Language Models

Human Language from a Computational Perspective
April 11, 2018

Natural Language Processing

Algorithms that understand or generate

human language

Hebrew English Japanese Detect language ~ ".. English Hebrew Hungarian ~ m
machine translation X NaIdN DIAN
what is question answering? Q

Question Answering (QA) is a computer science discipline within the fields of
information retrieval and natural language processing (NLP), which is concerned with
building systems that automatically answer questions posed by humans in a natural
language.

Automatic summarization is the process of reducing a text document with a
computer program in order to create a summary that retains the most
important points of the original document. Technologies that can make a
coherent summary take into account variables such as length, writing style
and syntax. Automatic data summarization is part of machine learning and
data mining. The main idea of summarization is to find a representative subset
of the data, which contains the information of the entire set. Summarization
technologies are used in a large number of sectors in industry today. An
example of the use of summarization technology is search engines such as
Google. Other examples include document summarization, image collection
summarization and video summarization. Document summarization, tries to
automatically create a representative summary or abstract of the entire
document, by finding the most informative sentences. Similarly, in image
summarization the system finds the most representative and important (or
salient) images. Similarly, in consumer videos one would want to remove the
boring or repetitive scenes, and extract out a much shorter and concise
version of the video.

Automatic summarization: reducing text with a
computer to retain the most important points.

Statistical Language Model

How likely is each of these sentences?

PLEASE MAKE ME A CUP OF COFFEE
PLEASE MAKE ME A CUP OF BUTTER
PLEASE MAKE ME A CUP OF BOTTLE
PLEASE MAKE ME A CUP OF DREAM
PLEASE MAKE ME A CUP OF PLEASE

Uses of Language Models

e Typing prediction | One two thr@e -

e Spelling correction

e Speech recognition

e Many more

Algorithm

Instructions for manipulating data.
Can get parameters as input.

Returns an output.

Input {Algorithm} output »

Notation to describe algorithms.
Not a programming language, but clear

enough for humans.

Algorithm to find maximum

Find the largest number in a list.
13,1, 4, 16,0, 2] — 16
11,2,1,1,1] — 2

-3,-2,0,-1] > 0

Algorithm to find maximum

max(L):
m «— L[1]
| «— 2
while i < len(L):
if L[i] > m:
m «— L[i]
| — i+ 1

return m

> | is a list of numbers

> assign the first number to m

> assign 2 to |

> repeat while i is at most len(L)
> the I'th number is larger than m
> assign the i'th number to m

> Increase i by 1

> output is the value of m

Algorithm to find maximum

Comments

/ > L is a list of numbers \

> assign the first number to m
> assign 2to |

> assign the i'th number to m
> Increase i by 1

Qoutput is the value of m

> repeat while i is at most len(L)
> the I'th number is larger than m

-/

Algorithm to find maximum

Function
definition

Algorithm to find maximum

(L)| Parameters
L

L
L
L

A function can get more than one parameter, but
max gets just one

Algorithm to find maximum

i Variables
i

m
i

|

m
| < 1
m

Algorithm to find maximum

<——

— 2 Assignment

Algorithm to find maximum

[1] IndeXxing

[1]

Algorithm to find maximum

Function
call
len(L)

The function len returns the number of elements
(length) of a list

Algorithm to find maximum

Loop
(while i < len(L):)
if L[i] > m:
m — L]i]

\i<—i+1)

Algorithm to find maximum

Condition

if L[i] > m:
m < LJi]

Algorithm to find maximum

Output

[retu 1 m]

Algorithm to find maximum

Indentation

~—return m

Running the algorithm

max(L): L=1[3,1,4, 16,0, 2]

m «— L[1] m
| «— 2 i
while i < len(L):

If L[i] > m:

m <« L]Ji]

| — 1+ 1

return m

Running the algorithm

max(L): L=13,1,4,16,0,2]
m
i

Running the algorithm

L=1[3,1,4, 16,0, 2]
m «— L[1] m=3
i

Running the algorithm

L=1[3,1,4, 16,0, 2]
m=3
| «— 2 | =2

Running the algorithm
L

=13, 1,4, 16, 0, 2]
m=3
| =2
while i < len(L): len(L) =6

2<6

Running the algorithm

L=1[3, 1, 4, 16, 0, 2]
m=3
i =2

L[i] = L[2] = 1
if L[i] > m: 1>3 X

Running the algorithm

L=1[3,1,4, 16,0, 2]
m=3
=3

| — 1+ 1

Running the algorithm
L

=13, 1,4, 16, 0, 2]
m=3
1=3
while i < len(L): len(L) =6

356

Running the algorithm

L=1[3, 1, 4, 16, 0, 2]
m=3
i=3

L[i] = L[3] = 4
if L[i] > m: 4>3

Running the algorithm

L=13, 1,4, 16,0, 2]
m=4
1=3

L[i]=L[3] =4

m < LJi]

