
Language Models
Human Language from a Computational Perspective
April 11, 2018

Natural Language Processing
Algorithms that understand or generate
human language

Automatic summarization: reducing text with a
computer to retain the most important points.

Automatic summarization is the process of reducing a text document with a
computer program in order to create a summary that retains the most
important points of the original document. Technologies that can make a
coherent summary take into account variables such as length, writing style
and syntax. Automatic data summarization is part of machine learning and
data mining. The main idea of summarization is to find a representative subset
of the data, which contains the information of the entire set. Summarization
technologies are used in a large number of sectors in industry today. An
example of the use of summarization technology is search engines such as
Google. Other examples include document summarization, image collection
summarization and video summarization. Document summarization, tries to
automatically create a representative summary or abstract of the entire
document, by finding the most informative sentences. Similarly, in image
summarization the system finds the most representative and important (or
salient) images. Similarly, in consumer videos one would want to remove the
boring or repetitive scenes, and extract out a much shorter and concise
version of the video.

Statistical Language Model
How likely is each of these sentences?

please make me a cup of coffee
please make me a cup of butter
please make me a cup of bottle
please make me a cup of dream
please make me a cup of please

Uses of Language Models

● Spelling correction

● Typing prediction

● Speech recognition

recognize speech

wreck a nice beach

● Many more

Algorithm
Instructions for manipulating data.

Can get parameters as input.

Returns an output.

Algorithminput output

Pseudocode
Notation to describe algorithms.

Not a programming language, but clear

enough for humans.

Algorithm to find maximum
Find the largest number in a list.

[3, 1, 4, 16, 0, 2] → 16

[1, 2, 1, 1, 1] → 2

[-3, -2, 0, -1] → 0

Algorithm to find maximum
max(L): ▹ L is a list of numbers

m ← L[1] ▹ assign the first number to m
i ← 2 ▹ assign 2 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

if L[i] > m: ▹ the i’th number is larger than m
m ← L[i] ▹ assign the i’th number to m

i ← i + 1 ▹ increase i by 1
return m ▹ output is the value of m

Algorithm to find maximum
max(L): ▹ L is a list of numbers

m ← L[1] ▹ assign the first number to m
i ← 2 ▹ assign 2 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

if L[i] > m: ▹ the i’th number is larger than m
m ← L[i] ▹ assign the i’th number to m

i ← i + 1 ▹ increase i by 1
return m ▹ output is the value of m

Comments

Algorithm to find maximum
max(L): ▹ L is a list of numbers

m ← L[1] ▹ assign the first number to m
i ← 2 ▹ assign 2 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

if L[i] > m: ▹ the i’th number is larger than m
m ← L[i] ▹ assign the i’th number to m

i ← i + 1 ▹ increase i by 1
return m ▹ output is the value of m

Function
definition

Algorithm to find maximum
max(L): ▹ L is a list of numbers

m ← L[1] ▹ assign the first number to m
i ← 2 ▹ assign 2 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

if L[i] > m: ▹ the i’th number is larger than m
m ← L[i] ▹ assign the i’th number to m

i ← i + 1 ▹ increase i by 1
return m ▹ output is the value of m

Parameters

A function can get more than one parameter, but
max gets just one

Algorithm to find maximum
max(L): ▹ L is a list of numbers

m ← L[1] ▹ assign the first number to m
i ← 2 ▹ assign 2 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

if L[i] > m: ▹ the i’th number is larger than m
m ← L[i] ▹ assign the i’th number to m

i ← i + 1 ▹ increase i by 1
return m ▹ output is the value of m

Variables

Algorithm to find maximum
max(L): ▹ L is a list of numbers

m ← L[1] ▹ assign the first number to m
i ← 2 ▹ assign 2 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

if L[i] > m: ▹ the i’th number is larger than m
m ← L[i] ▹ assign the i’th number to m

i ← i + 1 ▹ increase i by 1
return m ▹ output is the value of m

Assignment

Algorithm to find maximum
max(L): ▹ L is a list of numbers

m ← L[1] ▹ assign the first number to m
i ← 2 ▹ assign 2 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

if L[i] > m: ▹ the i’th number is larger than m
m ← L[i] ▹ assign the i’th number to m

i ← i + 1 ▹ increase i by 1
return m ▹ output is the value of m

Indexing

Algorithm to find maximum
max(L): ▹ L is a list of numbers

m ← L[1] ▹ assign the first number to m
i ← 2 ▹ assign 2 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

if L[i] > m: ▹ the i’th number is larger than m
m ← L[i] ▹ assign the i’th number to m

i ← i + 1 ▹ increase i by 1
return m ▹ output is the value of m

Function
call

The function len returns the number of elements
(length) of a list

Algorithm to find maximum
max(L): ▹ L is a list of numbers

m ← L[1] ▹ assign the first number to m
i ← 2 ▹ assign 2 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

