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Individuals from two populations of bargainers are randomly matched to play
the Nash demand game. They make their demands by choosing best replies based
on an incomplete knowledge of the precedents, and occasionally they choose ran-
domly. There is no common knowledge. Over the long run, typically one division
will be abserved almost all of the time. This “stochastically stable” division is close
to the Nash solution when all agents in the same population are alike. When the
populations are heterogeneous, a generalization of the Nash solution results. If
there is some mixing between the two populations, the stable division is fifty-fifty.
Journal of Economic Literature Classification Number: C78. ¢ 1993 Academic

Press, lnc.

1. INTRODUCTION

Classical bargaining theory holds that bargains between rational agents
depend solely on the agents’ wutilities for the outcomes, not the outcomes
themselves. As Nash put it: “What the actual courses of action are among
which the individuals must choose is not regarded as essential informa-
tion... Only the attitudes (like or dislike) of the two individuals towards the
vltimate results are considered.” [12]. The assumption that only utility
matters is implicit in almost all treatments of the bargaining problem.
These fall into three broad categories. The axiomatic approach originally
introduced by Nash seeks to deduce a solution from plausible first prin-
ciples [9, 12, 14]. The noncooperative approach (also introduced by Nash)
views the outcome as the equilibrium of a one-shot game in which the
players make certain demands, which they get provided that the demands
do not exceed the amount available [2,13]. The third approach,
introduced by Stahl [17] and Rubinstein [16], views the outcome as the
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subgame perfect equilibrium of a game in which the players alternate in
making offers to one another.

In all three approaches the outcome is highly sensitive to the utility
functions of the parties. It is also assumed that these utility functions are
common knowledge, or at least that their distribution is common
knowledge [2, 8] Yet it is common knowledge that utility functions are
often not common knowledge. When the utility functions are not known,
bargainers may try to coordinate by appealing to custom, that is, by
relying on what is usual and expected in the given situation. A well-known
example is fifty-fifty division. Fifty-fifty is customary in many everyday
bargains, and 1t is frequently observed in laboratory settings. Curiously, it
is also quite common even when agents are in quite asymmetric positions,
as in sharecropping agreements between tenants and landlords [1].

In this paper we propose to explain how such customs arise, and why
some (like fifty-fifty) are more likely than others. The essential idea is that
bargainers’ expectations are shaped by precedent. Each bargainer has
limited information about what other bargainers have demanded in past
encounters. Each chooses a best reply assuming that these precedents are
a reasonable predictor of what other agents are going to demand now.
There is no common knowledge. When agents look at different precedents
or the precedents conflict, their responses will very likely be uncoordinated.
It may happen, however, that a succession of bargainers coordinate by
chance on the same rule over a period of time. This establishes a set of
common precedents and common expectations. People begin to expect that
similar bargains will be solved by this rule in the future. Under circumstan-
ces that we shall describe below, this positive feedback loop eventually
drives society toward a fixed division. It becomes the norm, not because it
is inherently “focal,” but because early chance events happened to favor it
and now everyong expects it.

Of course, a given rule does not remain entrenched forever. Changing
economic circumstances may eventually cause the shares to shift in favor of
one party or another. Furthermore, there will inevitably be some variability
in bargaining outcomes due to differences in agents’ behavior and beliefs.
When these stochastic influences are included, the long-run behavior of
the evolutionary process becomes more complex. In particular, it has no
absorbing states. A rule of division will remain in use for a time, after
which it will be displaced by another rule. These displacements are
irregular and infrequent, but they tend to occur quite rapidly when they do
occur. The process then settles down to another period of relative tran-
quillity in which a fixed rule is in force. We cannot predict which rule will
be in use at any given time because of the stochastic nature of the process.
Nevertheless we can say that some rules are more likely to be observed
than others over the long run. In fact, when the stochastic perturbations



AN EVOLUTIONARY MODEL OF BARGAINING 147

are very small, usually one rule will be observed almost all of the time. This
stochastically stable rule can be calculated explicitly. It depends on the
agents’ utility functions, but oddly enough it does not depend on the details
of the stochastic perturbations so long as they are small

The results may be summarized as follows. When each class of agents is
homogeneous—all members of the same class have the same utility function
and the same amount of information—the long-run stable division is the
one that corresponds to the asymmetric Nash solution. The asymmetry
arises from informational differences between the two classes, where the
class with more information (the larger sample size) has the advantage.
This division does not result from calculations involving other agents’
utility functions, but from its inherent stability given their utility functions.

When each class is heterogeneous, the stable division depends on the
types of agents represented in each class, but not on their relative frequency
in the population. It therefore generalizes the Nash solution to mixed
populations in a substantially different way than Harsanyi and Selten’s
bargaining solution with incompiete information {8]. When there is even
a small amount of mixing between the classes, the heterogeneity within
each class no longer matters and the unique stable division is fifty-fifty.
This suggests yet another reason (in addition to the usual focal point
argument) why fifty-fifty is observed so often in practice, even when
bargainers are in asymmetric positions.

2. THE MODEL

Consider two finite, nonempty classes of individuals 4 and B. To be
concrete we shall think of A as the class of landlords and B as the class of
tenants. In each period, one landlord meets one tenant and they bargain
over their shares of the crop. The share of the landlord will generically be
denoted by x and the share of the tenant by y. For technical reasons we
are going to assume that there are a finite number of feasible divisions. Let
p be a positive integer, and let D be the set of all p-place decimal fractions
that are positive and less than or equal to one. D is the set of feasible
demands, and é = 10 ~? is the precision of the demands.

The bargaining process has the following structure. In each period
t=1,2, .., one landlord « is drawn at random from the class A and one
tenant § is drawn at random from the class B. They then play the Nash
demand game: « demands some fraction xe D, B demands some fraction
ve D, and they get their demands if x + y < 1; otherwise they get nothing.

