Section 1

Introduction

The classical calculus of variations has been generalized. The maximum
principle for optimal control, developed in the late 1950s by L. S. Pontrya-
gin and his co-workers, applies to all calculus of variations problems. In
such problems, optimal control gives equivalent results, as one would
expect. The two approaches differ, however, and the optimal control
sometimes affords insights into a problem that might be less readily
apparent through the calculus of variations.

Optimal control also applies to problems for which the calculus of
variations is not convenient, such as those involving constraints on the
derivatives of the functions sought. For instance, one can solve problems
in which net investment or production rates are required to be nonnega-
tive. While proof of the maximum principle under full generality is well
beyond our scope, the now-familiar methods are used to generate some of
the results of interest and to lend plausibility to others.

In optimal control problems, variables are divided into two classes, state
variables and control variables. The movement of state variables is governed
by first order differential equations. The simplest control problem is one of
selecting a piecewise continuous control function u(t), t, <t <t,, to

max [ (e, x(0), u(t))dt m
subject to  x’(¢) = g(¢, x(1),u(1)), 2)
to, ty, x(ty) = xg fixed; x(¢,) free. 3)

Here f and g are assumed to be known and continuously differentiable
functions of three independent arguments, none of which is a derivative.
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The control variable u(t) must be a piecewise continuous function of time.
The state variable x(¢) changes over time according to the differential
equation (2) governing its movement. The control # influences the objec-
tive (1), both directly (through it own value) and indirectly through its
impact on the evolution of the state variable x (that enters the objective
(1)). The highest derivative appearing in the problem formulation is the
first derivative, and it appears only as the left side of the state equation (2).
(Equation (2) is sometimes also called the transition equation.) A problem
involving higher derivatives can be transformed into one in which the
highest derivative is the first, as will be shown later.

The prototypical calculus of variations problem of choosing a continu-
ously differentiable function x(z), 1, <t <1t to

max [ “f(e, x(0), x'(1)) dt
o @

subject to  x(7,) = x,

is readily transformed into an equivalent problem in optimal control. Let
u(t) = x’(t). Then the equivalent optimal control problem is

max fr'f(t, x(t), u(t)) dt
o )

subject to x'(t)=u(t), x(ty)=x,.

The state variable is x, while « is the control. For instance, our production
planning Example I1.1 appears as

min [ Tle,u?(0) + cyx(1)) dt
0

(6)
subject to x()=u(t), x(0=0, x(T)=B, u(t)=>0,

where the production rate u(¢) is the control and the current inventory on
hand x(¢) is the state variable. In this case, the objective is minimization
rather than maximization, and the terminal point is fixed rather than free.
These are typical variants from the initial format of (1) or (5).

While a calculus of variations problem (4) can always be put into an
optimal control format (5), it is not always the most natural or useful form.
For instance, Example I1.2 can be readily expressed as an optimal control
problem:

max [ Te—ru(c(ry)
(1]

subject to K’ = F(K(t))— C(¢t) — bK(1), @)
K0)=K,, K(T)=0, C@)>0.
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Here K(t) is the sole state variable; its rate of change is given in the
differential equation. There is one control variable, the rate of consump-
tion C(¢). Choice of C(¢) determines the rate of capital accumulation and
also the value of the objective function.

Likewise, Example 1.3 is readily expressed as a problem of optimal
control:

T
max fo e[ P(K(1)) — C(I(1))] dt

subject to K'(¢2) = I(¢) — bK(?), (8)
K0y=K,, K(T)=0, I()>0.

The objective 1s maximization of the discounted stream of profits, namely,
revenues attainable with capital stock K less the cost of capital investment.
Capital 1s augmented by gross investment but decays at exponential rate b.
The state variable is K; the control variable is 1.

An optimal control problem may have several state variables and several
control variables. Each state variable evolves according to a differential
equation. The number of control variables may be greater or smaller than
the number of state variables.

The optimal control results are developed in the next sections for
problems already solved by calculus of variations. This will develop
familiarity with the new notations and tools. New problems will then be
solved, and their use illustrated.

