal X n of 500 t ime steps for systems wit h L = 15
predictors held by each player out of a possible 40 afte r equilibration
of t he system. 4(a) is wit h Peon = 0; 4( b) is wit h P eon = .5. As in
Figur e 3, t he amplit ude of X n is reduced considerably by contrarians.
In ad dition , compa rison wit h F igure 3 shows that larger values of L
are associated wit h a higher variance in X n .

quence of a finite number of players. When Peon = .1 t he density increases
to approximately .481. This increase is du e to the fact that if protrarians
abound, it is genera lly lucrative t o be a cont rar ian . Consequent ly, when Peon
is small but positive, prior to equilibration, players removed due to poor
performance are predominantly protrari an.

We use the convergence illust rated in Figur e 5 as a criterion for the conver­
gence of the system to its st ationary state. When the density of cont rarians
stabilizes to wit hin a given to lerance (.001) of the limit ing value we begin
genera ting our sample statis tics .

3.3 Di stributions

We now discuss the distribut ions of the signal values and the local variance.
Figures 6(a) and 6(b) contain the empirical densit ies f( x ) of the signa l values
x for L = 5 with Peon = 0 and Peon = .5, respect ively. Figures 7(a) and
7(b ) show the same densiti es for L = 15. Note that the variance of the
signal is reduced considera bly by t he presence of contrarians . The rap id
cha nge in monotonicity of th e density shown in 6(b ) and 7(b) is due to the
discrete nature of the system and to th e quenched disorder in th e predictor s.
It is conceivable t ha t averaging over the initial distribution of the random
predictors yields a smoot h density. F igur e 8(a) shows t he stat ionary density
f (v ) of a local variance v when Peon = 0 for L = 5 and L = 15. By this we
mean tha t the distribu t ion of the var iance v of the t ime series over windows
of 20 t ime steps is calculated. Figure 8(b) is similar, but wit h Peon = .5
for the two systems. Note that the increase in L from 5 to 15 results in a
not iceable broadening of the dist ribution of the local variance. Also note
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Figure 5: Th e rat io c(t) of the number of predictors held in contrarian
mode to the total number of predictors held (LNI) averaged over
consecut ive time intervals of length 2k x 104 for integer k ending at
t. Figure 5(a) is for L = 5. Squares show the t race when Peon = .5,
crosses when Peon = .3, and diamonds when Peon = .1. Note that for
these different values of Peon , the equilibrium density of contrarians is
nearly the same and is less than .5. Figure 5(b) is the same as 5(a)
for a system with L = 15. Note the much slower rat e of convergence
when Peon = .1.

that the addit ion of cont rarians reduces the variance significantly.

3.4 Cond itional variances

One measur e of how the variance of X n depends up on the history up to t ime
n - 1 is

(6)

where E [Xn I X n - 1] denotes the condit ional expect at ion of x; given X n - 1 .

The condit ional variance (6) is a fun ct ion of X n - 1 and a simple qu an ti ta­
t ive measure of how the vola tili ty of the up com ing value is condit ionally
depend ent on the history of the signal.

R em ark. T he simplest time series mod els which uti lize such condit ional
variances are the ARC H models [10] in which

and
q

(J~ = (30+ L (3iX~_i
i= l

(7)

where Zn are i.i.d. mean zero random variables. The main point is that the
variance of the up coming signal value depend s on the history of the signal.
If all of the (3;'s in (7) are positi ve and if the recent history of the time series
is volat ile (t hat is, high values of X~_i) ' t hen the variance of the up coming
value is high. Conversely, condit ioning on low values of xLi resul ts in a
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Figure 6: The stationary probability density f( x ) of the signal values
for L = 5. 6(a) is with Peon = 0 and 6(b) is with Peon = .5. The lack of
smoothness of the density in 6(b) is an at tribute of the discrete nat ure
of th e system, both in the number of players and in the number of
str at egies.
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Figure 7: The stationary probability density f (x) of the signal values
for L = 15. 7(a) is with Peon = 0 and 7(b) is with Peon = .5. Note the
st riking change in appearanc e of f (x ) when Peon = 0 as L is increased
from 5 to 15 (compare with 6(a) and 7(a)).

diminished variance for the upcoming value . Such an ARCH process would ,
t herefore, exhibit clustered volatility. In genera l, one must consider the vari­
ance of X n condit ioned upon t he ent ire history of the signa l and, in fact , a
major considerat ion in time series mo deling is determining how far back the
conditioning is pertinent.