Let the demands in period ¢ be denoted by (x,, y,). The complete history
up to and including period ¢ is the sequence (x,, y,), (x5, ¥3h . (X, ¥,}

Suppose that agents x and f§ are chosen in period r+ 1. Assume that

642°55 1-11
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neither party has prior knowledge or beliefs about the utility function of
the other side, or about the distribution of the utility functions in the
general population. To decide what to do they rely on the precedents
that they happen to have heard about. Formally we may suppose that
agent o draws a random sample of k, items from the last m records
S=((X, ,its Ve maet)h (X, v,)). The ratio k,/m is a measure of «’s
information. We may think of k_/m as the extent to which « is informed or
“gets around.” It is not the result of a process in which « sets out to gather
an optimal amount of information. Agent & chooses an optimal reply to the
observed frequency distribution of the demands made by tenants in the
sample that he knows about. More precisely, « forms the cumulative
probability distribution F(y) of the demands y, made by tenants in his
sample:
Ve D F(y)=hk, iff there are exactly A demands y, in
the sample such that », < .

F is a random variable that depends on the particular sample that «
happened to draw at time 7+ 1.

Agent a is assumed to have a von Neumann Morgenstern utility function
u,{x), where u,(x) is concave (not necessarily strictly concave) and strictly
increasing in «’s own share. The utility function is normalized so that
u,(0)=0. We shall assume that u_(x) is defined for all xe [0, 1], because
later on we shall want to treat the level of precision J as a variable.

If « demands x and the tenant demands v, then a gets x if y< | —x and
zero otherwise. Thus a believes his expected pavoff (given the observed
cumulative distribution F) is

w,(x) F(1 —x)+u, (0)(1 — F(1 —x))=u,(x) F(1 —x).

We assume that x chooses an amount x,, , in period ¢+ 1 that maximizes
his expected payoff:

X, =argmax v (x) F(1 —x). (1)

If there are several values of x that maximize (1), then a chooses each of
them with positive probability.

The tenant behaves similarly: f draws &, items at random from the last
m plays, and chooses an optimal response to the observed distribution of
demands made by the landlords in his sample. All best replies are chosen
with positive probability. The probability distribution over best replies may
depend on the sample, but we assume it is stationary over time. The
process is therefore a variation of fictitious play in which each agent reacts
to a sample of the opponents’ recent moves, rather than to all of the
opponents’ past moves. We shall call this process adaprive play [18].
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We make no claim that this is how perfectly rational agents would play
the game if they were aware of the process in which they are embedded. We
are not assuming, however, that the agents in this model are perfectly
rational or fully informed. They are merely sensible: they possess some
information about the world around them, and they choose best replies
based on this information. Note that we do not assume that agents learn
through repeated plays of the game. We can assume, in fact, that after two
individuals play they die and are replaced by agents of the same tipe as
their forebears. Each has the same information-gathering propensity and
the same utility function as its parent but not the parent’s information.
Thus each time an agent plays he starts afresh and must ask around to find
out what is going on. This assumption is not necessary from a mathemati-
cal point of view, but it underscores the fact that “learning” need not occur
at the individual level for the process to converge at the social level.

The agents’ response rules determine a stationary Markov chain. The
state space S consists of all sequences s of length m whose elements are
pairs (x, y)e DxD. Let p,(x|s) be the conditional probability that «
demands x given that the state is s, and let py(y|s) be the conditional
probability that § demands vy given that the state is s. We assume that p,
is a best reply distribution, that is, p,(x|s) > 0 if and only if x is a best reply
by 2 to a sample of size k, drawn from s. Similarly p;(y|s) >0 if and only
if y is a best reply by f# to a sample of size k, drawn from s. The samples
need not be drawn with uniform probability. For example, recent samples
might be more likely than older samples. All that matters is that any
appropriate-sized sample could be drawn, any best reply to such a sample
could be made, and the probability of these events (conditional on the
state) is stationary.

The process begins at time /= in some arbitrary initial state s°, that
is, some arbitrarily chosen sequence of m pairs from D x D. (This is clearly
more general than assuming that the process begins at time r=1 with a
randomly chosen pair (x, y).) In each subsequent period one pair of agents
(2, BYe A x B is drawn at random. Every pair has a positive probability
n(a, f)> 0 of being drawn, though it is not necessarily the same probability
for all pairs. Given a state s=((X, _,, 41> ¥ -me 1) - (X, ¥,)) we say that
s’ is a successor of s if it has the form 8" = ({(x,_ .2, Vi ek (X5 P,
(x,.(,» ¥,+ 1)) If the process is in state s at time 7, then it moves to the
successor state s’ at time 7+ 1 with transition probability

Pss‘= Z Z 7‘(0"mpz(-"rHlS)Pﬁ(}’:HIS)- (2)
x€e4 PeB
If s’ is not a successor of s, then P_. = 0. This Markov process will be called
the evolutionary bargaining process with precision 4, memory m, informa-
tion parameters {k,/m, ky/m} and best reply distributions {p,. p,}.



150 H. P. YOUNG
3. CONVERGENCE OF THE EVOLUTIONARY BARGAINING PROCESS

CONVENTION. A state s is a convention if it consists of some fixed
division (x, 1 —x) repeated m times in succession, where xe D and
0 < x < 1. We shall denote this convention by x.

We claim that every convention is an absorbing state of the Markov
process P defined by (2). Suppose, indeed, that at time 7> m the process
is in the convention x. Let x and f be an arbitrary landlord and tenant
who bargain in period ¢+ 1. In every sample drawn by the landlord, the
previous tenants always demanded 1 — x, so the landlord’s unique optimal
reply is x > 0. Similarly, in every sample drawn by the tenant, the previous
landiords always demanded 'x, so the tenant’s unique optimal reply is
1 —x>0. (This argument relies on the assumption that 0 <x<1.) Thus
the optimal demands in period ¢+ 1 are (x, 1 —x), so the state in period
t+ 1 is the same as it was in period 1.

We now show that, if the information in each class is sufficiently incom-
plete, then the process P converges with probability one to a convention.

THEOREM 1. [f at least one agent in each class samples at most half of
the surviving records, then from any initial state the evolutionary bargaining
process converges almost surely 1o a convention.

Proof. We shall prove that there exists a positive integer N and a
positive probability p (both independent of ) such that, from any state s,
the probability of converging to a convention within N steps is at least p.
Thus the probability of not reaching a convention within rN steps is at
most {1 — p)’, which goes to zero as r — «. Hence the set of all sample
paths that do not land in an absorbing state have probability zero.

