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Natural Language Processing

Algorithms that understand or generate

human language

Hebrew English Japanese Detect language ~ ".. English Hebrew Hungarian ~ m
machine translation X NaIdN DIAN
what is question answering?  Q

Question Answering (QA) is a computer science discipline within the fields of
information retrieval and natural language processing (NLP), which is concerned with
building systems that automatically answer questions posed by humans in a natural
language.

Automatic summarization is the process of reducing a text document with a
computer program in order to create a summary that retains the most
important points of the original document. Technologies that can make a
coherent summary take into account variables such as length, writing style
and syntax. Automatic data summarization is part of machine learning and
data mining. The main idea of summarization is to find a representative subset
of the data, which contains the information of the entire set. Summarization
technologies are used in a large number of sectors in industry today. An
example of the use of summarization technology is search engines such as
Google. Other examples include document summarization, image collection
summarization and video summarization. Document summarization, tries to
automatically create a representative summary or abstract of the entire
document, by finding the most informative sentences. Similarly, in image
summarization the system finds the most representative and important (or
salient) images. Similarly, in consumer videos one would want to remove the
boring or repetitive scenes, and extract out a much shorter and concise
version of the video.

Automatic summarization: reducing text with a
computer to retain the most important points.




Statistical Language Model

How likely is each of these sentences?

PLEASE MAKE ME A CUP OF COFFEE
PLEASE MAKE ME A CUP OF BUTTER
PLEASE MAKE ME A CUP OF BOTTLE
PLEASE MAKE ME A CUP OF DREAM
PLEASE MAKE ME A CUP OF PLEASE




Uses of Language Models

e Typing prediction | One two thr@e -

e Spelling correction

e Speech recognition

e Many more



Algorithm

Instructions for manipulating data.
Can get parameters as input.

Returns an output.

Input {Algorithm} output »




Notation to describe algorithms.
Not a programming language, but clear

enough for humans.



Algorithm to find maximum

Find the largest number in a list.
13,1, 4, 16,0, 2] — 16
11,2,1,1,1] — 2

-3,-2,0,-1] > 0



Algorithm to find maximum

max(L):
m «— L[1]
| «— 2
while i < len(L):
if L[i] > m:
m «— L[i]
| — i+ 1

return m

> | is a list of numbers

> assign the first number to m

> assign 2 to |

> repeat while i is at most len(L)
> the I'th number is larger than m
> assign the i'th number to m

> Increase i by 1

> output is the value of m



Algorithm to find maximum

Comments

/ > L is a list of numbers \

> assign the first number to m
> assign 2to |

> assign the i'th number to m
> Increase i by 1

Qoutput is the value of m

> repeat while i is at most len(L)
> the I'th number is larger than m

-/



Algorithm to find maximum

Function
definition



Algorithm to find maximum

(L)| Parameters
L

L
L
L

A function can get more than one parameter, but
max gets just one




Algorithm to find maximum

i Variables
i

m
i

|

m
| < 1
m



Algorithm to find maximum

<——

— 2 Assignment



Algorithm to find maximum

[1] IndeXxing

[1]



Algorithm to find maximum

Function
call
len(L)

The function len returns the number of elements
(length) of a list




Algorithm to find maximum

Loop
(while i < len(L): )
if L[i] > m:
m — L]i]

\i<—i+1 )




Algorithm to find maximum

Condition

if L[i] > m:
m < LJi]




Algorithm to find maximum

Output

[retu 1 m]




Algorithm to find maximum

Indentation

~—return m



Running the algorithm

max(L): L=1[3,1,4, 16,0, 2]

m «— L[1] m
| «— 2 i
while i < len(L):

