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Our main goal is to build multivariate distributions that are compact and have guaranteed independence
(or conditional independence; CI) properties. In this lecture, we will describe a class of such models called
Bayesian Networks (BN).1 A BN is defined using a directed graph and the properties of the directed graph
imply the conditional independence properties of the BN.

1 Definitions and Notations
We begin with a few definitions and results that will be needed later.

1.1 Directed Graphs
Definition 1. A directed graph is a pair (V,E) where V is a set of nodes (which we will typically denote
by {1, . . . , n} and ordered pairs of vertices (i, j) ∈ E (where (i, j) corresponds graphically to an edge
i→ j). A Directed Acyclic Graph (DAG) is a directed graph that has no directed cycles.

Definition 2. A topological ordering of a DAG is an ordering of its nodes i1, . . . , in where ik appears
before all the nodes j such that (ik, j) ∈ E. In other words all the children of ik appear after it in the
ordering. It’s easy to see that each DAG has such an ordering and it can be found efficiently. Note that it is
not necessarily unique.

Definition 3. Given a node i we shall be specifically interested in several sets of nodes. The parents of i
are all the nodes with edges going into i. We denote it by Pa(i). The descendants of i are all the nodes with
a directed path from i. The ancestors of i are all the nodes with a directed path to i. The non-descendants
of i are all the nodes that are not descendants of i. We denote those by ND(i).

In what follows we will use graphs to define distributions on variables x1, . . . , xn. We will identify
variables with nodes in the graph. Thus, the set of variables that corresponds to the parents of i will be
denoted by XPa(i).

1.2 Conditional Independence
Independence is one of the most important properties of a distribution. It tells us something very important
about the relations between variables. For example if we know that Xi is independent of Xj it means that
setting the value of Xi will not change the distribution of Xj . However, in many cases variables are not
independent but rather independent given other variables.

Definition 4. Given three random variables X,Y, Z we say that X is conditionally independent of Y given
Z if for all x, y, z values it holds that:

p(x, y|z) = p(x|z)p(y|z) (1)

1Introduced by Judea Pearl in his 1988 book: “Probabilistic Reasoning in Intelligent Systems”
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The above can be seen to be equivalent to the condition p(x|y, z) = p(x|z).2 We denote this relation by
X⊥Y |Z.

Conditional independence has several useful properties. We mention two below and will use others
during the course.

Lemma 1. The Decomposition lemma for CI: Let W,X, Y, Z be random variables. Then X⊥Z,W |Y
implies X⊥Z|Y . The proof is straightforward.

Another almost trivial result is:

Lemma 2. If X⊥Y |Z then X⊥Y,Z|Z. This follows since:

p(x|y, z, z) = p(x|y, z) = p(x|z) (2)

Where the last equality follows from X⊥Y |Z.

2 Definition of Bayesian Network
A Bayesian Network is a model of a distribution p(x1, . . . , xn) that is constructed via a DAG. It has some
very nice provable conditional independence properties as we show later.

Assume we are given a DAG G and a set of distributions p(xi|xPa(i)). The Bayesian network B =
(G, p) is a distribution over x1, . . . , xn defined as:

pB(x1, . . . , xn) =
∏
i

p(xi|xPa(i)) (3)

First, we need to prove it is indeed a distribution. Clearly it is non-negative. We also want to show that∑
x1,...,xn

pB(x1, . . . , xn) = 1 (4)

To show this assume wlog that 1, . . . , n is a topological ordering. Then:

pB(x1, . . . , xn) = p(x1|xPa(1))p(x2|xPa(2)) . . . p(xn|xPa(n)) (5)

where xn appears only in the last term. Thus:∑
x1,...,xn

pB(x1, . . . , xn) =
∑

x1,...,xn−1

p(x1|xPa(1))p(x2|xPa(2)) . . .
∑
xn

p(xn|xPa(n))

=
∑

x1,...,xn−1

p(x1|xPa(1))p(x2|xPa(2)) . . . p(xn−1|xPa(n−1))

Continuing this recursively we have that the overall sum is one.

3 Local Independence Properties of BNs
Next, we can ask what CI properties such a distribution may have. In other words if we know that pB is a
Bayesian Network for a graph G, what CI properties must it satisfy (regardless of the choice of p).

We need the following definition: the set of non-descendants of i are all the nodes that are not its
children. Denote it by ND(i).

2Some care should be taken for the case where p(y|z) = 0 to show the equivalence.
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Theorem 1. Given a Bayes net (G, p) the distribution pB has the following properties:

• For all i, the variable Xi is conditionally independent of its non-descendants that are not his parents,
given its parents:

Xi⊥XND(i)\Pa(i)|XPa(i) (6)

• It holds that:
pB(xi|xPa(i)) = p(xi|xPa(i)) (7)

We note that from Lemma ?? it also follows that: Xi⊥XND(i)|XPa(i). This is the common form in the
literature but can be confusing.

