
67800: Probabilistic Methods in AI Spring 2017/18

Recitation 0: Background
Teaching Assistant: Eitan Richardson

0.1 Probability Theory

Recommended reading:

• PGM Book, Chapter 2 [2]

• Standford CS 229 Course / Probability notes [3]

• Notes in Hebrew by Gal Chechnik et al [1]

0.1.1 Basic Definitions

Sample space Ω – all possible outcomes e.g. single dice throw: Ω = {1, 2, 3, 4, 5, 6}

Event e – a subset of the sample space e ⊆ Ω e.g. odd throw result: e = {1, 3, 5}

Event space S – a set of all relevant events, including ∅ and Ω

Probability measure P : S → R+

Basic properties:

• ∀a ∈ S, P (a) ≥ 0, P (Ω) = 1, P (Ω \ a) = 1− P (a)

• a ⊆ b =⇒ P (a) ≤ P (b)

• P (a ∩ b) ≤ min(P (a), P (b))

• Union bound: P (
⋃

iai) ≤
∑

i P (ai) (equal if {ai} are disjoint events)

Conditional probability:

P (a | b) =
P (a ∩ b)
P (b)

The chain rule:
P (
⋂
i

ai) = P (a1)P (a2 | a1) · · ·P (ak | a1 ∩ . . . ∩ ak−1)

Bayes rule:

P (a | b) =
P (b | a)P (a)

P (b)

Independent events:

• P |= (a ⊥ b) ⇐⇒ P (a ∩ b) = P (a)P (b), or equivalently: P (a | b) = P (a)

• Conditional independence: P |= (a ⊥ b | c) ⇐⇒ P (a | b ∩ c) = P (a | c)
1Original LaTeX template courtesy of UC Berkeley.
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0.1.2 Random Variables

A random variable X is a function X : Ω→ R, (or to one of possible set of values).

Example 0.1 Two dice roll
Ω = {(1, 1), (1, 2), . . . , (6, 6)}
X((n1, n2)) = n1 + n2 – a random variable describing the roll sum.

Probability distribution of a random variable:

P (X = x) = PX = P ({ω ⊆ Ω : X(ω) = x})

PX is a new probability distribution function associated with the random variable X. It only records the
probability of different values of X.

Discrete random variable: ∑
x∈Val(X)

P (X = x) =
∑
x

PX(x) = 1

0.1.2.1 Moments – Expectation and Variance

Expectation (for discrete variables): EP [X] = ΣxxPX(x)

Linearity of expectation:
E[X + Y ] = E[X] + E[Y ], E[aX] = aE[X]

Variance: VarP [X] = E[(X − E[X])2] = E[X2]− (E[X])2]

Proof:

VarP [X] = E[(X − E[X])2]

= E[X2 − 2X · E[X] + (E[X])2]

= E[X2]− 2 · E[X] · E[X] + (E[X])2 (inner E[X] is considered as constant)

= E[X2]− (E[X])2]

Var[aX + b] = a2Var[X]

X,Y are independent =⇒ E[X · Y ] = E[X] · E[Y ], Var[X + Y ] = Var[X] + Var[Y ]

Chebyshev inequality:

P (|X − E[X]| ≥ t) ≤ Var[X]

t2

0.1.3 Multivariate Distributions

0.1.3.1 Joint and Marginal Probability

The explicit joint distribution (for two discrete random variables X and Y ) is a table assigning a probability
value for every combination of Val(X)×Val(Y ), for example:
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Example 0.2

P (X,Y ) =


X

0 1 2 PY

Y
A 0.3 0.3 0 0.6
B 0.2 0.1 0.1 0.4

PX 0.5 0.4 0.1


� There are (|V al(X)| × |V al(Y )| − 1) degrees of freedom in the general joint probability table.