T he conditional variance wit h which we work is conditi oning only on the
last signal value- this will be more than adequate to illustrate interesting
behavior. In Figures 9(a) and 9(b) , we plot t he conditio nal variance for
a system wit h L = 5, and Peon = 0 and Peon = 0.5, resp ecti vely. Here
ve (x) = Var[X n I X n - 1 = x] as defined in (6). F igures 10(a) and 10(b) are
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ance over blocks of 20 t ime steps. 8(a) is with Peon = 0: the solid plot
is for L = 5 and the dashed plot is for L = 15. 8(b) is th e same with
Peon = .5.

0.16 0. 8

0.14
0 .6

0. 12 co
I

~---- 0
:x:

0 .10
......

0.4"-'
~0

:> "-'

0 .08 0
:>

0 2
(b)0 .0 6

0 .0 4 0 .0
- 0 .5 0.0 0 .5 - 0 .05 0 .00 0 .05

X X

Figure 9: The conditional variance ve(x) = Var[Xn I X n - 1 = z] for
L = 5. 9(a) is with Peon = 0 and 9(b) is with Peon = .5. The addition
of contrarians results in a clearly enhanced volat ility at extreme values
of x, that is, clustered volatility. Without contrarians, 9(a) shows a
reduced volat ility for extreme values of x .

similar, but for a system with L = 15. T he cont rast between the (a) and
(b) figur es is st riking. In the pr esence of cont rarians, it is clear that extreme
values of X n - 1 are associated wit h higher values of t he variance of X n . T his is
a manifestat ion of clustered volatility : if one condit ions on the cur rent signal
value being far from the un cond it ional mean (which is approximate ly zero) ,
then the signal is cur rent ly "volat ile," and the up coming value is of higher
variance than that wit hout the condit ioning. In the absence of cont rarians ,
t he opposite is t rue , wit h a suppressed var iance when the curre nt value is far
from th e origin.
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Figure 10: The conditional variance ve(x) for L = 15. 10(a) is with
Peon = 0 and 10(b) is with Peon = .5. The addition of contrarians
and the large value of L results in an even more striking display of
clustered variance than in 9(b).

3.5 Scaling

Next we examine the partial sums of the signals: Sn = I:?=l X i. In par ticular,
we observe the scaling of Var(Sn) for large n . Simulations ind icate the usual
diffusion scaling Var (Sn) ~ O"n . T he value of 0" varies as L varies, and with
the addition of cont rarians. For L = 5, Peon = a results in 0" :::::; .122 and
Peon = .5 yields 0" :::::; .0005. For L = 15, we have Peon = a when 0" :::::; .308 and
Peon = .5 when 0" :::::; .0009.

3 .6 Conclusions

T he results present ed here show that a variety of nontr ivial t ime series can
be generated from rela tively simple systems. Of par ticular note is the ap­
pear ance of clustered volatility when cont ra rian behavior and evolut ionary
dynamics is int roduced. While the presence of clustered volatility in many
financial signals is well established empirically, plausible mechanisms for its
origin have been elusive.

The syste ms and results discussed here are not to be taken as particu­
larly realistic models of real economic agents. Rath er, the fact that these
simple adaptive syste ms can exhibit behavior which is observed in real eco­
nomic signals and which is largely unexplained makes fur ther work in this
area compelling. Analysis of such adaptive interact ing systems will presum­
ably require techniques outside of the realm of equilibrium theory. In these
systems the agents do not reach a fixed point in the st ra teg ies that they
adopt- the agents' "percept ions" (primitive as they are) of their optimal
st ra tegies are evolving and highly coupled . The stationary behavior of these
systems is cha racterized not by fixed probability distributions offuture events
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and an optim al allocat ion of resour ces, bu t by a stationary pro cess on the
(ra ther large) state space of the st rategies used by each of the players.

There ar e many direct ion for fut ure work. T he tas ks involved in analysis
are cha llenging , even for the simple systems discussed here. However, it would
be desirable to rigorously establish some attributes for both the stationary
distr ibu tion of the players' strategies and the resulting t ime series. T here is
also the app ealing prospect of est ablishing diffusion (conti nuous t ime) limi ts
of th e t ime series (e.g., as t he number of players diverge). There are also a
mult it ude of direct ions to explore in simula tions by expanding the predictor
set and th e players' st ra tegies for using them. On a purely sta tis tical note,
it would be interesting to consider how well common time series techniques
such as ARCH or GARCH models fit the signals generated by these adaptive
systems. Perhaps the most pract ical endeavor will be to see just how useful
these systems are in modeling real fina ncial data.
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