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Abstract. We introduce a new origin of volatility clustering in eco-
nomic time series generated by systems of interacting adaptive agents.
Each agent is assigned a random subset of a fixed collection of predic-
tors. At every time step each agent generates an action based upon
its assigned predictors. Some agents are contrarians, that is, they act
at variance with the natural action suggested by a predictor. Agents
that perform poorly are replaced. At each time step the signal value
is generated solely by the cumulative actions of the agents on the cur-
rent history of the time series. We observe numerically that under
the dynamics induced by the removal of poor performers, even when
contrarians are introduced at a very low density, the system evolves
to a state in which contrarians comprise nearly half of the popula-
tion. Furthermore, the time series generated by these systems exhibits
volatility clustering. Elimination of either the contrarian behavior or
the removal of poor players precludes volatility clustering.

1. Introduction

Many time series in economics and finance exhibit a phenomenon called clus-
tered volatility, which refers to signals that display high volatility during some
intervals of time and low volatility at other times. Volatility clustering has
been observed in stock returns and related derivative securities [1, 2], interest
rates [3], and foreign exchange rates [4]. A variety of time series models have
been constructed and used in these and other works in an effort to character-
ize such signals statistically. However, progress in understanding the origins
of clustered volatility has been limited. A thorough literature survey describ-
ing existing empirical evidence of clustered volatility and related statistical
analyses is contained in [5].

In this paper we consider a class of adaptive systems which, through
the actions of competing agents, self-organize to states in which time series
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with clustered volatility are generated. Like the systems in [6] discussed
below, each new value of the signal is generated by the actions of players
making decisions based on a set of prescribed predictors applied to the current
history of the signal. However, the systems which we consider here have
two additional features. First, contrarians—players which act “against” the
natural action indicated by a predictor—are introduced. Also, players which
perform poorly are replaced. This second feature provides for an evolutionary
dynamics, which, in conjunction with contrarians, yields interesting behavior.
In particular, we observe that even when contrarians are introduced at a low
rate the systems equilibrate with densities of contrarians just under a half.
Furthermore, the resulting signals exhibit regions of high and low volatility,
that is, clustered volatility. To the best of our knowledge, this is a new
mechanism for the origin of this phenomenon.

In addition to the purely academic pursuit of understanding the origin
of clustered volatility, there are countless practical financial applications of
models which generate realistic signals. Statisticians and econometricians
frequently use time series models to capture relevant features of financial sig-
nals such as clustered volatility, and then apply the results to price derivative
securities. However, such methods are intrinsically limited to the modeler’s
ability to select a tractable class of time series models that estimate particular
attributes of the financial signal to a reasonable degree of accuracy. Adap-
tive systems such as those discussed below could potentially be calibrated to
model financial signals directly.

The systems that we examine here are motivated by the work of W. B.
Arthur. In [7], Arthur suggests the importance of the formation of beliefs
of economic agents in an inductive procedure, and sketches a framework in
which one could construct a population of “investors,” each formulating its
current hypothesis about the present state of a market by applying a set of
predictors on the history of a financial signal. The signal itself is generated
by the actions of the investors, which are boundedly rational. This train of
thought is one of a variety of suggested departures from equilibrium theory
and the associated assumption of rational expectations, in which investors or
agents solve optimization problems given prescribed probability distributions
on future events. For a survey of work related to bounded rationality in
economic systems see [8].

An exceedingly simple system that captures much of the essence of [7], was
introduced in [6]. Arthur describes the model in essentially the following way.
A bar has 50 seats and a population of 100 people who consider patronizing
the bar each night. Every individual is “happy” if he chooses to visit the
bar on a night in which fewer than 50 people arrive (so that the bar is not
too crowded), and is “unhappy” if 50 or more people attend. A pool of M
(say M = 20) ad hoc predictors is constructed. For example, the predictors
could be: (1) the same as last night; (2) the same as two nights ago; (3) a
linear interpolation of the last three nights; and so on. Each individual is
randomly assigned a subset of L (1 < L < M) predictors. The key feature of
the system is that the attendance (signal) at time n+1 is generated solely by
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Figure 1: Sample signal X, of 500 time steps for systems with L =5
predictors held by each player out of a possible 40 after equilibration
of the system without contrarians (peon = 0) and without removal
(6 = 0).