Running the algorithm

L=13, 1,4, 16,0, 2]
m=4
=4

| — 1+ 1

Running the algorithm
L

=13, 1,4, 16, 0, 2]
m=4
1=4
while i < len(L): len(L) =6

4<6

Running the algorithm

L =13, 1,4, 16, 0, 2]
m=4
i=4

L[i] = L[4] = 16
if L[i] > m: 16>4 f

Running the algorithm

L=1[3,1,4, 16,0, 2]
m =16
| =4

L[i] = L[4] = 16

m < LJi]

Running the algorithm

L=1[3,1,4, 16,0, 2]
m=16
=5

| — 1+ 1

Running the algorithm

=13, 1,4, 16, 0, 2]
m=16
1=95
while i < len(L): len(L) =6

556

Running the algorithm

L=1[3, 1, 4, 16, 0, 2]
m=16
i=5

L[i]=L[5] =0
if L[i] > m: 0>16 X

Running the algorithm

L=1[3,1,4, 16,0, 2]
m=16
| =6

| — 1+ 1

Running the algorithm

=13, 1,4, 16, 0, 2]
m=16
1=06
while i < len(L): len(L) =6

6<6

Running the algorithm

L=13,1,4,16,0, 2]
m=16
i =6

L[i] = L[6] = 2
if L[i] > m: 2>16 X

Running the algorithm

L=1[3,1,4, 16,0, 2]
m=16
i=7

| — 1+ 1

Running the algorithm

=13, 1,4, 16, 0, 2]
m=16
=7
while i < len(L): len(L)

7<6x

Running the algorithm

L=1[3,1,4, 16,0, 2]
m=16
i=7

output: 16

return m

Finding index of maximum

Index of largest number in a list.
13,1,4,16,0,2] > 4
11,2,1,1,1] — 2

-3,-2,0,-1] — 3

Finding index of maximum

argmax(L):
a«— 1
| «— 2
while i < len(L):
iIf L[i] > L[a]:
a <« |
| — i+ 1

return a

> | is a list of numbers

> index of the first element

> index of the second element

> repeat while i is at most len(L)
> 'th number is larger than a’th

> assign i to a

> Increase i by 1

> output: index of largest number

Back to language models

Given a list of tokens, predict the most

likely token to follow.

PLEASE MAKE ME A CUP OF TEA

We represent a string:
“I'M LATE!”, HE SAID.

As a list of tokens:

11

“'1 ‘M |LATE |! , 'HE SAID

Language model algorithm

Predict the next token in the list.

PLEASE MAKE ME A CUP OF — COFFEE
ONE TWO THREE — FOUR
WHAT IS YOUR PHONE — NUMBER

But the list of tokens is not enough.

We also need to know the language.

orpora

A text corpus is used to
analyze the distribution of

words

2 PARLY CORPUS LINGUISTICS

Tinguistics. Tt was Busa and Juillind te
foundatiom of modern corpus linguiw
well know tistics became closely msocuted

with wark 1n English ¢

1o it in bargely b pus lin

Juilland woeked on cotpors af

modern Englsh. To ¢ gish lings to consider the

najor groups warking an coepus linguistics from the 19505 onwards

1,5.3. Work arising from the study of English g
Work on English corpus lingumtics sar in the early 19608, w
cuted the

plinoed and ¢
g Usage (v}, In
now famous B corpes, 3 work which was to take

noat two decades o
were mot universally
the field of Englih leguage studies, and othen

complete. " These researchers were in & mine
rded as |

fallowed their lead. Por exaniple

i

1975, fourteen years after work began

the Brown corpus, Jan Svarevik searted w0 busdd an the wark of the siu and the

rpus, The compaiter became

ainwtay of Enghish corpas kngustscs in the 1970y, Svartvik comy
the 10 and, as 1 comequence, produced what, as Leech (191 9) wid, w
» bang b hed res
sppearance in the mid 190
Enghish, ssch s the spoken secti