The joint probability should be consistent with the marginal probabilities (sums of rows or columns):

ΣxPX,Y (x, y) = PY (y) and ΣyPX,Y (x, y) = PX(x)

0.1.3.2 Conditional Probability of Random Variables

P (X | Y =y) is the conditional distribution over the outcomes defined by X given the knowledge that Y = y.

P (X | Y ) assigns a probability distribution over X for each value of Y :

P (X | Y ) =
P (X,Y )

P (Y )

In Example 0.2, P (X | Y =A) =
[
0.5 0.5 0

]
.

The chain rule:
P (X1, . . . , Xk) = P (X1)P (X2 |X1) · · ·P (Xk |X1, . . . , Xk−1)

Bayes rule:

P (X | Y ) =
P (Y |X)P (X)

P (Y )

0.1.4 Conditional Probability Distributions and Noisy Or

In some cases (as we will see extensively in this course), instead of defining the joint probability distribution,
we decompose it and use conditional probability distributions (CPDs). For example, a joint probability
distribution over three RV’s can be decomposed per the chain rule to P (X,Y, Z) = P (X)P (Y |X)P (Z |X,Y ),
and if we know that P |= X ⊥ Y , we have: P (X,Y, Z) = P (X)P (Y )P (Z |X,Y ).

In the case of discrete RVs, the CPD P (Z |X,Y ) can be defined explicitly by a table. Notice that each row
sums to 1 (so there are 4 free parameters). Notice the notation P (z0) = P (Z = 0) = PZ(0).

X Y P (z0 |X,Y ) P (z1 |X,Y )

0 0 1 0
0 1 0.5 0.5
1 0 0.2 0.8
1 1 0.1 0.9

� The explicit CPD table grows exponentially with the number of parameters conditioned-on.
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In many cases, we don’t need to model a complex interaction between the different causes (combinations
of parent values) – we might want the CPD to represent some sort of a probabilistic OR model that scales
linearly with additional variables. The Noisy Or model provides this kind of independence of causal influence:

Definition 0.3 Noisy Or
A binary RV Y depends on k binary variables X1, . . . , Xk in a noisy-or model if:

P (Y = 0 | x1, . . . , xk) = (1− λ0)

k∏
i=1

(1− λi)xi

λ0 is the leak parameter, allowing a positive probability for Y = 1 even of all Xi are 0.
λi are the noise parameters defining the amount by which Xi = 1 reduces the probability that Y = 0.
When λ0 = 0 and all noise parameters λi equal 1, the model behaves like a deterministic OR.

The CPD we defined above actually matches a Noisy-Or model with parameters λ0 = 0, λY = 0.5, λX = 0.8.

Example 0.4 Noisy-or and explaining away
We have a joint distribution of three binary RVs defined by P (X,Y, Z) = P (X)P (Y )P (Z | X,Y ), where
P (Z | X,Y ) is defined by a noisy-or model. We need to show that the model satisfies the explaining away
property: P (x1|z1) ≥ P (x1|y1, z1).

Proof: We will prove for the case of λ0 = 0 (although the claim is true in the general case)

P (x0 | y1, z1) =
P (y1 | x0, z1)P (x0 | z1)

P (y1 | z1)

(this is an extension of the Bayes rule, we will prove later)

P (y1 | x0, z1) = 1− P (y0 | x0, z1)

= 1− P (z1|x0, y0)P (y0 | x0)

P (z1 | x0)

= 1 since P (z1|x0, y0) = 0

Substituting this into the first expression we get, P (x0 | y1, z1) = P (x0|z1)
P (y1|z1) ≥ P (x0 | z1) (since P (y1 | z1) ≤ 1).

Thus P (x1 | y1, z1) = 1− P (x0 | y1, z1) ≤ 1− P (x0 | z1) = P (x1|z1).

� Note that we did not use the fact that the CPD is a noisy-or, but only that P (z1|x0, y0) = 0.