the responses of the players to information contained in the signal up to time
n. Specifically, to generate a signal at a given time step, all predictors are
evaluated over a window of, say. the last 100 time steps, and ranked according
to the least square error in the predictions over this window. At each time
step, every player uses the prediction generated by the best predictor (lowest
error) of the L that it has been assigned. The decision of each player is to
visit the bar if its best predictor predicts an attendance of fewer than 50 or
conversely, to stay home if its best predictor anticipates attendance of 50 or
more. Aggregate attendance is calculated, and the procedure is iterated.

This system clearly generates a stationary process. It is also clear that
if L = M, then each player is in possession of all predictors, and the signal
will bounce between full attendance and zero attendance since the actions of
all players must coincide. Arthur’s insight is that if L < M, then the inho-
mogeneity of beliefs can yield a more interesting time series. A realization of
the signal generated by a process which is essentially identical to the system
described above with M = 40 predictors and each player holding L = 5 is
shown in Figure 1 (a signal value of zero in the figure corresponds to the
attendance of half the players in the bar problem). Another observation by
Arthur is that the system does not reach a trivial stationary state, insofar as
the set of predictors being used at each time step does not reach a fixed point.
This nontrivial aspect of the stationary state is a consequence of the fact that
a good predictor is actively used by a large fraction of the population, which
results in poor future performance.

The systems we consider here will add two important features to the above
system: contrarians and an evolutionary dynamics. These two elements are
essential to the appearance of volatility clustering.

The fact that the signal becomes trivial when every player possesses all
predictors motivates the addition of contrarian strategies. Namely, if a given



78 E. R. Grannan and G. H. Swindle

predictor has been the most successful at recent predictions (i.e., its error is
smallest among all predictors), then in the original system the majority of
the population is using this predictor to make decisions. The exact fraction
depends upon L and M in a simple way. It would clearly be advantageous for
a player to use this predictor as a contrarian, that is, to make a decision at
variance with what the predictor suggests. This would result in visiting the
bar during nights of low attendance, and staying home when it is crowded, at
least while the system remains in the state where a large fraction of players
are following the same predictor in the usual protrarian way.

The distinction between protrarians and contrarians is crucial to what
follows. Allowing contrarian behavior is not equivalent to doubling the pre-
dictor set. Specifically, a contrarian using a predictor is not the same as a
protrarian using the reflection of the predictor, because the reflected predic-
tor will have a high error when the original predictor has a low error. When
a player is currently using its best predictor as a protrarian, it will attend if
this predictor suggests a low turnout; if the best predictor is being used as
a contrarian, the player will attend if this predictor suggests a high turnout.
The effect on the success of the predictor is manifestly different in the two
cases. The actions of protrarians undermine the success of a predictor, while
contrarians enhance the success. In these systems, if the best predictor hap-
pens to be used by nearly the same number of contrarians and protrarians,
it can remain the best predictor for some time. Without contrarians, this is
not possible.

The second feature added to these systems is an evolutionary dynamics:
players that perform poorly (e.g., too often attend on busy nights and stay
home on quiet nights) are replaced (see [9] for a discussion of the evolution
of strategies in a model of stock traders). It is this attribute that allows
for interesting dynamics in the number of protrarians and contrarians using
given predictors. Specifically, the density of contrarian strategies converges
to a value much higher than the density at which it was introduced. The
signals generated by these systems are interesting in that clearly discernible
regions of high and low volatility arise. Figure 2 contains a realization of
such a time series for a system with M = 40 predictors, where each player
holds L = 25 predictors. This value of L is much larger than that used later
in this paper, and was selected here solely to make the volatility clustering
clearly discernible.