FURTHER READING

References on the techniques of optimal control theory include Pontryagin et al.
(1962), Berkovitz (1974, 1976), Bryson and Ho, Fleming and Rishel, Hestenes, and
Lee and Markus. In addition, there are a number of books that provide an
introduction to the theory as well as discussion of applications in economics and
management science; these include books by Hadley and Kemp, Intriligator
(1971), and Takayama. For further surveys of applications in management science,
see Bensoussan, Hurst, and Naslund; Bensoussan, Kleindorfer and Tapiero; and
Sethi (1978). The references at the back of this book provide an overview of other
applications to economics and management science; the list is merely suggestive of
the range of work that has appeared.
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Simplest Problem—
Necessary Conditions

The simplest problem in calculus of variations had both endpoints fixed.
But the simplest problem in optimal control involves a free terminal point.
To find necessary conditions that a maximizing solution u*(r),x*(2),
to<t<t, to problem (1.1)-(1.3) must obey, we follow a procedure
reminiscent of solving a nonlinear programming problem with Lagrange
multipliers (see Section AS5). Since the constraining relation (1.2) must hold
at each ¢ over the entire interval ¢, < ¢ < ¢,, we have a multiplier function
A(1), rather than a single Lagrange multiplier value as would be associated
with a single constraint. For now, let A(¢) be any continuously differentia-
ble function of ¢ on 7, < ¢ < ¢,; shortly, a convenient specification for its
behavior will be made.

For any functions x,u« satisfying (1.2) and (1.3) and any continuously
differentiable function A, all defined on ¢, < ¢ < ¢,, we have

f'f(r,x(t),u(r)) dt =f‘"[f(r,x(:),u(¢))
+A(1)g(1,x(1),u()) —A(e)x'(¢)] dt, (1)

since the coefficient of A(¢#) must be zero if (1.2) is satisfied, as we assume.
Integrate by parts the last term on the right of (1)

— [N () de= =M(e)x(1) + M) (10) + ["x(ON(1)at. (2)
Substituting from (2) into (1) gives

["f(r,x(r),u(z))dr =£“[f(r,x(r),u(r)) +A(1)g(t, x(1), u(1))

+ x()N(2) ] dt = A(2,)x(1,) + A(1g)x(15). (3)
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A control function u(t), ¢y, < ¢ < t,, together with the initial condition
(1.3) and the differential equation (1.2) determine the path of the corre-
sponding state variable x*(¢), 7, < ¢ < ¢,. Thus we may speak of finding the
control function, since a corresponding state function is implied. Since the
choice of control function u(7) determines the state variable x(¢), choice of
u(t) thereby determines the value of (3) as well.

To develop the necessary conditions for solution of the calculus of
variations problem (1.4), we constructed a one-parameter family of com-
parison curves x(f) + ah(?), x'(¢) + ah’(t), where h(t) was arbitrary but
fixed. In the current notation (1.5), x’ = u and a modified control function
u(t) + ah’(t) produces, via integration, a modified state function x(r) +
ah(t). However, for the implicit state equation (1.2), one cannot give an
explicit expression for the modified control. Hence the modified state
function will be expressed implicitly. Since the previous 4, 4’ notation is
not helpful here, we depart from the previous usage of 4 and now let A(¢)
represent a fixed modification in the control u(r).

We consider a one-parameter family of comparison controls, u*(z) +
ah(t), where u*(¢) is the optimal control, A(¢) is some fixed function, and a
is a parameter. Let y(¢,a), t, < t < t,, denote the state variable generated
by (1.2) and (1.3) with control u*(7) + ah(z), t, <t < t,. We assume that
y(t,a) is a smooth function of both its arguments. The second argument
enters parametrically. Clearly a = 0 provides the optimal path x*. Further,
all comparison paths satisfy the initial condition. Hence

y(t,0) =x*(z),  y(t9,a)=x,. (4)

With the functions u#*, x*, and % all held fixed, the value of (1.1)
evaluated along the control function #*(7) + ah(#) and corresponding state
y(1,a) depends on the single parameter a. Thus we write

J(a) -£"f(r.y(r,a),u'(t) + ah(1)) dt.