Claim 0.5

P (X | Y,Z) =
P (Y |X,Z)P (X | Z)

P (Y | Z)

Proof: Per the chain rule:

P (X,Y, Z) = P (X | Y,Z)P (Y | Z)P (Z) = P (Y |X,Z)P (X | Z)P (Z)
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0.1.5 Independence in Random Variables

X,Y and Z (in bold) are sets of random variables.

(X⊥Y) ⇐⇒ P (X,Y) = P (X)P (Y) : X and Y are (marginally) independent.

In Example 0.2, P (X = 1, Y = A) = 0.3 6= 0.4× 0.6 = P (X = 1)P (Y = A) ⇒ not independent.

(X⊥Y | Z) ⇐⇒ P (X,Y | Z) = P (X | Z)P (Y | Z) : X and Y are conditionally independent given Z.

Additional properties:

• Symmetry: (X⊥Y | Z) =⇒ (Y⊥X | Z)

• Decomposition: (X ⊥ Y,W | Z) =⇒ (X⊥Y | Z)

• Weak union: (X ⊥ Y,W | Z) =⇒ (X⊥Y | Z,W)

• Contraction: (X⊥W | Z,Y) and (X⊥Y | Z) =⇒ (X⊥Y,W | Z)

Proof: (Decomposition)
By the definition of conditional independence we have: P (X,Y,W | Z) = P (X | Z) · P (Y,W | Z)

P (X,Y | Z) =
∑
w

P (X,Y,w | Z)

= P (X | Z)
∑
w

P (Y,w | Z)

= P (X | Z)P (Y | Z)

0.1.6 Queries

Once we built a probability distribution, we can use it to answer some questions.

The posterior distribution given some evidence: P (Y |E = e)

Let χ be the set of all random variables, E the observed variables (evidence), Y the set of variables we are
interested in and Z = χ−Y−E, all other variables.

The marginal MAP query of Y given E is:

MAP(Y |E = e) = arg max
y

∑
z

P (Y = y, Z = z | E = e)
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0.2 Graphs

0.2.1 Paths, Trails, Cycles and Loops

(a) (b) (c)

Figure 0.1: (a) undirected path (b) directed path (c) trail

(a) (b) (c)

Figure 0.2: (a) undirected cycle (b) directed cycle (c) loop

0.2.2 Trees and Forests

Some definitions:

• DAG – directed graph that contains no cycles

• Singly-connected – contains no cycles or loops

• Singly-connected undirected graph = forest

• Singly-connected undirected graph that is also connected = tree

• Singly-connected directed graph = polytree

• Directed graph with at most one parent per node = forest

• A connected directed forest = tree
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(a) (b) (c) (d)

(e)

Figure 0.3: (a) undirected tree (b) directed tree (c) polytree (single-connected directed graph) (d) undirected
forest (e) directed forest

0.2.3 Topological Ordering

Definition 0.6 Topological Ordering
An ordering of the nodes X1, . . . , Xn in a graph G = (χ, E) is a topological ordering if whenever Xi → Xj ∈ E
than i < j.

Given a directed graph, there might be several valid topological ordering of the nodes. For example:

Figure 0.4: Directed graph and a valid topological ordering

Claim 0.7 A DAG has at least one topological order.

There are several algorithms for finding a topological order (for example, using DFS). We will discuss the
following algorithm:
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Algorithm 1 Topological Sort

1: procedure TopologicalSort(DAG G)
2: res ← ∅
3: while G is not empty do
4: v ← any node in G with zero in-degree (no parents)
5: Add v to res
6: Remove v and its edges from G
7: return res

Proof: Correctness of Algorithm 1
We need to show that whenever we add a node v to res, we do not break the topological order i.e. there is
no edge in G from a node not in res yet to v.

This is true since:

• If v had no parents originally, there cannot be such an edge.

• If v has parents that were removed, they are already in res.

The algorithm cannot get stuck since every DAG has at least one node with zero in-degree (if every node
has a parent, we can continue traveling upwards until we reach a visited node).
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