ce for the study of spoken Englih', With tho

of large-scabe ¢
af the Br
on-Lued corpus has faded somewhat. Even so, it & scill the
ntaneows spoken English annotated with prosodic mark-up
s 4 miche in modern corpus linguistics to this day
1 af the work of the S was the traiming of academics in
waches to the grammatical analysis of Englnh
ased with the carly days of the st and went on to
Lancaster s sesearch ¢ has given rise to 2 number of
well-known corpus-bailding projecss, incliding perhaps most famously the
Lancaser-Oxlo-Bergen corpus (o) and more recently the British National
Corpas. Sidney Greenbaam wis also asocisted with the SEU 2s sometime assis
ta rk. Groenbasm went on to succeed
Quirk as director of the svv in the mid-1980s and founded the International
Corpus of
resources an

rpocs of spoatancans ok

b National Carpus, the impar-

tance of the |

oaly corpus of

and, s such, will

Anocher sde
a tradicioa of
coffrey Le

inglish project. So the 551 wis iportant 2 # serwned seful corpus
trained some Linguists who lates went on to become poneers in
eld of English corpas lingusstics
The work of Francis and Kuceea, as well s that of Quirk and his disciples
inpired centres of English corpus building and exploitation beyond the
Unsted Kimgdom in acdition e Lund. English
tion of the st
s for cor

epus linguistics in the tradi-
o 19800 withy
At n work being establihed scrom Scandinavia (g Bergy

Gothenbury, Oslo), Western Europe (e Derlin, Chemnite, Niyjmegen) and

dily grew in Europe throughout the 19705

CORPUS LINGUSTICS FROM THE 19405 1O THE EARLY 19485 s
Eastern Europe® (e Leipeiy, Potuun). There is liete doube that » grese deal
of the current popularity of corpas linguistics, especially in studies of the
ith linguage, can be traced to this line of work. However, another related.
b sommewhat sepatate, strand of corpus work has been simifarly influen

tial in English corpus lingsistics aover the past farty years, That is the work of
the neo-Firthiam.

1.5.4, Work by neo-Firthians

J R. Fieth bad a coloarful life by sy definicion of the term. He studied in
pheked
Afghanivan, Africs sed Inds
Lak r e the Soh

le on milicary seevice in

in lnguage w

anid went on b

e professar firstly of English at
e ol of Ortental and African Stadies from 1944
(where | ¢ lecturer in 1938, being apy
14), Hon bnpact upon Boglab < and

been notak

sturted 4 4 vy

ed professor in

e specifically e
od by the work of the anthropok
ol Jores Tind prodhce
19305, 19405 and 1950s which wero publish

ish = lingwistics has

He was deeply i

Beonmliw Malinowski and the phanoticisa Da

wries of writing Ir

compendium farmsat in Fieeh (1957). Ia this colloction of papers Furth (15
27) outhines w0 appeosch 1o langaage in which social coneext and the socal
purpase of communication are paramount:*

n. I that context are che
on. The
and the

The contrad concopt .. s the context of sity

husman partcipant or pas s, what they say, what is goin

phe
lexscographer theies,

ichan can fiod W phoneeic contest,

4 the grammarian

Firth's agends domsnated nwsch of Brewtish hnguistics for the best part of
peneration. As stated, iss penetracion beyand the United Kingdom was never
anywhere near as great i it was withéo the Usnited Kingdom. In America in
particular it cannot be said that Firths views ever constinated 3 domisant para-
;.,mun research. lmlr’\l some of the mest trenchant criticsm of the
Firthian appeo can be found in the writing of American
Linguists, e.5 l.mumh en _wm though it is possible to find even sronger
critical voices raised by others, e.g. Lyoas (1968). Firnks plice in corpes lingu
socs s avared, however, irgely because he wated (Firth, 1957: 2

digm of |

Attested language
and wed same ¢
the data side, his exhoreat {napired whet we will
call neo-Firthian lin i Halldey Hoey and Sinclair, to work in the

tradition he establiched

On the terminology side. his term llvason is in we in modern corpas

lingulstics 1 thas day {see section 3.4.4 for example). However, the popularity

of that term wood i the context of hter corpu

pcation as 4 concept ha » hisory

Counts table

To represent token I
THE 630
counts, we map strings . 3o,
to numbers. 345
AND 339
Some ready-made counts:
A 337

books.google.com/ngrams

TO 277

https://books.google.com/ngrams

Algorithm to count words

Count all words in a tokenized corpus

and return a table of counts.