Using (3),
J(a) =fr"[ f(t,y(1,a),u*(2) + ah(2)) + A(2)g(1,y(¢,a), u*(t) + ah(t))

+y(t,a)N (1) ] dt — N(4,)y(11,a) + A(25)y(10,a). (5)

Since u* is a maximizing control, the function J(a) assumes its maximum
at a = 0. Hence J'(0) = 0. Differentiating with respect to a and evaluating
at a = 0 gives, on collecting terms,

J’(0) =£"[(L+Asx + Ay, + (L +Ag)h] di — N(2,)y,(2,,0) =0, (6)

where f,.g, and f,,g, denote the partial derivatives of the functions f,g
with respect to their second and third arguments respectively; and y_ is the
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partial derivative of y with respect to its second argument. Since a = 0, the
functions are evaluated along (7, x*(r),u*(?)). The last term of (5) is
independent of a—that is y,(7,,a) = 0—since y(#y,a) = x, for all a.

To this point, the function A(7) was required only to be differentiable.
Since the precise impact of modifying the control variable on the course of
the state variable (i.e., y,) is difficult to determine, A(¢) is selected to
eliminate the need to do so. Let A obey the linear differential equation

M) = = [0 A8 (1x% 4], ”
(z,)=0.

(Recall that x* and u* are fixed functions of z.) With A given in (7), (6)
holds provided that

LA x* ) + Mg (1, x*,u®) e =0 (8

for any arbitrary function k(7). In particular, it holds for A(z) = f, (¢, x*, u™*)
+ A(2)g (z, x*, u*), so that

f:'[ﬁ,(t,x*(t),u*(t)) +A(0)g(t, x* (1), u* () dt =0. 9)

This, in turn, implies the necessary condition that
L (e, x*(t),u*(2)) + A()g (1, x*(t),u*(2)) =0, to<t<t;. (10)

To sum up, we have shown that if the functions w*(7), x*(¢) maximize
(1.1), subject to (1.2) and (1.3), then there is a continuously differentiable
function A(7) such that «*, x*, A simultaneously satisfy the state equation

x'(2) = g(t,x(1), u(t)), x(to) = xq, (11)
the multiplier equation
N(t) = = [ £t x(0),u(2)) + N(0)g (. x(1),u(2))],  Mz#)=0, (12)
and the optimality condition
St x(), u(2)) + A(2)g, (1, x(¢),u(r)) =0. (13)

for 1ty <t <t,. The multiplier equation (12) is also known as the costate,
auxiliary, adjoint, or influence equation.

The device for remembering, or generating these conditions (similar to
solving a nonlinear programming problem by forming the Lagrangian,
differentiating, etc.) is the Hamiltonian

H(t,x(t),u(2),A())=f(t,x,u) + Ag(t,x,u). (14)
Now

0H /9du = 0 generates (13): OH/du=f, +Ag,=0; (13)
— dH /3x = X’ generates (12): N(t)=—0H/ax=—(f,+Ag,);: (12)
dH /3A = x’ recovers (11): x'=0H/dA=g. (11)



Section 2. Simplest Problem—Necessary Conditions 117

In addition, we have x(#,) = x, and A(¢,) = 0. At each ¢, u is a stationary
point of the Hamiltonian for the given values of x and A. One can find u as
a function of x and A from (13) and substitute into (12) and (11) to get a
system of two differential equations in x and A. These conditions (11)—(13)
are also necessary for a minimization problem.

For a maximization problem, it is also necessary that w*(7) maximize
H(t, x*(t), u,A(1)) with respect to u. Thus, H_ (7, x*,u*,A) < 0 is necessary
for maximization. In a minimization problem, u*(¢) must minimize
H(t, x*(t), u,A\(1)) with respect to u, and therefore H_ (7, x*,u*,A) >0 is
necessary. These two results have not yet been proved but they will be
discussed later.

Example 1. Show that the necessary conditions for optimality in (1.5) are
equivalent to the Euler equation
fo=df_./dt (15)
and trané%frersality condition
fo=0  aty (16)

that must be obeyed for the equivalent calculus of variations problem (1.4).
What are the second order necessary conditions?
Form the Hamiltonian, following (14),

H=f(t,x,u)+ Au.
Then,
) dH /du=f +A=0, an
AN=—3H/3dx=—f., Ai,)=0. (18)

Thus, if x*, u* are optimal, there must be a continuously differentiable
function A such that x*, 4*, A simultaneously satisfy x’ = u, x(#,) = x, and
(17)—(18) over the interval 7, < ¢ < ¢,.