if L[i] > m: ▹ the i’th number is larger than m
m ← L[i] ▹ assign the i’th number to m

i ← i + 1 ▹ increase i by 1
return m ▹ output is the value of m

Loop

Algorithm to find maximum
max(L): ▹ L is a list of numbers

m ← L[1] ▹ assign the first number to m
i ← 2 ▹ assign 2 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

if L[i] > m: ▹ the i’th number is larger than m
m ← L[i] ▹ assign the i’th number to m

i ← i + 1 ▹ increase i by 1
return m ▹ output is the value of m

Condition

Algorithm to find maximum
max(L): ▹ L is a list of numbers

m ← L[1] ▹ assign the first number to m
i ← 2 ▹ assign 2 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

if L[i] > m: ▹ the i’th number is larger than m
m ← L[i] ▹ assign the i’th number to m

i ← i + 1 ▹ increase i by 1
return m ▹ output is the value of m

Output

Algorithm to find maximum
max(L): ▹ L is a list of numbers

m ← L[1] ▹ assign the first number to m
i ← 2 ▹ assign 2 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

if L[i] > m: ▹ the i’th number is larger than m
m ← L[i] ▹ assign the i’th number to m

i ← i + 1 ▹ increase i by 1
return m ▹ output is the value of m

Indentation

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m
i ← 2 i
while i ≤ len(L):

if L[i] > m:
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m
i ← 2 i
while i ≤ len(L):

if L[i] > m:
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 3
i ← 2 i
while i ≤ len(L):

if L[i] > m:
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 3
i ← 2 i = 2
while i ≤ len(L):

if L[i] > m:
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 3
i ← 2 i = 2
while i ≤ len(L): len(L) = 6

if L[i] > m: 2 ≤ 6
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 3
i ← 2 i = 2
while i ≤ len(L): L[i] = L[2] = 1

if L[i] > m: 1 > 3
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 3
i ← 2 i = 3
while i ≤ len(L):

if L[i] > m:
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 3
i ← 2 i = 3
while i ≤ len(L): len(L) = 6

if L[i] > m: 3 ≤ 6
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 3
i ← 2 i = 3
while i ≤ len(L): L[i] = L[3] = 4

if L[i] > m: 4 > 3
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 4
i ← 2 i = 3
while i ≤ len(L): L[i] = L[3] = 4

if L[i] > m:
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 4
i ← 2 i = 4
while i ≤ len(L):

if L[i] > m:
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 4
i ← 2 i = 4
while i ≤ len(L): len(L) = 6

if L[i] > m: 4 ≤ 6
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 4
i ← 2 i = 4
while i ≤ len(L): L[i] = L[4] = 16

if L[i] > m: 16 > 4
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 16
i ← 2 i = 4
while i ≤ len(L): L[i] = L[4] = 16

if L[i] > m:
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 16
i ← 2 i = 5
while i ≤ len(L):

if L[i] > m:
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 16
i ← 2 i = 5
while i ≤ len(L): len(L) = 6

if L[i] > m: 5 ≤ 6
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 16
i ← 2 i = 5
while i ≤ len(L): L[i] = L[5] = 0

if L[i] > m: 0 > 16
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 16
i ← 2 i = 6
while i ≤ len(L):

if L[i] > m:
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 16
i ← 2 i = 6
while i ≤ len(L): len(L) = 6

if L[i] > m: 6 ≤ 6
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 16
i ← 2 i = 6
while i ≤ len(L): L[i] = L[6] = 2

if L[i] > m: 2 > 16
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 16
i ← 2 i = 7
while i ≤ len(L):

if L[i] > m:
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 16
i ← 2 i = 7
while i ≤ len(L): len(L) = 6

if L[i] > m: 7 ≤ 6
m ← L[i]

i ← i + 1
return m

Running the algorithm
max(L): L = [3, 1, 4, 16, 0, 2]

m ← L[1] m = 16
i ← 2 i = 7
while i ≤ len(L):

if L[i] > m: output: 16
m ← L[i]

i ← i + 1
return m

Finding index of maximum
Index of largest number in a list.

[3, 1, 4, 16, 0, 2] → 4

[1, 2, 1, 1, 1] → 2

[-3, -2, 0, -1] → 3

Finding index of maximum
argmax(L): ▹ L is a list of numbers

a ← 1 ▹ index of the first element
i ← 2 ▹ index of the second element
while i ≤ len(L): ▹ repeat while i is at most len(L)

if L[i] > L[a]: ▹ i’th number is larger than a’th
a ← i ▹ assign i to a

i ← i + 1 ▹ increase i by 1
return a ▹ output: index of largest number

Back to language models
Given a list of tokens, predict the most

likely token to follow.
please make me a cup of tea

Tokenization
We represent a string:

“I’m late!”, he said.