I

LIKE

I, AM, SAM, .,

AM GREEN

SAM, I, AM,, —> SAM

AND

I, DO, NOT, LIKE,

1
1
EGGS 1
1
1

DO

GREEN, EGGS, AND, HAM, .| o

HAM

= = w N N w

Algorithm to count words

count(L):
C1 « [0]
| — 1
while i < len(L):
t « LJ[i]
C1[t] — C1[t] + 1
| — i+ 1

return C1

> | is a list of tokens

> create a table of zeros
>assign 1to i

> repeat while i is at most len(L)
> get token at position |

> increase count for t by 1

> Increase i by 1

> output is the counts table

Algorithm to count words

Using'a word as an
index to a table

[CA[] — CI[t] + 1

Word counts

Example counts from ’

. . THE
Alice's Adventures in
Wonderland (1866) by |
Lewis Carroll

AND
A
TO

775
630
392
345
339
337
277

Unigram Language Model

Easiest: always predict
the most frequent token:
IwisH I,
C1=
(Unigram counts)

C1[] =775
C1[tHE] = 630

THE

11

AND

TO

775
630
392
345
339
337
277

Bigram counts

We can also count , THE 530

bigrams (pairs of words) |AND THE 320

(13 89
C2 = SHE SAID 65

C2[aND, THE] = 320
[‘M 20

C2[sSHE, SAID] = 65

I DO 10

Bigram Language Model

Look only at the last I ‘M 20
token to predict the next; |1 DO 10
[wisuI‘m [‘L 10

C2[[,.]= |I 've 10
(Bigram counts starting |l SHOULD 8
with I) [must 7 C2[I, ‘m] =
[THINK 7 C2[l, po] = 10

Trigram Language Model

Look at the two last C3[wisH, I, couLp] = 20

tokens to predict the next: C3[wisH, [, HAD] = 10

I wisH I couLD

C3[wisH, L] = wisH I courLp 20

WISH [HAD 10

(Trigram counts starting

with wisH I)

n-gram Language Model

Look at the n — 1 last C3[], wisH, I, couLD] = 2
tokens to predict the next: C3[I, wisH, I, HAD] = 2
I wisH I couLDp
C4[l,wisy, I,-]= |IwisHIcourp 2
(4-gram counts starting |l wisH I HAD 2

with I wisH I):

Algorithm to count n-grams

count(L, n):
C «— [0]
| «— 1
while i <len(L) - n + 1:
T L[, ..i+tn—-1]
C[T] <« C[T] + 1
| — 1+ 1

return C

> L: list of tokens, n: a number

> create a table of zeros

> assign 1 to |

> repeat while i is at most len(L) — n + 1
> get n tokens starting at i

> increase count for T by 1

> increase i by 1

> output is the counts table

Algorithm to count n-grams

Getting several
elements from a list

(T Lfi,....i+n-1] |

Algorithm to count n-grams

Using-an‘n-gram as an
index to a table

[C[T] —C[T]+ 1|

Unigram algorithm

unigram(L, C1): > L: tokens, C1: unigram counts
return argmaX(C1) > token with highest count

Unigram algorithm

argmax(C1) |
Function call

Unigram algorithm

unigram(L, C1): > L: tokens, C1: unigram counts
return argmaX(C1) > token with highest count

Ignores L and always predicts the same word...

Bigram algorithm

bigram(L, C2): > L: tokens, C2: bigram counts
K — len(L) > length of L
t — L[K] > last token in L
return argmax(C2|[t,]) > bigram with highest count,

> among the bigrams starting with t

Bigram algorithm

(C2[t,]
Getting part of the table

Trigram algorithm

trigram(L, C3) > L: tokens, C3: trigram counts
K« Ien(l_) > length of L
T <« L[k - 1, k] > last two tokens in L

return argmax(C3[T,]) -

trigram with highest count,

> among the trigrams starting with T

General n-gram algorithm

ngram(L, n, Cn): > L: tokens, Cn: n-gram counts
K — len(L) > length of L
T—Lk-n+2, .. K] > last n - 1 tokens in L
return argmax(Cn[T, -]) = n-gram with highest count,