In the next section, we describe the precise dynamics of the two systems.
The third section describes simulation results. Here we show realizations of
the processes as the number of predictors assigned to each player varies, and
as the probability of generating contrarians is adjusted. We will also show
how the density of contrarian strategies converges to limiting values which
are relatively independent of the rate at which contrarians are generated. In
addition, we discuss the distributions of the signal values and block variances.
Most importantly, we show plots of the conditional variance of the next
signal value given the previous value. These plots establish the appearance
of clustered volatility when contrarians are present.
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Figure 2: Sample signal X, of 500 time steps for systems with L = 25
predictors held by each player out of a possible 40 after equilibration of
the system with contrarians ( peon = .5) and with removal (8 = 100).

2. The systems

The systems we consider generate signals with values in the interval [—1,1].
There will be a total of M possible predictors ®;, 1 < j < M, which are
functions that map the history of the signal to the interval [—1, 1]:

@ (., Xty Xn) — [-1,1] (1)

These functions generate the predictions at each time step. Typically the
®;’s used in our simulations are generated randomly from some restricted
class of functions (this results in a quenched disorder in the system). Each
predictor ®; is also accompanied by an error denoted by e;, the evolution of
which will be described shortly.

The number of players in the game will be denoted by N. Each player
is assigned L predictors. We will view each player as being defined by a
vector of length L, (iy,...,i.), where the magnitude of the entries prescribes
the predictors and the sign indicates protrarian/contrarian modes. So, for
example, if L = 3 and a player is defined by the vector (—3, 5, 8), then it has
predictors 3, 5, and 8 at its disposal. It is a contrarian with respect to 3 and
a protrarian with respect to 5 and 8. Initially, each player is generated by
assigning L randomly selected predictors, and making each of the predictors
contrarian with probability peon. Here peon is a parameter which denotes the
probability that a newly assigned predictor will be used in contrarian mode.
Note that peon need not be, and in fact is typically very different from, the
stationary density of predictors used by the players in contrarian mode, as
will be seen later.

Based upon the actions of its predictors on the history (..., X,—1, X,)
each player i will adopt a state s;(n + 1) that is either 1 or —1 (analogous
to visiting the bar or staying home). This is done in the following way.
Each player 7 selects the predictor with the lowest error from its available
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predictors ®¢, ..., ®%. This predictor, denoted by <i>fl., generates a prediction
for the next value of the signal: X! | = ®4[(..., X,—1,X,)]. The player then
acts in the following way:
(A) If player i is protrarian with respect to ®i . then s;(n + 1) takes the
opposite sign of the prediction X, ;.

(B) If player i is contrarian with respect to @i, then s;(n + 1) takes the
same sign of the prediction Xflﬂ.
Remark. Actions (A) and (B) are analogous to the concept of each player
visiting the bar (protrarian mode) or staying home (contrarian mode) when
its active predictor predicts a less crowded night.
The value of the signal at the next time ¢ = n + 1 is the average
N
Xny1 = sti(nJrl)- (2)
i=1
Once this new signal value is generated, two things must be done:
(i) Players doing well during this time step are rewarded.
(ii) The updated predictor errors are calculated.

Regarding the first task (i), player i is considered to have “won” if the
sign of s;(n + 1) is different than X, ;. This is analogous to visiting the
bar during a time of low attendance or staying home during a busy time.
An important feature of the system is that players that perform poorly are
replaced. This can be done in a variety of ways without significant changes in
the properties of the system. The method used here is to prescribe a threshold
integer 6. As the system evolves, a counter for each individual is updated
that denotes the difference between the number of “wins” and the number
of “losses,” bounded in magnitude by 8. When an individual’s counter drops
below —6 it is replaced with a randomly chosen set of L predictors, again
with probability peon that a predictor being used is in contrarian mode. The
counter is then reset to zero.