If L[i] > m:

m <« L]Ji]

| — 1+ 1

return m




Running the algorithm

max(L): L=13,1,4,16,0,2]
m
i




Running the algorithm

L=1[3,1,4, 16,0, 2]
m «— L[1] m=3
i




Running the algorithm

L=1[3,1,4, 16,0, 2]
m=3
| «— 2 | =2




Running the algorithm
L

=13, 1,4, 16, 0, 2]
m=3
| =2
while i < len(L): len(L) =6

2<6




Running the algorithm

L=1[3, 1, 4, 16, 0, 2]
m=3
i =2

L[i] = L[2] = 1
if L[i] > m: 1>3 X




Running the algorithm

L=1[3,1,4, 16,0, 2]
m=3
=3

| — 1+ 1




Running the algorithm
L

=13, 1,4, 16, 0, 2]
m=3
1=3
while i < len(L): len(L) =6

356




Running the algorithm

L=1[3, 1, 4, 16, 0, 2]
m=3
i=3

L[i] = L[3] = 4
if L[i] > m: 4>3




Running the algorithm

L=13, 1,4, 16,0, 2]
m=4
1=3

L[i]=L[3] =4

m < LJi]




Running the algorithm

L=13, 1,4, 16,0, 2]
m=4
=4

| — 1+ 1




Running the algorithm
L

=13, 1,4, 16, 0, 2]
m=4
1=4
while i < len(L): len(L) =6

4<6




Running the algorithm

L =13, 1,4, 16, 0, 2]
m=4
i=4

L[i] = L[4] = 16
if L[i] > m: 16>4 f




Running the algorithm

L=1[3,1,4, 16,0, 2]
m =16
| =4

L[i] = L[4] = 16

m < LJi]




Running the algorithm

L=1[3,1,4, 16,0, 2]
m=16
=5

| — 1+ 1




Running the algorithm

=13, 1,4, 16, 0, 2]
m=16
1=95
while i < len(L): len(L) =6

556




Running the algorithm

L=1[3, 1, 4, 16, 0, 2]
m=16
i=5

L[i]=L[5] =0
if L[i] > m: 0>16 X




Running the algorithm

L=1[3,1,4, 16,0, 2]
m=16
| =6

| — 1+ 1




Running the algorithm

=13, 1,4, 16, 0, 2]
m=16
1=06
while i < len(L): len(L) =6

6<6




Running the algorithm

L=13,1,4,16,0, 2]
m=16
i =6

L[i] = L[6] = 2
if L[i] > m: 2>16 X




Running the algorithm

L=1[3,1,4, 16,0, 2]
m=16
i=7

| — 1+ 1




Running the algorithm

=13, 1,4, 16, 0, 2]
m=16
=7
while i < len(L): len(L)

7<6x




Running the algorithm

L=1[3,1,4, 16,0, 2]
m=16
i=7

output: 16

return m



Finding index of maximum

Index of largest number in a list.
13,1,4,16,0,2] > 4
11,2,1,1,1] — 2

-3,-2,0,-1] — 3



Finding index of maximum

argmax(L):
a«— 1
| «— 2
while i < len(L):
iIf L[i] > L[a]:
a <« |
| — i+ 1

return a

> | is a list of numbers

> index of the first element

> index of the second element

> repeat while i is at most len(L)
> 'th number is larger than a’th

> assign i to a

> Increase i by 1

> output: index of largest number



Back to language models

Given a list of tokens, predict the most

likely token to follow.

PLEASE MAKE ME A CUP OF TEA



We represent a string:
“I'M LATE!”, HE SAID.

As a list of tokens:

11

“'1 ‘M |LATE |! , 'HE SAID




Language model algorithm

Predict the next token in the list.

PLEASE MAKE ME A CUP OF — COFFEE
ONE TWO THREE — FOUR
WHAT IS YOUR PHONE — NUMBER

But the list of tokens is not enough.

We also need to know the language.
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A text corpus is used to
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Counts table

To represent token I
THE 630
counts, we map strings . 3o,
to numbers. 345
AND 339
Some ready-made counts:
A 337

books.google.com/ngrams

TO 277


https://books.google.com/ngrams

Algorithm to count words

Count all words in a tokenized corpus

and return a table of counts.