Proof. First, consider the distribution pB(xi, xND(i)) which can easily be shown to have this form (after
summing over all descendants of xi)

pB(xi, xND(i)) = p(xi|xPa(i))
∏
k

p(xk|xPa(k)) (8)

So that:

pB(xi|xND(i)) =
pB(xi, xND(i))∑
xi
pB(xi, xND(i))

= p(xi|xPa(i)) (9)

Or in other words:
pB(xi|xND(i)\Pa(i), xPa(i)) = p(xi|xPa(i)) (10)

Multiply by pB(xND(i)\Pa(i)|xPa(i)) to get:

pB(xi|xND(i)\Pa(i), xPa(i))pB(xND(i)\Pa(i)|xPa(i)) = p(xi|xPa(i))pB(xND(i)\Pa(i)|xPa(i)) (11)

Equivalent to:

pB(xi, xND(i)\Pa(i)|xPa(i)) = p(xi|xPa(i))pB(xND(i)\Pa(i)|xPa(i)) (12)

Sum over all value of xND(i)\Pa(i) to get:

pB(xi|xPa(i)) = p(xi|xPa(i)) (13)

Substitute this in Eq. ?? to get:

pB(xi|xND(i)\Pa(i), xPa(i)) = pB(xi|xPa(i)) (14)

From which it follows that Xi⊥XND(i)\Pa(i)|XPa(i).
To obtain Xi⊥XND(i)|XPa(i) we just need to note that X⊥Y |Z implies X⊥Y, Z|Z.

The above theorem implies several things. First it means that pB satisfies the following:

pB(x1, . . . , xn) =
∏
i

pB(xi|xPa(i)) (15)

We say that a distribution satisfying the above factors according to G.

Definition 1. The Local Markov CI properties of DAG G are a set of n conditional independence properties
given by:

ILM (G) = {(Xi⊥XND(i)|XPa(i))}ni=1 (16)

Definition 2. Let p be a distribution over X1, . . . , Xn. We denote by I(p) the set of all conditional inde-
pendence properties that are true for p

For example I(p) can look something like:

I(p) = {X1, X2⊥X3, X4|X5, X7, X2, X4⊥X5|X6} (17)

Using the above definitions Theorem ?? can be expressed as the following assertion: If p factorizes
according to G then ILM (G) ⊆ I(p).
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4 Local Markov leads to factorization
The previous section showed that any distribution that factorizes has the ILM (G) properties. Now, sup-
pose that we would like to construct a distribution that has ILM (G) properties. We know we can use a
Bayesian Network to obtain a distribution with these properties. But maybe there are other, more complex
distributions that do not factor and have this property. The following theorem states that there are not (it is
essentially the converse of Theorem ??).

Theorem 2. If p is a distribution such that ILM (G) ⊆ I(p), then p factorizes according to G.

Proof. Assume wlog that 1, . . . , n is a topological ordering. Start by writing the chain rule:

p(x1, . . . , xn) =

n∏
i=1

p(xi|x1, . . . , xi−1) (18)

We will be able to show the result if we show that p(xi|x1, . . . , xi−1) = p(xi|xPa(i)).
Because of the topological ordering, all of the parents of xi are in x1, . . ., xi−1. Also, none of its

descendants can be in this set. So we can write:

1, . . . , i− 1 = Pa(i) ∪ S (19)

where S ⊆ ND(i) \ Pa(i). Thus what we want to show can be rephrased as p(xi|xPa(i), xS) =
p(xi|xPa(i)). In other words, we want to show that Xi⊥XS |XPa(i).

We know from the LM property that:

Xi⊥XND(i)\Pa(i)|XND(i) (20)

This is almost what we need, but remember that S ⊆ ND(i). Fortunately, we have the Decomposition
Lemma for CI (see above). Thus we can rewrite Eq. ?? as:

Xi⊥XS , XND(i)\{Pa(i),S}|XPa(i) (21)

And from the lemma we conclude:
Xi⊥XS |XPa(i) (22)

which is what we needed.

5 What other conditional independencies hold for Bayesian Networks?
The LM properties only tell us about n specific CIs. What about any other property X⊥Y |Z. How can we
tell if it holds in a given BN or not? We may suspect that X⊥Y |Z in a BN based on a graph if Z somehow
blocks the influence of X on Y . The LM is an instance of this. We may thus first hypothesize that if there
is no path between X and Y in the graph that does not go through Z the property will hold. This in fact is
not true since the explaining away phenomenon is a counter example.

We need the following definition:

Definition 5. An undirected path in a DAG G is active given a node set E if:

• For every V structure i→ j←k in the path either j or one of its descendants is in E.

• Every other node in the path is not in E

The idea behind an active path is that if there is an active path between Xi and Xj given E then Xi is
potentially dependent on Xj given E. This is extended to larger variable sets via the following definition.
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Definition 6. Given variables sets X,Y, Z in the graph G we say that X is d-separated from Y given Z if
there is no active trail between a node in X and a node in Y given Z.

The set of CI properties Id−sep(G) corresponds to all triplets X⊥Y |Z where X is d-separated from Y
given Z. In other words X⊥Y |Z is in d − sep(G) if every path between X and Y either has a node in Z
that is not on a v-structure or it has a node outside Z that is in a v-structure or a descendant of a node in a v
structure.

What can we say about d-separation and Bayesian networks?

Proposition 1. For any BN on graph G it holds that I(p) ⊇ Id−sep(G).

We will not show this here. It will wait until we talk about undirected models.
Since Id−sep(G) is quite a large set, we might expect that it captures all CI properties in a BN on

G. This is clearly wrong however since for every graph G we can define a BN such that all variables are
independent (i.e., pB =

∏
i p(xi)). Thus I(p) will clearly contain more properties than those specified in

Id−sep(G). So clearly Id−sep(G) + I(p).
However, you may suspect that this example is very specific. In other words we had to choose very

specific p distributions to construct this pB such that it will have properties not in Id−sep(G). In fact, it can
be shown that except for a set of measure zero all BN on G will have satisfy I(p) = Id−sep(G).

In summary the following properties are equivalent:

• The distribution p factorizes according to G (i.e., it is a BN for G).

• I(p) ⊇ ILM (G)

• I(p) ⊇ Id−sep(G)
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