To accomplish the second task (ii), the errors of the predictors are updated
according to the rule

eiin+1) =aej(n)+B;(n+1)+zn+1) (3)
where 0 < @ < 1 and
ﬂj(n + 1) _ { 0 IfS]gH{(bJ[( % ~,Xn71~, Xn)}} = sign(XnH). (4)
1 otherwise

Therefore, predictor ®; is hurt by predicting a value of the wrong sign. The
parameter « specifies the memory of the predictors. The last term in (3),
z;j(n+1), is a sequence of independent random variables with a uniform dis-
tribution on [0, 8] which eliminates degeneracies arising from the simple form
of §; in (4). The width of the distributions ¢ can be arbitrarily small without
affecting the results (we take § = .01 in our simulations). The Markovian
form of the error update is particularly convenient both in simulation and
analysis.
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3. Results from simulations

For our simulations we restrict our attention to a class of Linear Predictor
Models in which the predictors ®; are linear functions mapping a finite range
R of the history of the signal to a real number corresponding to the projected
value of the signal in the next time step:

R
(I)j[(~ oy Xn1, Xn)] = Z VikXn—k- (5)

k=1

The coefficients v;; are generated randomly. For example, in the simulations

discussed below these coefficients are independently selected from a normal

distribution with mean zero and standard deviation 0.4 as the system is ini-

tialized, and remain fixed for the duration of the simulation. This particular

space of predictors contains many of the ad hoc predictors used by Arthur.
Unless otherwise stated, the following parameters are fixed:

(i) The number of players: N = 1001.

)
(ii) The number of predictors: M = 40.
ii) The range of the predictors: R = 4.
)

(i
(iv) The threshold for removal: 6 = 100.

Remark. The qualitative nature of the results does not seem to depend
in any significant way on the precise values of these parameters. Further-
more, the phenomena described below are also observed in systems where
the predictors are selected from different function spaces. For example, we
have examined a class of systems with predictors selected from a class of
nonlinear functions which only act on the last value of the signal (R = 1),
and the qualitative behavior of these systems appears similar to that of the
Linear Predictor Models discussed here.

Those parameters which have a significant effect on the behavior of the
system are:

(1) peon: the probability of a newly assigned predictor being used in con-
trarian mode.

(il) L: the number of predictors assigned to each player.

The qualitative nature of the results is as follows. In the absence of con-
trarians (i.e., with peon = 0), the signal does not exhibit clustered volatility.
In the presence of contrarians (peo, > 0), the distribution of the number of
predictors in contrarian mode increases from an initial density of peo, to a
limiting value which is just under a half, and is rather independent of the
value of peon. The time series generated by systems with peon, > 0 show clus-
tered volatility (described in more detail below) to a degree which seems to
increase with L.

Next we discuss the detailed results.
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Figure 3: Sample signals X,, of 500 time steps for systems with L = 5
predictors held by each player out of a possible 40 after equilibration of
the system. 3(a) is for the system with peon = 0 (without contrarians);
3(b) is with peon = .5. Note that the signal values X, are reduced
considerably with the addition of contrarians.

3.1 Sample signals

Figures 3 and 4 contain realizations of the time series generated by the system
for several parameter values. In Figures 3(a) and 3(b), we show the system
where each player has L = 5 predictors out of 40 possible with peon, = 0
and peon = .5, respectively. Note that in each case the signal seems roughly
centered around zero. However, the standard deviation for the system with
Peon = 0 is approximately 0.3458 while the standard deviation takes a much
smaller value of 0.0201 when pe,, = .5. Figures 4(a) and 4(b) show the
same plots for the system with L = 15. Once again the signals are roughly
centered at zero, but have very different standard deviations: 0.5835 and
0.0238, respectively. In each case, visual comparison seems to point to more
structure in the presence of contrarians.