To show that these conditions are equivalent to (15)-(16), differentiate
(17) with respect to time:

df,/dt+ XN =0
and use the result to eliminate A’ from (18):
. =df,/dt,

which is (15). Also, the bounda.ry condition A(7,) = 0 is the same as in (16).
Finally, the necessary condition H,, = f, (¢, x*, u*) < 0 corresponds to the
necessary Legendre condition f_._.(7, x*, x*) < 0.

Thus we have no new result. Optimal control yields, as necessary
conditions, a system of two first order differential equations instead of the
Euler single second order differential equation. The transversality condi-
tions and second order necessary conditions under each formulation are
likewise equivalent. In each case, the boundary conditions for solution of
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the differential equations are spli}t, with one holding at the initial moment
and the other holding at the final moment.

To show that (15) and (16) imply (17) and (18), we need only reverse the
process. That is, define

w(1) = —£.(¢, x(2), x'()). (19)
Differentiate (19) with respect to ¢ and substitute into (15):
Se=—w(1). (20)
Putting (19) into (16) gives
p(r,) =0. (21)

But (19)-(21) correspond exactly to conditions (17) and (18). Thus the two
approaches yield equivalent necessary conditions for optimality, as claimed.

Since optimal control is equivalent to calculus of variations for all
problems to which the latter applies, one may wonder why it is useful to
learn about optimal control. One response is that it applies to a wider class
of problems, to be studied later. Another answer is that optimal control
may be more convenient for certain problems and may also suggest
economic interpretations that are less readily apparent in solving by the
calculus of variations. Each of these points will be illustrated; see Exam-
ples 2 and 3 below.

Example 2
max f'(x +u)dt 22)
0

subjectto x'=1-—u?, x(0)=1. (23)
Form the Hamiltonian
H(t,x,u,A)=x+u+A(1 —u?).
Necessary conditions are (23) and

H,=1—-2Au=0, H,=-2A<0, (24)
AN=—H = —], A(1) =0. (25)
Solve (25) to find
A=1-—1¢. (26)
Then H,,= —2(1 —¢) < 0 for 0 <t < 1. Also, from (24),
u=1/2A=1/2(1-1). (27)

Substituting (27) into (23) gives
x'=1—-1/41-1)?  x(0)=1.
Integrating, using the boundary condition, and drawing the results together
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yields the solution:
x()=1—1/4(01 —1)+5/4,
A(r)=1—1,
u(t)=1/2(1 —1r).

Example 3. The rate at which a new product can be sold at any time ¢ is
f(p(1))g(Q(¢)) where p is the price and @ is the cumulative sales. We
assume f'(p) < 0; sales varies inversely with price. Also g'(Q)=0 for
Q= Q,. For a given price, current sales grow with past sales in the early
stage as people learn about the good from past purchasers. But as cumula-
tive sales increase, there is a decline in the number of people who have not
yet purchased the good. Eventually the sales rate for any given price falls,
as the market becomes saturated. The unit production cost ¢ may be
constant or may decline with cumulative sales if the firm learns how to
produce less expensively with experience: ¢ = ¢(Q), ¢'(Q) < 0. Characterize

the price policy p(¢), 0 < ¢t < T, that maximizes profits from this new “fad”
over a fixed horizon T.

The problem is
max [ b — (O f(p)e(Q) dt (28)

subjectto Q' =f(p)g(Q). Q(0)=0Q,>0. (29)

Price p is the control variable and cumulative sales Q is the state variable.
Form the Hamiltonian

H=f(p)g(Q) p—c(Q)+A]. (30)

The optimal solution must satisfy (29) and
H,=g(Q){f(p) p—c(@Q)+A]+f(p)} =0, (31)
H,=g(Q){f"(p)lp—c(Q)+A] +2f(p)} <0, (32)
N=—Hy=f(p){e(Q)c(Q)—g (@) p—c(Q)+A]}, (33)
A(T) =0. (34)

We use these conditions to characterize the solution qualitatively. Since
g > 0, we know from (31) that

= il =P (35)
Differentiating (35) totally with respect to ¢ gives
N=—p[2-7/() ]+ (36)
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Substituting (35) into (32) and (33) gives

gf’[2—f75/ ()] <o, (32)
N =flgc +gf/f]. (33)

Equate (36) and (33'), using (29):
(2—g7 /()] = —g'£2/1", (37)

from which we conclude that
signp’ =signg’ (38)

since f* < 0 and (32") holds. Result (38) tells us that in marketing a good
whose demand is as assumed here, the optimal price rises while the market
is expanding (Q < Q,) and falls as the market matures (Q > Q,).