Fix two agents x and f, where « has minimum information among all
agents in 4 and § has minimum information among all agents in B. Let «
have information A&/m<1/2 and let f have information k*/m<1/2. We
may assume without loss of generality that & > k*. Suppose that at time
t=m the process is in state S=((X, 41> Yiomas 1)~ (X, ,)). There
is a positive probability that agents « and f (or agents just like them)
will be selected to play the Nash demand game in every period from ¢+ 1
to t+k inclusive. There is also a positive probability that « will draw
the specific sample o=({(x, s, Vi 1) - (X, ¥,)) In each of these
periods, and that f will draw the (possibly smaller) sample o* =
((X, _kov1s Ve_wrs1) - {X;, ¥,)) In each of these periods. Let x and y be
best replies to these samples by o and f, respectively. Then there is a
positive probability that « will demand x, and that # will demand v
in every period from r+1 to t+k inclusive. Hence there is a positive
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probability of obtaining a run p = ((x, v), .., (x, y)) from periods 1+ 1 to
t + k inclusive.

From periods 1+ k + 1 to 1+ 2k there is a positive probability that two
agents like  and f will be selected to play every time and that both of
them will always sample from the run p. (Thus « draws the whole sample
p, and f draws a subsample of k* items from p.) Their unique best replies
are (1 —y, 1 —x), so we obtain a run p'=((1—p, 1 —x), ., (1 =y, | —x))
from periods 1+ k 4+ 1 to 1+ 2k inclusive.

In period ¢ + 2k + 1, there is a positive probability that a landlord like x
will be chosen again and that she draws the sample p, and also that a
tenant like # will be chosen again and that he draws the sample p* con-
sisting of the last k* items in p'. Their best replies are then (1 — y, y). Note
that this requires « to look back 2k periods, and f§ to look back k* periods,
both of which are possible because of the assumption that &, k* < m/2.

In period t+ 2k +2, however, the oldest record in p may have dis-
appeared (if m = 2k). Nevertheless, x can still draw a sample of size & in
which the other side always demanded y, namely, the most recent k — 1
plays in p and the play in the preceding period ¢ + 24 + 1. Meanwhile f can
still look at the sample p* because none of these records has disappeared
yet. So there is a positive probability that the best replies in period
t+ 2k +2 will again by (1 — », y). Continuing in this manner, we see that
there is a positive probability of obtaining a run of (I — v, y) for m periods
in succession, at which point a convention has been reached.

It follows that, from a given initial state s, there is a positive probability
{possibly depending on s) of reaching a convention within 2k + m periods.
Since the number of states is finite, there is a positive probability p
(independent of the initial state) of reaching a convention within 2k + m
periods. This concludes the proof of Theorem 1.

The analog of Theorem 1 holds for a more general class of games [187],
though a lower bound than m/2 may be needed to guarantee convergence
(depending on the structure of the game). We do not claim that m/2 is the
best bound possible in the present case, but without incomplete sampling
the result fails. Consider the following example. Let §=0.1 and let all
agents in 4 have utility function v and all agents in B have utility function
v, where « and v are any concave functions on D such that

x= 0 03 0.5 0.7 1

ux)= 0 035 04,2 075 1
o(x)= 0 050 05./2 09 1

Suppose that both agents have complete information (they draw com-
plete samples) and suppose that all previous pairs of demands were either
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(0.7,0.5) or (0.5, 0.3). Thus they miscoordinated every time. At time ¢, let
1, be the relative frequency with which the pair (0.7, 0.5) was played in the
preceding m periods, and let | — f, be the relative frequency with which
(0.5, 0.3) was played in the preceding m periods. The landlord’s best reply
will be either 0.5 or 0.7 depending on the value of f,. It will be 0.7 if

(1= £,y u(0.7) 2 u(0.5),

and 0.5 if the inequality runs the other way. Similarly, the tenant’s best
reply is 0.5 if

(1—/,)v(0.5) 2 v(0.3),

and 0.3 if the inequality runs the other way. Substituting for the values of
u and v we find that these two inequalities are the same, and hold if and
onlyif f,<l— l/\/i. (The inequality is always strict because f, is rational.)
Thus the demands in period r+ 1 are either (0.7,0.5) or (0.5,03) It
follows that if the agents begin in any state where they have always mis-
coordinated, then they continue to miscoordinate forever.

4. MISTAKES AND EXPERIMENTATION

The evolutionary bargaining process defined in (2) is based on the
assumption that agents always choose best replies given their information.
A more realistic assumption is that agents sometimes makes mistakes or
experiment with other choices. These random choices or “trembles” keep
the process constantly in motion and test the viability of different regimes,
much like mutations in biological models of evolution.

Let ¢4, be the probability that agent a experiments in any given period,
and let g, (x|s) be the conditional probability that « chooses the reply x,
given that x is experimenting and that the current state is s. Similarly define
eig and g4(y|s) for every fe B. We assume that g,(x{s) and g,(y|s) have
full support, that is, all choices are possible in any given state. The
parameters A,>0 and A;>0 define the relative probabilities with which
particular agents experiment, and the factor ¢ determines the absolute prob-
ability with which agents in general experiment. (This model generalizes an
approach introduced by Canning [3] and Kandori, Mailath, and Rob
(101.)

These random choices yield a stationary Markov chain on § in which
the probability of moving from state S=({x, _,, (s ¥, mei1)s = (X0 ¥,)) at
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time 1 2 m to the successor state 8" = ((X, . 22 ¥ ma2) o (Xp41s Vyyy)at
time 7+ 1 is

Pio=3 3 wma B)[(1—ed )1 —edy) p(x]s) py(r]s)

x€A fie B
+ et (1 —edy) g, (x]8) pp(y]s)+eig(l —ei,) p,(x|s)qu(y]s)
+82}'1)*_(fq1(xls) gs(yis)]. (3)

P, =0ifs" is not a successor of s. P is the perturbed evolutionary bargain-
ing process. Note that the unperturbed process P° is the same as the process
P defined in (2).