As a list of tokens:

“ I ‘m late ! “ , he said .

Language model algorithm
Predict the next token in the list.

please make me a cup of → coffee
one two three → four
what is your phone → number

But the list of tokens is not enough.

We also need to know the language.

Corpora
A text corpus is used to

analyze the distribution of

words.

Counts table
To represent token

counts, we map strings

to numbers.
Some ready-made counts:

books.google.com/ngrams

, 775

the 630

. 392

“ 345

and 339

a 337

to 277

she 249

https://books.google.com/ngrams

Algorithm to count words
Count all words in a tokenized corpus

and return a table of counts.
[i, am, sam, .,

sam, i, am., →

i, do, not, like,

green, eggs, and, ham, .]

i 3 like 1

am 2 green 1

sam 2 eggs 1

. 3 and 1

do 1 ham 1

not 1

Algorithm to count words
count(L): ▹ L is a list of tokens

C1 ← [0] ▹ create a table of zeros
i ← 1 ▹ assign 1 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

t ← L[i] ▹ get token at position i
C1[t] ← C1[t] + 1 ▹ increase count for t by 1
i ← i + 1 ▹ increase i by 1

return C1 ▹ output is the counts table

Algorithm to count words
count(L): ▹ L is a list of tokens

C1 ← [0] ▹ create a table of zeros
i ← 1 ▹ assign 1 to i
while i ≤ len(L): ▹ repeat while i is at most len(L)

t ← L[i] ▹ get token at position i
C1[t] ← C1[t] + 1 ▹ increase count for t by 1
i ← i + 1 ▹ increase i by 1

return C1 ▹ output is the counts table

Using a word as an
index to a table

Word counts
Example counts from

Alice's Adventures in

Wonderland (1866) by

Lewis Carroll

, 775

the 630

. 392

“ 345

and 339

a 337

to 277

she 249

Unigram Language Model
Easiest: always predict

the most frequent token:

I wish I

, 775

the 630

. 392

“ 345

and 339

a 337

to 277

she 249

C1 =

(Unigram counts)

C1[,] = 775
C1[the] = 630

I wish I ,

Bigram counts
, the 530

and the 320

. “ 89

she said
 ...

65

I ‘m 20

I do 10

C2 =

C2[and, the] = 320

C2[she, said] = 65

We can also count

bigrams (pairs of words)

Bigram Language Model
Look only at the last

token to predict the next:

I wish I

I ‘m 20

I do 10

I ‘ll 10

I ‘ve 10

I should 8

I must 7

I think 7

I wish 6

C2[I, ·] =

(Bigram counts starting

with I)

I wish I ‘m

C2[I, ‘m] = 20

C2[I, do] = 10

Trigram Language Model
Look at the two last

tokens to predict the next:

I wish I

wish I could 20

wish I had 10
C3[wish, I, ·] =

(Trigram counts starting

with wish I)

I wish I could

C3[wish, I, could] = 20

C3[wish, I, had] = 10

n-gram Language Model
Look at the n − 1 last

tokens to predict the next:

I wish I

I wish I could 2

I wish I had 2

C4[I, wish, I, ·] =

(4-gram counts starting

with I wish I):

I wish I could

C3[I, wish, I, could] = 2

C3[I, wish, I, had] = 2

Algorithm to count n-grams
count(L, n): ▹ L: list of tokens, n: a number

C ← [0] ▹ create a table of zeros

i ← 1 ▹ assign 1 to i

while i ≤ len(L) − n + 1: ▹ repeat while i is at most len(L) − n + 1

T ← L[i, ..., i + n − 1] ▹ get n tokens starting at i

C[T] ← C[T] + 1 ▹ increase count for T by 1

i ← i + 1 ▹ increase i by 1

return C ▹ output is the counts table

Algorithm to count n-grams
count(L, n): ▹ L: list of tokens, n: a number

C ← [0] ▹ create a table of zeros

i ← 1 ▹ assign 1 to i

while i ≤ len(L) − n + 1: ▹ repeat while i is at most len(L) − n + 1

T ← L[i, ..., i + n − 1] ▹ get n tokens starting at i

C[T] ← C[T] + 1 ▹ increase count for T by 1

i ← i + 1 ▹ increase i by 1

return C ▹ output is the counts table

Getting several
elements from a list

Algorithm to count n-grams
count(L, n): ▹ L: list of tokens, n: a number

C ← [0] ▹ create a table of zeros

i ← 1 ▹ assign 1 to i

while i ≤ len(L) − n + 1: ▹ repeat while i is at most len(L) − n + 1

T ← L[i, ..., i + n − 1] ▹ get n tokens starting at i

C[T] ← C[T] + 1 ▹ increase count for T by 1

i ← i + 1 ▹ increase i by 1

return C ▹ output is the counts table

Using an n-gram as an
index to a table

Unigram algorithm
unigram(L, C1): ▹ L: tokens, C1: unigram counts

return argmax(C1) ▹ token with highest count

Unigram algorithm
unigram(L, C1): ▹ L: tokens, C1: unigram counts

return argmax(C1) ▹ token with highest count

Function call

Unigram algorithm
unigram(L, C1): ▹ L: tokens, C1: unigram counts

return argmax(C1) ▹ token with highest count

Ignores L and always predicts the same word...