EXERCISES

1. Use optimal control to find the shortest distance between the point x(a) = A4
and the line 1 = b.

2. Solve by optimal control
min f’"[xz(:) + ax(2) + bu(t) + cu?(2)] dt
0
subject to x'(¢) =u(?), x(0)= xofixed, T fixed, x(T)free, ¢>0.
3.  max fs(ux —u?—-x?)dt
1
subject to x'=x+u, x(l)=2.
4. Find necessary conditions for solution of
max f"f(r,x,u)dt
to
subject to x'=g(t,x,u), gy, fixed, x(1p), x(¢,) free.
. 1 2
: min u“(t)de
5 J, w®
subject to x'()=x()+u(r), x(O0)=1.
6. Show that necessary conditions for solution of
max f"f(f.x,u)dt + @(x,)
fo
subject to  x'(t) =g(t,x,u), x(1o)=Xq, o, fixed, x(f,)=x, free,

are (11)—(13) except that A(f,) = ¢"(x,). Relate to the corresponding transver-
sality condition in the calculus of variations for the case g = u.
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T

10.

11.

Using the results of exercise 6,
min [ 'u(e)de + x*(1)
()
subject to x()y=x()+u(t), x(O0)=1.

The problem
max j::‘f(x,u)dr
subject to x'=g(x,u), x(ty)=x,fixed, x(¢,)=x,free,
is autonomous since there is no explicit dependence on ¢. Show that the

Hamiltonian is a constant function of time along the optimal path. [H‘iﬁt:
Compute using the chain rule,

dH/dt = H . x"+ H,u' + H,\’

and substitute from the necessary conditions for the partial derivatives of H.]
Autonomous problems and their advantages are discussed further in Section
8.

The Euler equation for the calculus of variations problem

max f"F(x,x’)a’t

Iy
subject to  x (1) = x fixed, x(#;)=x, free.
can be written

F — x’F,, = const, g <t <{.

Show that this is equivalent to the condition that the Hamiltonian for the
related control problem is constant.

Use the results of Exercise 8 to show that for Example 3,
a. if f(p) = e7°7, then the optimal sales rate fg is constant.
b. if f(p) =p~“, then revenue ( pfg) is constant in an optimal program.

Discuss how the calculus of variations could be used to analyze Examples 2
and 3.

FURTHER READING

See (B4.7)—(B4.9) on the equivalence between a single second order differential
equation and a pair of first order differential equations.

Example 3 was stimulated by Robinson and Lakhani, who also provided
numerical results for a special case with discounting.

Compare the results mentioned here with those above, especially of Sections I8
and I11. Note that while the simplest problem of calculus of variations had a fixed
endpoint, the simplest problem of optimal control has a free end value.
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/
Sufficiency

When are the necessary conditions for optimality both necessary and
sufficient? In nonlinear programming, the Kuhn—Tucker necessary condi-
tions are also sufficient provided that a concave (convex) objective func-
tion is to be maximized (minimized) over a closed convex region. In the
calculus of variations, the necessary conditions are also sufficient for
optimality if the integrand F(¢, x, x’) is concave (convex) in x,x’. Analo-
gous results obtain for optimal control problems.