Before showing how to compute the stable conventions in particular
cases, let us first consider the qualitative behavior of the evolutionary
bargaining process when the noise level ¢ is small. If agents never experi-
ment (¢ =0), then Theorem 1 tells us that the process converges to a con-
vention provided that some agent in each class samples at most half the
surviving records. These are the absorbing states of the unperturbed pro-
cess. If the agents occasionally experiment, then the process has no absorb-
ing states. It still gravitates toward them, but never comes to rest because
of the random fluctuations caused by experimentation. Neverthcless, the
process is at or near an absorbing state (i.e., a convention) most of the
time. Occasionally, a large accumulation of mistakes pushes the process
away from a given convention and into the basin of attraction of another
convention. The likelihood of such an event is small, but if we wait long
enough, it is bound to occur. When it does, the process tends to gravitate
toward the new convention. If it reaches it, the process is likely to stay
there for awhile before another displacement occurs. This pattern of
relative stability punctuated by episodes of instability continues indefinitely.
Some conventions, however, are harder to displace than others. The ones
that are hardest to displace are the ones that will be observed most often
over the long run. When the noise is very small, in fact, the convention(s)
that are hardest to displace will be observed almost all of the time over the
long run.

Let us now make these observations more precise. The perturbed process
P’ is irreducible because of the assumption that the experimental distribu-
tions gq,, g, have full support. Hence P® has a unique stationary distribu-
tion u*. P* is also strongly ergodic, so for every se€ S, u! is (with probability
one) the relative frequency with which state s will be observed in the first
t periods as t — oC.

STOCHASTICALLY STABLE CONVENTION. A convention s is stochastically
stable if lim, _, o u¢ exists and is positive. It is strongly stable if lim, _, ul=1.
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Over the long run, stable conventions will be observed much more
frequently than unstable conventions when the probability ¢ of the pertur-
bations is small. A strongly stable convention will be observed almost a//
of the time when ¢ is small. This concept was introduced for general
evolutionary processes by Foster and Young [6]. Applications of the
concept to equilibrium selection may be found in Young [18], Young
and Foster [19], Fudenberg and Harris [7], and Kandori, Mailath and
Rob [10].

We now describe a general technique for computing the stable conven-
tions, which always exist. Moreover, we show that generically there exists
a strongly stable convention, which of course must be unique if it exists.

Mistake. Let s=((x', »'), (x%, ¥%), .., (x™, ¥™)) be some state and let
s = ({(x%, ¥?), ..., (X, ¥™), (X, ) be a successor of s. x is a mistake in the
transition s — s’ if, for every landlord o, x is not a best reply by « to any
sample of size &, drawn from s. Similarly, y i1s a mistake if, for every tenant
B, y is not a best reply by f to any sample of size k; drawn from s.

Resistance. If s’ is a successor of s, the resistance r(s,s’) of the
one-period transition s —» s’ is the minimum number of mistakes involved
in the transition. Clearly r(s,s')=0, 1, or 2. For every two states s' and s°,
the resistance r(s', s*) is the least total number of mistakes in any sequence
of one-period transitions that leads from s' to s°.

To compute r(s',s*) one solves a shortest path problem in a directed
graph, namely, the graph in which every state is a vertex, there is an edge
directed from s to s’ if and only if s’ is a successor of s, and its weight is
r(s,s’).

Now define another graph ¥ as follows. There is one vertex for each
convention x, and a directed edge from every vertex to every other. The
“weight” or resistance of the directed edge x — x’ is the resistance r(x, x')
of moving from the convention x to the convention x".

x-tree. An x-tree is a collection of edges in % such that, from every
vertex X’ # x there is a unique directed path to x, and there are no cycles.
Let 7, be the set of all x-trees.

Stochastic Potential. The stochastic potential of the convention x is the
least resistance among all x-trees:

yx)=min Y r(x,x")
€7x (x,.x")eT

The following is a special case of Theorem 4 in [18].

THEOREM 2. The sequence of stationary distributions u° converges to a
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stationary distribution 1° of P° as ¢ — 0. Moreover, s is stochastically stable
(4> 0) if and only if s =x is a convention and y(x) has minimum stochastic
potential among all conventions.

In the remainder of the paper we shall characterize the stable conven-
tions under various assumptions about the composition of the bargaining
populations.

5. HOMOGENEOUS POPULATIONS AND THE NASH SOLUTION

Let a be a rational fraction, 0 <a <1, and let u(x) be a concave utility
function defined for all xe {0, 1]. An agent is of type (a, u) if he always
samples the fraction a of the last m records and his utility function is u. Let
A and B be the two classes of agents, and suppose that each class is
homogeneous: all members of A4 are of the same type (a, u), and all
members of B are of the same type (b, v). Since the classes 4 and B are
treated symmetrically in the model, there is no loss of generality in
assuming that a > b. We shall also assume that m is chosen so that ma and
mb are integer.

Generic Stability. A division (x, 1 —x) is generically stable for types
(a, u) and (b, v) if the associated convention x 1s stochastically stable for all
admissible m.

Asymmetric Nash Bargaining Solution. Given types (a, u) and (b, v), the
asymmetric Nash bargaining solution is the unique division (x, 1 —x) that
maximizes

w(x) (1l —x) subject to 0 < x < 1. (4)

When a = b this reduces to the ordinary Nash bargaining solution.

THEOREM 3. Let A and B be homogeneous populations composed respec-
tively of types (a,u) and (b, v), where a, b<1/2. For every precision 4 >0
there exists at least one and at most two generically stable divisions, and as
d — 0 they converge to the asymmetric Nash bargaining solution.

Stated informally, this result says that if memory is sufficiently large and
the precision is sufficiently small, most people will be using the same rule
of division most of the time, and this rule will be close to the asymmetric
Nash solution. In particular, agents who are risk averse or poorly informed
will fare worse than those who are not, all else being equal. For example,
if the landlords are risk neutral and the tenants are risk averse, and if both
have the same amount of information (a = h), then most of the time the
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landlords will be getting the larger share. If both sides are risk neutral, but
the landlords have more information (a > b), then again the landlords will
get the larger share most of the time. The reason is that agents with more
information are less likely to respond to mistakes by the other side, so they
are steadier. Similarly, agents who are less risk averse are more likely to
take chances, so they are more demanding.

The proof of Theorem 3 proceeds by a series of lemmas that provide a
sharp estimate of the stable conventions for any choice of parameters
and m.