3.2 Density of contrarians and equilibration

Before discussing detailed statistics of the stationary processes generated by
these systems we first mention an interesting feature which was used to as-
certain if the systems have reached their stationary states. In Figures 5(a)
and 5(b), we show the fraction of predictors used in contrarian mode as a
function of time for the systems with L = 5 and L = 15, respectively, for
various values of peon. The density of contrarians at time ¢, denoted by ¢(t),
is calculated by averaging the fraction of predictors used in contrarian mode
over consecutive time intervals of sizes 2¥ x 10* ending at ¢. An interesting
feature is that the density converges to a limiting density which can be sig-
nificantly different from peon. When peon = .5, the system decreases to an
equilibrium density of contrarians which is approximately .489. The fact that
the limiting density is less than .5 is a real feature and not merely a conse-
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Figure 4: Sample signal X, of 500 time steps for systems with L = 15
predictors held by each player out of a possible 40 after equilibration
of the system. 4(a) is with peon = 0; 4(b) is with peon = .5. As in
Figure 3, the amplitude of X, is reduced considerably by contrarians.
In addition, comparison with Figure 3 shows that larger values of L
are associated with a higher variance in X,,.

quence of a finite number of players. When p.,, = .1 the density increases
to approximately .481. This increase is due to the fact that if protrarians
abound, it is generally lucrative to be a contrarian. Consequently, when p.on
is small but positive, prior to equilibration, players removed due to poor
performance are predominantly protrarian.

We use the convergence illustrated in Figure 5 as a criterion for the conver-
gence of the system to its stationary state. When the density of contrarians
stabilizes to within a given tolerance (.001) of the limiting value we begin
generating our sample statistics.

3.3 Distributions

We now discuss the distributions of the signal values and the local variance.
Figures 6(a) and 6(b) contain the empirical densities f(z) of the signal values
z for L = 5 with peon = 0 and peon = .5, respectively. Figures 7(a) and
7(b) show the same densities for L = 15. Note that the variance of the
signal is reduced considerably by the presence of contrarians. The rapid
change in monotonicity of the density shown in 6(b) and 7(b) is due to the
discrete nature of the system and to the quenched disorder in the predictors.
It is conceivable that averaging over the initial distribution of the random
predictors yields a smooth density. Figure 8(a) shows the stationary density
f(v) of alocal variance v when peon = 0 for L = 5 and L = 15. By this we
mean that the distribution of the variance v of the time series over windows
of 20 time steps is calculated. Figure 8(b) is similar, but with peo, = .5
for the two systems. Note that the increase in L from 5 to 15 results in a
noticeable broadening of the distribution of the local variance. Also note
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Figure 5: The ratio ¢(t) of the number of predictors held in contrarian
mode to the total number of predictors held (LM) averaged over
consecutive time intervals of length 2% x 10% for integer k ending at
t. Figure 5(a) is for L = 5. Squares show the trace when peon = .5,
crosses when peon = .3, and diamonds when peon, = .1. Note that for
these different values of pcon, the equilibrium density of contrarians is
nearly the same and is less than .5. Figure 5(b) is the same as 5(a)
for a system with L = 15. Note the much slower rate of convergence
when peon = .1.

that the addition of contrarians reduces the variance significantly.

3.4 Conditional variances

One measure of how the variance of X,, depends upon the history up to time
n—1is

Var[X, | Xp_1] = E[X2 | Xna] — (E[Xn | X"*I])2 ©)

where E[X,, | X,,—1] denotes the conditional expectation of X, given X, ;.
The conditional variance (6) is a function of X,_; and a simple quantita-
tive measure of how the volatility of the upcoming value is conditionally
dependent on the history of the signal.

Remark. The simplest time series models which utilize such conditional
variances are the ARCH models [10] in which

q
Xn=0nZy and ol =Gy + Z B X2, (7

i=1
where Z,, are i.i.d. mean zero random variables. The main point is that the
variance of the upcoming signal value depends on the history of the signal.
If all of the §;’s in (7) are positive and if the recent history of the time series
is volatile (that is, high values of X2 ), then the variance of the upcoming

value is high. Conversely, conditioning on low values of X2 _; results in a
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Figure 6: The stationary probability density f(x) of the signal values
for L =5. 6(a) is with peon = 0 and 6(b) is with peon = .5. The lack of
smoothness of the density in 6(b) is an attribute of the discrete nature
of the system, both in the number of players and in the number of

strategies.
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Figure 7: The stationary probability density f(x) of the signal values
for L = 15. 7(a) is with peon = 0 and 7(b) is with peon = .5. Note the
striking change in appearance of f(z) when peon = 0 as L is increased
from 5 to 15 (compare with 6(a) and 7(a)).

diminished variance for the upcoming value. Such an ARCH process would,
therefore, exhibit clustered volatility. In general, one must consider the vari-
ance of X,, conditioned upon the entire history of the signal and, in fact, a
major consideration in time series modeling is determining how far back the
conditioning is pertinent.