Suppose that f(z,x,u) and g(¢,x,u) are both differentiable concave
functions of x,« in the problem of

max f“f(r,x,u)dt (1)
subject to x'=g(t,x,u), x(ty)=xq. 2)

The argument ¢ of x(¢#) and u(z) will frequently be suppressed. Suppose
that the functions x*, u*, A satisfy the necessary conditions

Ju(t,x,u) +Ag,(t,x,u) =0, (3)
AN=—f(t,x,u)—Ag(t,x,u), (4)
A1) =0, (5)

and the constraints of (2) for all ¢, < ¢ < ¢,. Suppose further that x and A
are continuous with

A(t) >0 (6)

for all ¢ in case g(¢,x,u) is nonlinear in x or in u, or both. Then the
functions x*,u* solve the problem given by (1) and (2). Thus if the
functions f and g are both jointly concave in x, # (and if the sign restriction
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in (6) holds), then the necessary conditions (2)—(5) are also sufficient for
optimality.

The assertion can be verified as follows. Suppose that x*,u* A satisfy
(2)-(6). Let x,u be functions satisfying (2). Let f*, g*, and so on denote
functions evaluated along (#,x*,u*) and let f, g, and so on denote
functions evaluated along the feasible path (7, x, #). Then we must show
that

DEI"(f*—f)dtzo. (7

Since fis a concave function of (x, u), we have
f*=f2(x* = x) 2+ (u* —u)fy, (8)

and therefore (reasons to follow)

D zf,"[(x* —X)fF + (u* —u)fr ] dr
= [“[Cx" = )= = N)+ (u* —u)(~Ag2) ] d

= ["Alg* —g— (x* - x)g2 — (u* —u)g] dt
fo

>0, 9)

as was to be shown. The second line of (9) was obtained by substituting
from (4) for f¥ and from (3) for f*. The third line of (9) was found by
integrating by parts the terms involving A’, recalling (2) and (5). The last
line follows from (6) and the assumed concavity of g in x and wu.

If the function g is linear in x,u, then A may assume any sign. The
demonstration follows since the last square bracket in (9) will equal zero.
Further, if f is concave while g is convex and A < 0, then the necessary
conditions will also be sufficient for optimality. The proof proceeds as :
shown above, except that in the next to last line A and its coefficient are
each nonpositive, therefore making their product nonnegative.

EXERCISES

1. Show that if f and g are both concave functions of x and w, if (6) holds, and if
x* u*, A satisfy (2)-(5), then u*(¢) does maximize the Hamiltonian
H(t, x*(t),u,A(2)) at each ¢, 1, < ¢ < t,, with respect to u.

2. Show that if minimization was required in problem (1) and (2), and if the
functions f and g are both jointly convex in x,u, then functions x*,u* A
satisfying (2)—(6) will solve the problem. Also show that #*(f) will minimize
the Hamiltonian H(z, x*(#), u, A()) at each r.
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3. Investigate whether the solutions obtained in the exercises of Section 2 mini-
mize Oor maximize.
4. Suppose @(x,) is a concave function and that f(7,x,u) and g(z, x,u) are

differentiable concave functions of (x,u). State and prove a sufficiency the-
orem for

max f"f(:,x,u)dr + @(x,)
'

1]

subject to x'=g(t,x,u), x(ty)=xg,tg,1, fixed, x(t,)=x, free.

FURTHER READING
Mangasarian has provided the basic sufficiency theorem for optimal control. See
also Section 15 and Seierstad and Sydsaeter for extensions to more complex control

problems.
Compare the present results with those of Section 1I6.
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Interpretations

The multiplier A in optimal control problems has an interesting and
economically meaningful interpretation. In nonlinear programming the
Lagrange multiplier is interpreted as a marginal valuation of the associated
constraint. (See Section AS5.) Here A(?) is the marginal valuation of the
associated state variable at z.

Consider

max f"f(x,x,u)d:

e8]
subject to x'(¢) = g(¢, x, u), x(tg) = xq.

Let V(x,,t,) denote the maximum of (1), for a given initial state x, at
initial time ¢,. Let x*, u* be the state and control functions providing this
maximum, and let A be the corresponding multiplier. Suppose u* is a
continuous function of ¢.

We also consider a modification of problem (1) in which the initial state
is x,+a, where a is a number close to zero. The maximum for the
modified problem is V(x, + a, t;). Let x and u denote the state and control
functions providing this maximum.