Fix the precision =10 7 and let D’={xeD: d<x<1-§}. Fix
a,b<1/2 and let m be such that ma and méb are integer. For every real
number r let [r] denote the least integer greater than or equal to r. Also,
let r A ¢’ denote the minimum of r and r".

x-Basin. For every x e D" the x-basin is the set of all states from which
the unperturbed process P° converges to the convention x with positive
probability.

LEMMA 1. For every x € D the minimum resistance to moving from x to
a state in some other basin is [mr;(x)], where

rs{x)=a(l —u(x—0)/u(x)) A b(1 —v(1 —x—8)v(l — x))
A bo(l— x)oe(l —d). (5)

Before proving Lemma 1, we give the intuition behind it and show how
it leads to a proof of Theorem 3. The three terms in expression (5) arise in
the following way. To displace an established convention x requires one
side or the other to demand something other than the conventional
amount. Suppose that the tenants demand just a little more than they
should, say 6 more. The landlords will resist this, and the amount of their
resistance is the relative loss in utility that they would suffer by giving up
a J-increment of their current share x, times their sample size. This yields
the first term a(l — u{x —d)/u(x)). Similarly, if the landlords demand ¢
more than the conventional amount the tenants will resist, and the
extent of their resistance is the relative loss in utility that they would suffer
by giving up &, times their sample size. This yields the second term
b(1 —ov(l —x—3d)v(l —x)).

A third possibility is that some landlord demands Jess than the conven-
tional amount by mistake. This would be a “silly” mistake, of course, but
it could happen. The silliest mistake of all would be to demand only 4.
{Recall that we exclude demands of 0, because it makes little sense to
“demand” nothing.) If the landlords make enough mistakes of this sort, the
tenants will switch to 1 —§, and their resistance to switching is given by
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the third term, hv(1 — x)/v(1 — ). Of course, the tenants might also make
silly mistakes. If they demand 6 often enough, the landlords will switch to
1—0o. It can be shown, however, that when a># the resulting term
au(x)/u(l —8) is never strictly smaller than the term A(1 —uv(1 — x — )/
t{1 — x)) for any concave utility functions u and v. Hence mistakes of the
second type~have no effect on the long-run stability of various divisions.
The function r;(x) is the minimum of three monotone functions. The
first 1s strictly decreasing in x, the second is strictly increasing in x, and the
third is strictly decreasing in x. Hence, as x increases, r;(x) is first strictly
increasing and then strictly decreasing. On the subset D it therefore
achieves its maximum at one, or at most two, values. We shall show that
these are the generically stable divisions, and that, as & approaches 0, they
converge to the asymmetric Nash solution (Lemmas 2 and 3 below}).

ExaMpLE 1. Let all agents in 4 sample 1/3 of the surviving records and
have utility function u(x)=\/;. Let all agents in B sample 1/10 of the
surviving records and have utility function v{y}= yp. The asymmetric
Nash solution is (5/8, 3/8). Let 6 =0.1. Then r;(x) is the minimum of the
following three functions

Silxy=0/3)1 —ulx = 3)u(x)) = (1/3)(1 — /(1 = 0.1/x))
L(xy=(1/10)(1 — (1 — x - d)/v(1 — x))=0.01/(1 — x)
f2(x)=(1/10) v(1 — x)/e(1 —8) = (1/9)(1 — x).

The function rs;(x)=min{/f (x), f5(x), f3(x)} is graphed in Fig. L. It
achieves its maximum on D at the value x;=0.6, so by Theorem 3,
(0.6, 0.4) is the generically stable division.

Proof of Lemma 1. Let the types (a,u) and (b, v) be given, where
a, b<1/2. Assume without loss of generality that a> 5, and let & =ma.
Suppose that the process is at the convention x, where xe D'= {xe D:
d<x<1-4d}. Let n be a path of least resistance from x to a state that is
in some other basin. Clearly, ® must pass through some state s such that
(1) some landlord’s best reply to a sample from s is different from x, and/or
(11) some tenant’s best reply to a sample from s is different from 1 — x. Let
s be the first such state. Without loss of generality we can assume that
some landlord (say «) has a best reply x’ # x to a sample ¢ of size & drawn
from s. By choice of s, every tenant’s demand in s that differs from 1 — x
must have been a mistake. Let i<k be the total number of mistakes by
tenants in the sample ¢ that the landlord drew.

Now construct another sequence ¢’ from ¢ by replacing each mistaken
demand of the tenants by the demand | — x'. Thus in ¢’ there are exactly
i instances of 1 —x’ on the tenants’ side, and k —/ instances of | — x.
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FiG. 1. The function rg(x)=min{ f,(x), f>(x), f3(x)} for Example 1.

Landlord «’s best reply to o' s still x', because his best reply to ¢ was x’,
and the optimality of x" is not compromised when the tenants demand
1 — x’ more often and other things less often.

We now construct an alternative path 7' from x to the x’-basin in which
the total number of mistakes is /, from which it follows that =’ is also a
path of least resistance. Beginning at the convention x, let a succession of
tenants mistakenly demand | — x’ 7 times in a row. With positive probabil-
ity the landlord o’ drawn in the next period will sample the most recent &
plays. This sample ¢” consists of 7 instances of | —x" and k& —/ instances of
1 — x. The relative frequency of 1 — x'" is the same in ¢" and ¢”. Since 2’ and
a2 have the same utility function, and x’ is the best reply by « to 4, it
follows that x’ is also the best reply by «' to ¢”.

With positive probability the landlords will sample ¢” for k periods in
succession and reply with x" each time. This establishes a run of x' (by the
landlords) without introducing more mistakes. After this there is a positive
probability that a succession of k tenants will sample from this run and
demand 1 — x’ for k periods in a row. From here it is clear (as in the proof
of Theorem 1) that the process converges with positive probability to the
convention x’ with no further mistakes.

Thus we have constructed an alternative least-resistant path from the
convention x to the convention x’ in which the only mistakes are an initial
succession of / mistaken demands 1 — x". To compute the least number of
mistakes necessary to exit from the x-basin, it therefore suffices to consider,
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for every x’ # x, the least number of initial mistakes | — x’ by tenants that
would cause a landlord to reply with x' # x, and the least number of initial
mistakes x' by landlords that would cause a tenant to reply with 1 —x’,
and to take the smaller of these two numbers.

Choose an arbitrary x’ # x. We distinguish two cases: x' <x and x' > x.