I

LIKE

I, AM, SAM, .,

AM GREEN

SAM, I, AM,, —> SAM

AND

I, DO, NOT, LIKE,

1
1
EGGS 1
1
1

DO

GREEN, EGGS, AND, HAM, .| o

HAM

= = w N N w




Algorithm to count words

count(L):
C1 « [0]
| — 1
while i < len(L):
t « LJ[i]
C1[t] — C1[t] + 1
| — i+ 1

return C1

> | is a list of tokens

> create a table of zeros
>assign 1to i

> repeat while i is at most len(L)
> get token at position |

> increase count for t by 1

> Increase i by 1

> output is the counts table



Algorithm to count words

Using'a word as an
index to a table

[CA[] — CI[t] + 1




Word counts

Example counts from ’

. . THE
Alice's Adventures in
Wonderland (1866) by |
Lewis Carroll

AND
A
TO

775
630
392
345
339
337
277




Unigram Language Model

Easiest: always predict
the most frequent token:
IwisH I,
C1=
(Unigram counts)

C1[] =775
C1[tHE] = 630

THE

11

AND

TO

775
630
392
345
339
337
277




Bigram counts

We can also count , THE 530

bigrams (pairs of words) |AND THE 320

(13 89
C2 = SHE SAID 65

C2[aND, THE] = 320
[ ‘M 20

C2[sSHE, SAID] = 65

I DO 10



Bigram Language Model

Look only at the last I ‘M 20
token to predict the next; |1 DO 10
[wisuI‘m [ ‘L 10

C2[[,.]= |I 've 10
(Bigram counts starting |l SHOULD 8
with I) [ must 7 C2[I, ‘m] =
[ THINK 7 C2[l, po] = 10




Trigram Language Model

Look at the two last C3[wisH, I, couLp] = 20

tokens to predict the next: C3[wisH, [, HAD] = 10

I wisH I couLD

C3[wisH, L ] = wisH I courLp 20

WISH [ HAD 10

(Trigram counts starting

with wisH I)



n-gram Language Model

Look at the n — 1 last C3[], wisH, I, couLD] = 2
tokens to predict the next: C3[I, wisH, I, HAD] = 2
I wisH I couLDp
C4[l,wisy, I,-]= |IwisHIcourp 2
(4-gram counts starting |l wisH I HAD 2

with I wisH I):



Algorithm to count n-grams

count(L, n):
C «— [0]
| «— 1
while i <len(L) - n + 1:
T L[, ..i+tn—-1]
C[T] <« C[T] + 1
| — 1+ 1

return C

> L: list of tokens, n: a number

> create a table of zeros

> assign 1 to |

> repeat while i is at most len(L) — n + 1
> get n tokens starting at i

> increase count for T by 1

> increase i by 1

> output is the counts table



Algorithm to count n-grams

Getting several
elements from a list

(T Lfi,....i+n-1] |




Algorithm to count n-grams

Using-an‘n-gram as an
index to a table

[ C[T] —C[T]+ 1|




Unigram algorithm

unigram(L, C1 ): > L: tokens, C1: unigram counts
return argmaX(C1 ) > token with highest count



Unigram algorithm

argmax(C1) |
Function call




Unigram algorithm

unigram(L, C1 ): > L: tokens, C1: unigram counts
return argmaX(C1 ) > token with highest count

Ignores L and always predicts the same word...




Bigram algorithm

bigram(L, C2): > L: tokens, C2: bigram counts
K — len(L) > length of L
t — L[K] > last token in L
return argmax(C2|[t, ]) > bigram with highest count,

> among the bigrams starting with t



Bigram algorithm

(C2[t, ]
Getting part of the table




Trigram algorithm

trigram(L, C3) > L: tokens, C3: trigram counts
K« Ien(l_) > length of L
T <« L[k - 1, k] > last two tokens in L

return argmax(C3[T, ]) -

trigram with highest count,

> among the trigrams starting with T



General n-gram algorithm

ngram(L, n, Cn): > L: tokens, Cn: n-gram counts
K — len(L) > length of L
T—Lk-n+2, .. K] > last n - 1 tokens in L
return argmax(Cn[T, -]) = n-gram with highest count,