Appending the differential equation in (1) with a continuously differen-
tiable multiplier function A(¢) gives

V(xg,t5) =j;f1f(t,x"‘,u*)dt
(4]

=frl[f(t,x"', u*) + Ag(t,x*,u*) —Ax'] at. 2)
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Integrate the last term by parts (recalling (2.2)):
V(x5 ) -f'l(f‘ +Ag* +N'x)dt — N(1,)x*(2,) + A(2)x(4), (3)
fo
where asterisks label functions evaluated along (7, x*,«*). Similarly, one
finds that (using the same A)

V(x.,+a,zn)-f"fd¢

= [+ Mg+ Nx)di = Map)x(n) +A(to) [ x(0) + al.

where x, u are optimal for this problem. Subtracting,
V(xg+a,t5) — V(xg, 1) -f"[f(t,x,u) —f(t,x*,u*)] dt
fo

.=f"(f+ Ag+Ax—f*—Ag* —Nx*)dt
to

+A(to)a — A1) x(2,) — x*(1))]- C)
Expand the integrand by Taylor’s theorem around (7, x*, u*):

Vixg+a,ty)— V(xo,to)-l'l[(j: +Ag? +N')(x —x*)

+(fr+Agt N u—u*)]a
+A(t9)a— A8, [ x(1,) — x*(1,)] + hoo.t.
(5)

Let A be the multiplier satisfying the necessary conditions for (1). Since
x*, u*, A\ satisfy the necessary conditions (2.11)-(2.13) for optimality,

N=—(ft+Agk), fr+Agl=0, AN#)=0,
(5) reduces to

V(xo +a, ro) - V(xo, to) = A(‘o)a + h.o.t. (6)
Divide (6) by the parameter a and then let a approach zero:
}1_'_% [V(xo+a,20) — V(x0,20)]/a=V.(xo, ) -?\(‘o) )

provided the limit exists. The first equation of (7) constitutes the definition
of derivative of ¥ with respect to x. We assume that this derivative exists.
Thus the multiplier A(¢,) is the marginal valuation in the optimal program
of the state variable at ¢,.

The discussion thus far has only considered the initial time. However,
A(?) is the marginal valuation of the associated state variable at time 7. If
there were an exogenous, tiny increment to the state variable at time ¢ and
if the problem were modified optimally thereafter, the increment in the
total value of the objective would be at the rate A(z).
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To verify this assertion, recall that the objective in (1) is additive. Any
portion of an optimal program is itself optimal.

For instance, suppose we follow the solution x*,u* to (1) for some
period ¢, < 7 < ¢t¥ and then stop and reconsider the optimal path from that
time on forward:

max f:f(t,x, u)dt

subject to x'()=g(t,x,u), x(t¥)=x*(%).

)

A solution to (8) must be x*(r), u*(¢), t¥ < t < 1|, namely, the same as the
original solution to (1) on the interval from ¢# forward. To see this,
suppose it untrue. Then there is a solution to (8) providing a larger value
than does x*,u* on ¥ < ¢ <¢,. The value of (1) could then be improved
by following x*,u* to ¥ and switching to the solution to (8). But this
contradicts the assumed optimality of x*,u* for (1). Therefore, x*, u*,
t¥ <t < t, must solve (8).

We return to the question of the interpretation of A. Application of the
methods used to reach (7) to problem (8) leads to the result

Vx(x(t#)’r#)=l(t#)’ (9)

provided that this derivative exists, where A is the function associated with
problem (1) (since the solutions to (1) and (8) coincide on * <1 <)).
Thus A(¢¥) is the marginal valuation of the state variable at r¥. But the
time ¥ was arbitrary, so for any ¢, t, <t < ¢,,

VA(x(t),2) =A(2), lo<t<Ut, (10)

is the marginal valuation of the state variable at time ¢, whenever this
derivative exists,

It is easy to confirm the interpretation at ¢,. If there is no salvage term,
the marginal value of the state at terminal time is zero: A(#,) = 0. And if
there is a salvage term, the marginal value of the state is the marginal
contribution of the state to the salvage term: A(¢,) = ¢’(x,) (recall Exercise
2.16).