Case 1: x' < x.

Let the process be in the convention x. Suppose that the landlords make
i successive demands of x’ that cause some tenant’s best reply to switch to
1 — x’ instead of 1 —x. We can assume that i < mb, which is the tenant’s
sample size. When a tenant samples these i mistaken demands x', together
with mb — i of the previous “conventional” demands x, he switches to | — x’
provided that (i/mb)v(l —x') = v(1 — x), that is

iz mbv(l — x)/v(1 —x').

Over all feasible x’ < x the minimum value of j occurs when x' =6 and

i= [mbr(l —x)v(l1-=46)]. (6)

The other possibility is that the tenants make the mistakes. Suppose that
a succession of j <k =ma tenants demand 1 —x’ by mistake instead of
I — x. (Note that these are only “mistakes” in the sense that they are not best
replies to the existing set of precedents. The tenants would obviously like
to get 1 — x’ rather than 1 — x if they thought they could get away with it.)
If some fandlord samples the j mistaken demands of 1— x’, together with
k — j of the previous conventional demands 1 — x, then he switches to x’
provided that u(x'} = (1 — j/k) u(x), that is,

Jz k(1 —u(x)u(x))=ma(l — u(x")/u(x)).

Over all feasible x’ < x, the minimum such j occurs when x" = x — J. Hence
J=[ma(l —u(x —8)/u(x))]. (7)

Case 2: x' > x.
An analogous argument shows that, if the landlords make i/ mistaken
demands of x', then some tenant switches provided that

iz mb(1 — (1 — x")/v(1 — x)).

The minimum occurs when x' = x + d:

i=[mb(l —v(l —x—=0)/v(l1 —x))] (8)
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If the tenants make ; mistaken demands of 1 — x', then some landlord
switches provided that

J = mau(x)/u(x’).

Since all demands are positive, the minimum occurs when 1 — x’ =0, that
1s,

J=[mau(x)/u(l1—-9)]. (9)

Combining (6)-(9) it follows that the least number of mistakes to exit from
the x-basin is [mr,(x)], where

rs(x)=a(l —u(x—=23)u(x)) A b(1 —v(l — x—90)/v(l —x))}
A bo(1 — x)e(l —8) A au(x)/u(l — ).

We claim that the last term of this expression is at least as large as the
second term for all xe D, that is,

au(x)/u(t —3) = b(1 —v(l — x —3d)/v(1 - x)). (10)
Indeed, since v is concave, we have
(vl —x)— ol —x =)o < (v} —x)—v{0))/(1 —x),

because the rate of loss of utility in going from | —x to 1 —x—J is no
more than the rate of loss of utility in going from 1 — x to 0. Since v(0)=0
this implies that

1 —v(l —x—=38)/v(l —x)<d/(1 —x). (1)
Simtilarly, since u is concave, we have
(1(1 = 0) =~ u(0))/(1 — 3) < (u(x) — u(Q))/x,
from which it follows that
u(x)/u(l —0) = x/(1 - 8). (12)

It may be checked that x/(1—-38)=d/(1 —x) whenever d<x<1-6.
Combining this with (11) and (12) we therefore have

w(x)u(l—=0)=2x/(1 =8)2d/(1 —x)=1—0v(l —x—3)/v(1 — x).

This, together with the assumption that «>b, proves (10). Hence the
right-most term in r;(x) can be omitted, so rs(x) is given by (5). This
completes the proof of Lemma 1.
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Lemma 2. A division (x, 1 —x) is generically stable if and onlv if’ x
maximizes the function r;{x) on D".

Proof. The function r,;(x) is first strictly increasing in x and then
strictly decreasing in x. It therefore achieves its maximum on D° either at
a unique value x; or at two adjacent values x, and x;+ d. Suppose first
that the maximum is achieved at a wnique value x,. Construct a directed
tree T having root x; as follows:

(i) for every xe D? such that x < x;, put the directed edge (x, x + J)
in 7, and let its weight be [mb(1 — (1 — x — §)/v(1 —x))];

(ii} for every xe D® such that x> x; and a(l —u(x—8)/u(x)) <
hr(1 —x)/v{1 —¢8), put the directed edge (x, x —09) in T; and let its weight
be [mal(l — u(x—38)u(x))];

(i) for every xe D’ such that x>, and a(l —u(x—d)/u(x))>
br(l — x)/v(1 —d), put the directed edge (x,d) in T, and let its weight be
[mbe(l — x)/e(l —8)].

Then T, has the following structure. Every node x except x, has a
unique outgoing edge. If x lies to the /left of x,; the outgoing edge is directed
to x's immediate neighbor on the right (case i). If x lies to the right of x;
the outgoing edge is directed either to x’s immediate neighbor to the left
(in case ii) or to the node & (in case i11). From every vertex other than x;
there exists a unique path to x;. Thus T, is an x,-tree. Since 7, was con-
structed by choosing at each node the outgoing edge with least resistance,
it is clear that T, has least resistance among all x,-trees. Fig. 2 illustrates
the structure of T, for Example 1.

We claim that 7, has least resistance among afl x-trees. To prove
this, let 7 be an x-tree for some x 3 x;. In T, x; has a unique outgoing
edge e. Let r be the resistance of ¢. By Lemmal, [mr;(x;)] 1s the
minimum resistance among afl possible edges directed away from x;, so
r= [mrs(x;)]. By construction, [mrs(x)] is the resistance of the unique
edge exiting from x in the tree T'5. Further, for every node x’ different from
both x; and x, the resistance of the unique outgoing edge from x' in 7T is
no greater than the resistance of the unique outgoing edge from x' in T.
Hence

HTYZr(T)+r—[mrs(x)].

1 2 3 4 5 6 7 8 3

FiG. 2. The x,-tree of least resistance for Example 1 (v, =0.6).
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Since
rzmrs(xs)]=[mr;(x)],

it follows that r(T)>=r(T;) as claimed. Moreover, since x; is the unique
maximum of rs, we have [mr;(x;)] > [mr;(x)] for all sufficiently large m,
so r(T)>r(T;). It follows from Theorem 2 that x; is a stochastically stable
convention for all m, and it is the unique stochastically stable convention
for all sufficiently large m.