> among the n-grams starting with T

This can replace unigram, bigram and trigram
algorithms: just use n=1, n=2 or n=3




Text prediction algorithm

prediCt(L, n, Cn, m): > L: tokens, Cn: n-gram counts,

> m;: total wanted number of words

P <« L > start with words given as input

while Ien(P) <m: > repeat until we have m words
Pllen(P) + 1] — ngram(P, n, Cn) - add next word

return P > output is list of words including input



n-gram models comparison

Unlgram 3399555999995 )55)5)9 5533355555333 5)959)33335)9)5553333)9)9)H9)9)3)3)3))

Bigram THEN SHE WENT ON IT HAD BEEN RUNNING ABOUT IN HER HEAD ! THE GARDEN , WHO
WAS NOW , FOR SOME OF THEM !

Trigram | ALL OF A GOOD DEAL FRIGHTENED AT THE TOP OF HER SISTER y, WHO WAS GENTLY
BRUSHING AWAY SOME DEAD LEAVES THAT HAD FALLEN INTO A TREE A FEW MINUTES ,
IT WAS THE WHITE RABBIT , WHO WAS NOW ABOUT TWO FEET HIGH .

4-gram THE FIRST THING I 'VE GOT TO DO , SO ALICE SOON BEGAN TALKING TO HERSELF .
DINAH 'LL MISS ME VERY MUCH TO-NIGHT , ] SHOULD THINK " ( DINAH WAS THE CAT

S-gram AND SO IT WAS INDEED | SHE WAS NOW ONLY TEN INCHES HIGH , AND HER FACE

BRIGHTENED UP AT THE THOUGHT THAT SHE WAS NOW ABOUT TWO FEET HIGH AND WAS
GOING ON SHRINKING RAPIDLY .




Back-off

n-gram models quickly become too sparse.

WHENEVER | WisH I
does not occur in Alice in Wonderland: cannot use 5-gram.
If no match is found, use a smaller n:

To predict the next token, back-off to 4-grams:

WHENEVER [ wisH I couLD IwisuIcoulp |2

I wisa I HAD 2




Trigram with Backoff to Bigram

trigram-backoff-bigram(L, C2, C3). = L: tokens,
kK — len(L) > C2: bigram counts, C3: trigram counts

if C3[L[k - 1, k], :]) is empty : > not found
return argmax(C2[L[k], -]) > use bigram
else: > trigram found

return argmax(C3J[L[k - 1, k], -])> use trigram



Trigram with Backoff to Bigram

else: |

if/felse condition



Trigram with Full Backoff

trigram-backoff(L, C): > L is a list of tokens,

k — len(L) > C is the list [C1, C2, C3]:
| < 3 > unigram, bigram, trigram counts
while CJi][L[k =i+ 2, ..., k], -] IS empty:

| —1—1 > j-gram not found, try i — 1

return argmax(CJi][Lk —i + 2, ..., k], -])
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HAVE YOU TRIED SWIFTKEY?
IT GoT THE FiIRST DECENT
LANGUAGE. MODEL TVE SEEN.

\
IT (EARNS FRoM YOUR SM5/
EMAIL ARCHIVES WHAT WORDS
YOU USE TOGETHER MOST OFTEN,

B

SPRCEBAR IN4ERTS ITS BEST GUESS,

50 [F T TE “THE. EMPI" AND
HIT SPACE. THREE TIMES, IT VES
"THE EMPIRE STRIKESACK

WHAT IFYOU MPSH SPACE
IN A BLANK MESHAGE?

X

T GUESS T ALLS IN YOOR MosT
LIKELY FIRST WORD, THEN THE

WORD THAT USUALLY FOLLOWS IT-..

SO IT BUILPS VP YOUR
“PICAL" SENTENCE.

(oOL! LETS SEE YOURS!

oo

xkcd.com/1068