For ease in discussion, let x be the stock of an asset and f(7, x, ¥) the
current profit. It is an identity that

A1) (1)) = A(20)x(to) + j;'](x’?\ + xA') dt

= A(1)x(2) +fr"[d(xx)/d:]d:. (11)

Recall that A(¢) is the marginal valuation of the state variable at r. Thus
the value of the terminal stock of assets is the value of the original stock
plus the change in the value of assets over the control period [¢,, ¢,]. The
total rate of change in the value of assets

d(xA)/dt = x'A + xX’
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is composed of the value of additions (or reductions) in the stock of assets
plus the change in the value of existing assets. That is, both changes in
amount of assets held and in the unit value of assets contribute to the

change in the value of all assets. From (3), the rate at which the total value
accumulates is

fH+Ag+xN =H+ x\ where H=f+Ag. (12)

The first term is the direct gain at ¢ of f(7, x,u), say the current cash flow.
The second term is an indirect gain through the change in the state
variable. One can think of Ag = Ax’ as the increase in future profitability
attributable to the increase in the stock of assets. The third and remaining
term xA’ represents the changed valuation in current assets, the capital
gains. Thus, (12) represents the contribution rate at ¢, both direct and
indirect, toward the total value.

At each moment, one chooses the control ¥ to maximize the net
contribution (12) toward total value. For given state variable x(#) and
marginal valuation of the state A(¢), this means choosing «(#) to maximize
H, and hence to satisfy

dH/du=f,+Ag,=0, Iy BTE by (13)
and also
82H/8u2 =f.+tAg,.<0. (14)

Note also that if one were free to choose x to maximize (12), then one
would set

f.+Ag, +A"=0. (15)

Of course, the choice of ¥ completely determines x. A sufficient condition
for x*, u* A to be optimal is that they be feasible with A(¢,) =0 and that
the problem

max [ H(x,u,A(2),2) + N'(£)x] (16)

have x = x*(¢), u= u*(¢) as its solution for all ¢; <¢ < ¢,.

Example. Let P(x) be the profit rate that can be earned with a stock of
productive capital x, where P’(0) > 0 and P” < 0. The capital stock decays
at a constant proportionate rate b > 0. Investment cost is an increasing
convex function of the gross investment rate u, with C'(0) =0 and C” > 0.
We seek the investment rate u(¢) that maximizes the present value of the
profit stream over the fixed planning period 0 < ¢ < T:

T
max foe-"[P(x)—C(u)]dr a7

subjectto  x'=wu—bx, x(0)=x,>0, u>O0. (18)

We assume that the nonnegativity condition on u will be met automati-
cally. Therefore, since the capital stock is initially positive, the capital
cannot become negative; review (18). (This is Problem 1.8.)
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The Hamiltonian is
H=e "[ P(x)— C(u)] + A(u — bx).
Optimal functions x, #, and A satisfy (18) and

H. = —e "C'(u) + A =0, (19)
H, = —e "C"(u) <0, (20)
AM=—H = —e "P'(x)+ b, A(T)=0. (21)

Condition (20) is satisfied by our assumptions on C. Equation (19) states
that, at each ¢, the marginal cost of investment must equal the marginal
value A of a unit of capital. Both terms are discounted back to the moment

t = 0 of planning. Equivalently,
C'(u(1)) =e" A1) (22)

gives condition that the marginal cost equal the marginal benefit, in values
at r.

Differential equation (21) can be manipulated to show the composition
of the marginal value of a unit of capital. Subtract bA from each side,

multiply by integrating factor e %/, and integrate using the boundary
condition in (21):

e P'A (1) =fTe*(’+b)’P’(x(s))ds.

Therefore, the value at time ¢ of a marginal unit of capital is the discounted
stream of marginal profits it generates:

e"A(1) = £ Te=r+b)s 0P/ x(5))ds. (23)

The calculation reflects the fact that capital decays, and therefore at each
time s > ¢ it contributes only a fraction e~ %* of what a whole unit of capital
would add. Combining (22) and (23) yields the marginal cost—marginal
benefit condition for optimal investment

c(u(e) = [ Te=C+bXs=0pr( x(s)) ds. (24)

EXERCISE

Derive condition (24) using the calculus of vaniations.

FURTHER READING

These interpretations are greatly elaborated by Dorfman. The sufficiency condition
related to (16) is due to Seierstad and Sydsaeter; see also Section 15. Benveniste
and Scheinkman (1979) give sufficient conditions for the value function to be
differentiable.