Bigram algorithm
bigram(L, C2): ▹ L: tokens, C2: bigram counts

k ← len(L) ▹ length of L

t ← L[k] ▹ last token in L

return argmax(C2[t, ·]) ▹ bigram with highest count,
▹ among the bigrams starting with t

Bigram algorithm
bigram(L, C2): ▹ L: tokens, C2: bigram counts

k ← len(L) ▹ length of L

t ← L[k] ▹ last token in L

return argmax(C2[t, ·]) ▹ bigram with highest count,
▹ among the bigrams starting with t

Getting part of the table

Trigram algorithm
trigram(L, C3): ▹ L: tokens, C3: trigram counts

k ← len(L) ▹ length of L

T ← L[k − 1, k] ▹ last two tokens in L

return argmax(C3[T, ·]) ▹ trigram with highest count,
▹ among the trigrams starting with T

General n-gram algorithm
ngram(L, n, Cn): ▹ L: tokens, Cn: n-gram counts

k ← len(L) ▹ length of L

T ← L[k − n + 2, ..., k] ▹ last n − 1 tokens in L

return argmax(Cn[T, ·]) ▹ n-gram with highest count,
▹ among the n-grams starting with T

This can replace unigram, bigram and trigram
algorithms: just use n=1, n=2 or n=3

Text prediction algorithm
predict(L, n, Cn, m): ▹ L: tokens, Cn: n-gram counts,

▹ m: total wanted number of words

P ← L ▹ start with words given as input

while len(P) < m: ▹ repeat until we have m words

P[len(P) + 1] ← ngram(P, n, Cn) ▹ add next word

return P ▹ output is list of words including input

n-gram models comparison
Unigram ,

Bigram then she went on it had been running about in her head ! the garden , who
was now , for some of them !

Trigram all of a good deal frightened at the top of her sister , who was gently
brushing away some dead leaves that had fallen into a tree a few minutes ,
it was the white rabbit , who was now about two feet high .

4-gram the first thing i 've got to do , so alice soon began talking to herself . ``
dinah 'll miss me very much to-night , i should think ! '' (dinah was the cat

5-gram and so it was indeed ! she was now only ten inches high , and her face
brightened up at the thought that she was now about two feet high and was
going on shrinking rapidly .

Back-off
n-gram models quickly become too sparse.

Whenever I wish I

does not occur in Alice in Wonderland: cannot use 5-gram.

I wish I could 2

I wish I had 2

If no match is found, use a smaller n:

To predict the next token, back-off to 4-grams:

Whenever I wish I could

trigram-backoff-bigram(L, C2, C3): ▹ L: tokens,
k ← len(L) ▹ C2: bigram counts, C3: trigram counts
if C3[L[k − 1, k], ·]) is empty : ▹ not found

return argmax(C2[L[k], ·]) ▹ use bigram
else: ▹ trigram found

return argmax(C3[L[k − 1, k], ·])▹ use trigram

Trigram with Backoff to Bigram

trigram-backoff-bigram(L, C2, C3): ▹ L: tokens,
k ← len(L) ▹ C2: bigram counts, C3: trigram counts
if C3[L[k − 1, k], ·]) is empty : ▹ not found

return argmax(C2[L[k], ·]) ▹ use bigram
else: ▹ trigram found

return argmax(C3[L[k − 1, k], ·])▹ use trigram

Trigram with Backoff to Bigram

if/else condition

trigram-backoff(L, C): ▹ L is a list of tokens,
k ← len(L) ▹ C is the list [C1, C2, C3]:
i ← 3 ▹ unigram, bigram, trigram counts
while C[i][L[k − i + 2, ..., k], ·] is empty:

i ← i − 1 ▹ i-gram not found, try i − 1
return argmax(C[i][L[k − i + 2, ..., k], ·])

Trigram with Full Backoff

References
● Google Ngram Viewer: books.google.com/ngrams

● Alice's Adventures in Wonderland on Wikisource:

en.wikisource.org/wiki/Alice's_Adventures_in_Wonderland_(1866)

● n-grams: en.wikipedia.org/wiki/N-gram

https://books.google.com/ngrams
https://en.wikisource.org/wiki/Alice%27s_Adventures_in_Wonderland_(1866)
https://en.wikipedia.org/wiki/N-gram

xkcd.com/1068