If r; is maximized at two neighboring values x,; and x;+ J, construct a
tree for each of them as above. A similar argument shows that these are the
x-trees of least resistance for all sufficiently large m. Hence x,; and x, +d
are the unique generically stable conventions. This concludes the proof of
Lemma 2.

LeMMA 3. The maxima of the function r;(x) converge to the asymmetric
Nash solution as 6 — 0.

Proof. For each o, view rg(x) as a function defined on the whole interval
[0, 11. Let x’; be the unique real value at which the maximum is achieved.
It is clear that |x;— x';5] <3, where x; maximizes r;(x) on D° To prove
Lemma 3, it suffices to show that the sequence {x;} converges to the
asymmetric Nash solution as 6 — 0.

For each precision & define f;(x)=r,(x)/d. Clearly x’'; also maximizes
fs{x)yon [0, 1]. As § goes to zero, the third term of f;(x) becomes large
while the other two terms are bounded. Hence the third term may be
ignored in the limit (since f,(x) is the minimum of the three terms). Let
u (x) denote the left-hand derivative of v at x and let #*(x) denote the
right-hand derivative of u at x (both of which exist). Then for each x in
{0, 1) we have

lim f,(x)=au (x)u(x) A bv (1 —x)/v(l—x)=f(x)
50

Since » and v are concave and bounded, the function f{x) defined in the
above expression is strictly quasiconcave and upper semicontinuous. Hence
it attains its maximum at a unique value x* We claim that x* is the
asymmetric Nash bargaining solution. To see this, suppose first that u(x)
and v(y) are differentiable. Then #'(x) = du{x)/dx and v'(y)=dv(y)/dy are
continuous and nonincreasing. Thus au’(x)/u(x) is continuous and strictly
decreasing, while bv'(1 — x)/v(l1 — x) is continuous and strictly increasing.
The maximum of f(x) occurs where the curves au'(x)/u(x) and
bv'(1 — x)/v(1 — x) cross, that is, at the unique value x* (0, 1) such that

au' (x* ) u(x*)=bv'(1 — x*)/v(1 — x*).
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This is a necessary and sufficient condition for x* to be the unique point
where the strictly concave function ¢ In u(x}+ # In v(1 — x) is maximized. It
follows that x* maximizes u“(x) ¢v”(1 —x), so it is the asymmetric Nash
solution.

Suppose now that u and v are not differentiable. Nevertheless they are
subdifferentiable. For each xe (0, 1) consider the set of all lines in R* that
pass through the point (x, u(x)) and are tangent to the curve u(x). The
slopes of these lines are the subgradients of u at x, and the set of them is
the subdifferential at x, denoted by du(x) [15]. In general we have
Su(x)={riu (x)=rzu*(x)}. Similarly define ¢uv(y) for every ve (0, 1).

Suppose that f attains its maximum at x*. Then for all small ¢>0

au (x*Yu(x*) 2 f(x*)Z au (x* +e)/u(x* +¢).

It is a standard result that u (x* +&)/u(x*+¢e) > u* (x*)/u(x*) as ¢ >0
(1S, p. 228]. Hence

au (x*)u(x*) = f(x*) 2z au™ (x*)u(x*),
and therefore,
SIx*)ea du(x*)/u(x*). (13)
Similarly, conclude that
f(x*)eb dv(l — x*)/u(1 — x*). (14)

Consider the strictly concave function F{x)=aln u(x)+ b In v(l —x). Then
(15, p.223]

CF(x)=2alalnu(x))+ é(bInv(l — x))
=a du(x)/u(x)— b dv(1 — x)/v(1 —x). (15)

In particular this holds for x*. From this and (13)-(14) it follows that
0e dF(x*). Therefore x* is the unique minimum of F (see [15, p. 264]), so
by definition x* is the asymmetric Nash solution.

The only point that remains to be verified is that, if x¥ maximizes f;(x)
for every J, then the sequence {x}} converges to x*. Suppose, by way of
contradiction, that x’ is an accumulation point of the sequence {x}} that
differs from x* For notational simplicity we shall assume that {x}}
actually converges to x'. For each ¢ let

Co=1{xe[0, 11 f5(x) = f5(x*)}.

C, is convex, closed, and contains both x* and x*. Hence it contains the
interval /; spanned by x* and x¥. Since x} converges to x’, the intervals

642 59 1-12
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I, converge to the interval / spanned by x’ and x*. Fix some z strictly
between x* and x’. For all sufficiently small 4, z€ I, and hence ze C;. It
follows by definition of C, that f,(z)= fs(x*) for all 6. Hence f(z) = f(x*)
because f, converges pointwise to f. This is a contradiction, however,
because x* uniquely maximizes f. This completes the proof of Lemma 3,
and Theorem 3 follows at once.

The above proof shows that Theorem 3 holds under a variety of other
assumptions about how agents make mistakes. For example, suppose that
agents only make “small” mistakes. In other words, imagine that an agent
first samples the past and determines the best reply, but that occasionally
he demands a little bit more (or a little bit less) than he should-—say J
more or o less. Then the expression for the resistance function r; in (5) is
the same except that the third term Au(1 — x)/v(1 — ) is deleted. Since in
any event this term is not relevant when & goes to zero (because it is
strictly larger than the first two terms), the proofs of Lemmas 2 and 3 go
through much as before. Hence the generically stable division(s) are close
to the asymmetric Nash solution when 6 is close to zero.

Theorem 3 differs in several important respects from other ways of
deriving the Nash solution based on perturbations. In his 1953 paper,
for example, Nash suggested that his bargaining solution is the unique
limiting outcome of the Nash equilibria of a perturbed version of the
Nash demand game in which there is a small uncertainty in the payoff
function [13]. A more rigorous argument along these lines was provided
by Binmore [2]. Carlsson [4] investigated variations of the Nash demand
game in which agents’ demands are modified by a small error term, and
showed that the Pareto optimal Nash equilibria of this noncooperative
game converge to the Nash solution as the error term becomes vanishingly
small.

These models of equilibrium stability differ from the present one in that
they presuppose that the outcome of the perturbed game is a Nash equi-
librium. To justify this approach, it must be assumed (among other things)
that the properties of the game are common knowledge among the agents.
In our model, there is no common knowledge and no assumption that a
Nash equilibrium will be played. Instead, equilibrium emerges (in an
asymptotic sense) as a consequence of the long-run dynamics, without the
players being aware of it.