The conditional variance with which we work is conditioning only on the
last signal value—this will be more than adequate to illustrate interesting
behavior. In Figures 9(a) and 9(b), we plot the conditional variance for
a system with L = 5, and pen, = 0 and peon = 0.5, respectively. Here
ve(z) = Var[X,, | X,—1 = ] as defined in (6). Figures 10(a) and 10(b) are
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Figure 9: The conditional variance v.(z) = Var[X,, | X,—1 = z] for
L =5. 9(a) is with peon = 0 and 9(b) is with peon = .5. The addition
of contrarians results in a clearly enhanced volatility at extreme values
of x, that is, clustered volatility. Without contrarians, 9(a) shows a
reduced volatility for extreme values of z.

similar, but for a system with L = 15. The contrast between the (a) and
(b) figures is striking. In the presence of contrarians, it is clear that extreme
values of X,,_; are associated with higher values of the variance of X,,. This is
a manifestation of clustered volatility: if one conditions on the current signal
value being far from the unconditional mean (which is approximately zero),
then the signal is currently “volatile,” and the upcoming value is of higher
variance than that without the conditioning. In the absence of contrarians,

the opposite is true, with a suppressed variance when the current value is
from the origin.

far
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Figure 10: The conditional variance v.(z) for L = 15. 10(a) is with
Peon = 0 and 10(b) is with peon = .5. The addition of contrarians
and the large value of L results in an even more striking display of
clustered variance than in 9(b).

3.5 Scaling

Next we examine the partial sums of the signals: S,, = > ; X;. In particular,
we observe the scaling of Var(S,,) for large n. Simulations indicate the usual
diffusion scaling Var(S,) ~ on. The value of o varies as L varies, and with
the addition of contrarians. For L = 5, peon = 0 results in o &~ .122 and
Peon = -0 yields o = .0005. For L = 15, we have peo, = 0 when o =~ .308 and
Peon = -5 when o = .0009.

3.6 Conclusions

The results presented here show that a variety of nontrivial time series can
be generated from relatively simple systems. Of particular note is the ap-
pearance of clustered volatility when contrarian behavior and evolutionary
dynamics is introduced. While the presence of clustered volatility in many
financial signals is well established empirically, plausible mechanisms for its
origin have been elusive.

The systems and results discussed here are not to be taken as particu-
larly realistic models of real economic agents. Rather, the fact that these
simple adaptive systems can exhibit behavior which is observed in real eco-
nomic signals and which is largely unexplained makes further work in this
area compelling. Analysis of such adaptive interacting systems will presum-
ably require techniques outside of the realm of equilibrium theory. In these
systems the agents do not reach a fixed point in the strategies that they
adopt—the agents’ “perceptions” (primitive as they are) of their optimal
strategies are evolving and highly coupled. The stationary behavior of these
systems is characterized not by fixed probability distributions of future events
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and an optimal allocation of resources, but by a stationary process on the
(rather large) state space of the strategies used by each of the players.

There are many directions for future work. The tasks involved in analysis
are challenging, even for the simple systems discussed here. However, it would
be desirable to rigorously establish some attributes for both the stationary
distribution of the players’ strategies and the resulting time series. There is
also the appealing prospect of establishing diffusion (continuous time) limits
of the time series (e.g., as the number of players diverge). There are also a
multitude of directions to explore in simulations by expanding the predictor
set and the players’ strategies for using them. On a purely statistical note,
it would be interesting to consider how well common time series techniques
such as ARCH or GARCH models fit the signals generated by these adaptive
systems. Perhaps the most practical endeavor will be to see just how useful
these systems are in modeling real financial data.
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