> among the n-grams starting with T

This can replace unigram, bigram and trigram
algorithms: just use n=1, n=2 or n=3

Text prediction algorithm

prediCt(L, n, Cn, m): > L: tokens, Cn: n-gram counts,

> m;: total wanted number of words

P <« L > start with words given as input

while Ien(P) <m: > repeat until we have m words
Pllen(P) + 1] — ngram(P, n, Cn) - add next word

return P > output is list of words including input

n-gram models comparison

Unlgram 3399555999995)55)5)9 5533355555333 5)959)33335)9)5553333)9)9)H9)9)3)3)3))

Bigram THEN SHE WENT ON IT HAD BEEN RUNNING ABOUT IN HER HEAD ! THE GARDEN , WHO
WAS NOW , FOR SOME OF THEM !

Trigram | ALL OF A GOOD DEAL FRIGHTENED AT THE TOP OF HER SISTER y, WHO WAS GENTLY
BRUSHING AWAY SOME DEAD LEAVES THAT HAD FALLEN INTO A TREE A FEW MINUTES ,
IT WAS THE WHITE RABBIT , WHO WAS NOW ABOUT TWO FEET HIGH .

4-gram THE FIRST THING I 'VE GOT TO DO , SO ALICE SOON BEGAN TALKING TO HERSELF .
DINAH 'LL MISS ME VERY MUCH TO-NIGHT ,] SHOULD THINK " (DINAH WAS THE CAT

S-gram AND SO IT WAS INDEED | SHE WAS NOW ONLY TEN INCHES HIGH , AND HER FACE

BRIGHTENED UP AT THE THOUGHT THAT SHE WAS NOW ABOUT TWO FEET HIGH AND WAS
GOING ON SHRINKING RAPIDLY .

Back-off

n-gram models quickly become too sparse.

WHENEVER | WisH I
does not occur in Alice in Wonderland: cannot use 5-gram.
If no match is found, use a smaller n:

To predict the next token, back-off to 4-grams:

WHENEVER [wisH I couLD IwisuIcoulp |2

I wisa I HAD 2

Trigram with Backoff to Bigram

trigram-backoff-bigram(L, C2, C3). = L: tokens,
kK — len(L) > C2: bigram counts, C3: trigram counts

if C3[L[k - 1, k], :]) is empty : > not found
return argmax(C2[L[k], -]) > use bigram
else: > trigram found

return argmax(C3J[L[k - 1, k], -])> use trigram

Trigram with Backoff to Bigram

else: |

if/felse condition

Trigram with Full Backoff

trigram-backoff(L, C): > L is a list of tokens,

k — len(L) > C is the list [C1, C2, C3]:
| < 3 > unigram, bigram, trigram counts
while CJi][L[k =i+ 2, ..., k], -] IS empty:

| —1—1 > j-gram not found, try i — 1

return argmax(CJi][Lk —i + 2, ..., k], -])

References

e (Google Ngram Viewer: books.google.com/ngrams

e Alice's Adventures in Wonderland on Wikisource:

en.wikisource.org/wiki/Alice's Adventures in Wonderland (1866)

e n-grams: en.wikipedia.org/wiki/N-gram

https://books.google.com/ngrams
https://en.wikisource.org/wiki/Alice%27s_Adventures_in_Wonderland_(1866)
https://en.wikipedia.org/wiki/N-gram

HAVE YOU TRIED SWIFTKEY?
IT GoT THE FiIRST DECENT
LANGUAGE. MODEL TVE SEEN.

\
IT (EARNS FRoM YOUR SM5/
EMAIL ARCHIVES WHAT WORDS
YOU USE TOGETHER MOST OFTEN,

B

SPRCEBAR IN4ERTS ITS BEST GUESS,

50 [F T TE “THE. EMPI" AND
HIT SPACE. THREE TIMES, IT VES
"THE EMPIRE STRIKESACK

WHAT IFYOU MPSH SPACE
IN A BLANK MESHAGE?

X

T GUESS T ALLS IN YOOR MosT
LIKELY FIRST WORD, THEN THE

WORD THAT USUALLY FOLLOWS IT-..

SO IT BUILPS VP YOUR
“PICAL" SENTENCE.

(oOL! LETS SEE YOURS!

oo

xkcd.com/1068