6. HETEROGENEOUS POPULATIONS AND A GENERALIZATION
OF THE NASH SOLUTION

Theorem 3 shows how the Nash bargaining solution can be selected by
a dynamic process that does not require any common knowledge on the
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part of the agents. This conclusion is based, however, on the special
assumption that all agents in the same class have the same utility function.
Moreover, the result is very sensitive to this assumption. If just one agent
has a utility function that differs from the norm in his or her class, the
long-run outcome of the process may be completely different from the one
described in Theorem 3. The reason is that the long-run behavior of the
process is determined by those who would suffer the greatest proportional
loss in utility from a given reduction in share. If there is just one landlord,
for example, who is more risk averse than the others in this sense. then his
choices will determine the long-run behavior of the process despite there
being many other landlords who are less risk averse.

Let us therefore consider the more general situation in which each pop-
ulation of agents contains various types of individuals. Let T, be the finite
set of types represented in class 4, and Ty the set of types represented in
class B. Let a* be the least ¢ among all (a, u) in T, and let h* be the least
b among all (b, v) in Tyz. We may assume without loss of generality that
a* =z bh*. We shall also assume that «*, b* < 1/2. Then, just as in the proof
of Lemma 1, it follows that the minimum resistance to moving from the
convention x into the basin of attraction of some other convention is
[mR,(x)], where

Rs;(x)= min a(l —u(x—38)u(x)) ~ min b{l —ov(l —x—3)/v(l - x))

(a.u)e Ty (thr)e Ty

A min bv(l — x)/v(l —3d)
(br)eTg
As before we are able to omit the terms of form au(x)/u(1 — d), because for
every type (a,u)e T, we have

b¥(1 —v*(1 —x—d0)/e*(1 — x)) < au(x)/u(l — 3),

where (b*, v¥*) is a type with minimum information in 7.

It is easy to see that R (x) is unimodal. An argument analogous to the
proof of Lemma 2 shows that (x, | — x) is generically stable if and only if
x maximizes R;(x). Hence there are at most two generically stable conven-
tions and they differ by . An argument similar to the proof of Lemma 3
shows that these stable conventions converge to the unique maximum of
the strictly quasiconcave function:

R(x)= min au (x)/u(x) A min_ bv (1 —x)/v(l —x). (16)

{fa,u)e Ty (hryeTg

THEOREM 4. Let A and B be 1wo finite populations of agents and let T ,
and Ty be the types represented in each class, where at least one agent in
each class samples at most half the records. For every precision 6 >0 there
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exists at least one and at most two generically stable divisions, and as 6 - 0
they converge to the unigue division (x, 1 — x) such that x maximizes R(x).

The solution described in Theorem 4 is a generalization of the Nash
solution to heterogeneous populations of bargainers that we shall call the
heterogeneous bargaining solution. 1t differs from Harsanyi and Selten’s
solution [8], which depends on the relative frequency with which the
utility functions are represented in each class. Specifically, the Harsanyi
Selten solution maximizes the product

[T witey TT ofc1 = x),

ueA t,e B
subject to 0 < x < I, where £, is the relative frequency of u; in population
A and y; is the relative frequency of v; in population B. The heterogeneous
bargaining solution, by contrast, depends only on the types of bargainers
represented in each population, not on their relative frequency.

ExaMPLE 2. Let population A consist of two types of agents: (a, = 1/4,
u,(x)=x) and (ua,=1/3, u,(x)=x"*). Population B consists of two other
types of agents: (b, =1/5, v,(y)=y) and (b,=1/2, v,(y)=¥"7). In pop-
ulation A the criterion au'(x)/u(x) is minimized for every x by the second
type: a,u5(x)/u,(x)=1/(9x). In population B the criterion bv'(y)/v(y) is
minimized for every ) by the first type: b,v)(y)/v,(y)=1/(5y). Hence
R(x)=1/(9x) A 1/(5(1 —x)). It achieves its unique maximum when
1/(9x)=1/(5(1 — x)), that is, when x=35/14. In other words, the stable
division is (5/14, 9/14) for any two populations 4 and B consisting of the
types mentioned above, irrespective of the distribution of these types within
each population.

7. MIXING BETWEEN CLASSES AND THE FIFTY-FIFTY SOLUTION

Under some circumstances it is reasonable to expect that the types
represented in each class will be the same, or at least the same with positive
probability. For example, suppose that there is some mobility between
classes. Every so often a landlord (or the child of a landlord) loses his land
and becomes a tenant, and every so often a tenant climbs into the ranks
of the landlords. Then at any given time there is a positive probability that
the two bargainers could be any pair of types drawn from either of the two
original classes.

This idea can be made more general as follows. Let T be the set of all
possible types that either the landlords or tenants could be. Let n(r, v') be
the probability that the type-pair (1, 7')€ T x T is chosen to bargain in any
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given period. The first entry t denotes the landlord’s type and the second
entry t’" denotes the tenant’s type. Up to now we have been assuming that
T is the union of two classes T, and T and that n({r, 7")> 0 if and only
f €T, and 1€ Tp. The above arguments and theorems generalize,
however, to other probability distributions n defined on T x 7.

In particular, we say that the distribution n mixes roles if every pair in
T'x T occurs with positive probability. Mixing is a natural consequence of
mobility between classes. It also holds if the classes are rigid but tenants
and landlords are drawn from the same “gene pool™: every individual has
a positive probability of being any type t, though the probability of being
a t may differ for landiords and tenants. When n mixes roles, it is
straightforward to verify that Theorem 4 still holds with 7,= T, = T in the
expression for R(x). This implies that R(x) is symmetric about one-halif.

COROLLARY 4.1.  Let T be a common set of types and let n(t,7) >0 be
the probability that any given landlord and tenant are of types v and 1,
respectively. Then fifty-fiftv is the unique generically stable division.

This result does not say that society ultimately locks into fifty-fifty and
stays there forever. Rather, the evolutionary process favors a solution near
hfty-fifty when there is mixing between the classes of bargainers. In other
words, if memory is large, the noise is small, and there is some mixing
between classes, the chances are good that the customary division will be
about fHfty-fifty.
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