
Syntactic Parsing
Human Language from a Computational Perspective
April 25, 2018

Language models reminder
Use an n-gram model to

predict the next token:

My only wish

wish I 8

wish is 6

wish they 4

wish was 4

wish that 2

wish you 1

Bigram counts

(starting with wish):

* My only wish IMy only wish I

My only wish is

wish I 8

wish is 6

wish they 4

wish was 4

wish that 2

wish you 1

Lexical ambiguity
The word wish is ambiguous

wish (verb): לבקש, לאחל

wish (noun): משאלה

Some context helps
Verb:

How I wish you were here
Careful what you wish for
Wish you a happy birthday

Noun:
Your wish is my command
If you could have one wish
Make a wish

But sometimes it doesn’t
Squad helps dog bite victim
Eye drops off shelf
Reagan wins on budget, but more lies ahead

Parts of speech (POS)
Words can roughly be divided into

distributional categories based on their

syntactic roles.

Part-of-speech hierarchy
Open classes Closed classes

Nouns

Proper
Hebrew
John

Common
arrival
pencils

Adjectives
tall

Adverbs
quickly

...

Verbs

Main
went
write

Modals
would
shall

Numbers
2015, 1/2, billion, one

Determiners some, the

Conjunctions and, or

Pronouns you, my, us

Prepositions to, in, by

...

Part-of-speech tags

Penn Treebank Part-of-Speech Tags

for English

Tag guide:
https://catalog.ldc.upenn.edu/docs/LDC99T42/tagguid1.pdf

https://catalog.ldc.upenn.edu/docs/LDC99T42/tagguid1.pdf

Language variations

Penn Treebank Part-of-Speech Tags

for Mandarin Chinese

Part-of-speech tagging
Tag the following text for POS:

Alice was beginning to get very tired

nnp vbd vbg to vb rb jj

Statistical POS tagging
We can use counts from the corpus to

tag text for POS,

but it requires annotation:

just the text is not enough.

Annotated corpus example
Alice/NNP was/VBD beginning/VBG to/TO get/VB very/RB tired/JJ of/IN

sitting/VBG by/IN her/PRP$ sister/NN on/IN the/DT bank/NN ,/, and/CC

of/IN having/VBG nothing/NN to/TO do/VB ./. Once/RB or/CC twice/RB

she/PRP had/VBD peeped/VBN into/IN the/DT book/NN her/PRP$ sister/NN

was/VBD reading/VBG ,/, but/CC it/PRP had/VBD no/DT pictures/NNS

or/CC conversations/NNS in/IN it/PRP ,/, ''/'' and/CC what/WDT is/VBZ

the/DT use/NN of/IN a/DT book/NN ,/, ''/'' thought/VBD Alice/NNP ,/, ''/''

without/IN pictures/NNS or/CC conversations/NNS ?/. ''/'' So/CC she/PRP

was/VBD considering/VBG in/IN her/PRP$ own/JJ mind/NN

Word/tag counts
Simple method: count

the times each word

occurred with each

POS in the corpus

the dt 1527

well rb 37

well nn 3

sleep nn 4

sleep vbp 2

that in 197

that dt 50

Algorithm to count word/tag
count(L, T): ▹ L: list of tokens, T: list of correct tags

Cwt ← [0] ▹ create a table of zeros

i ← 1 ▹ assign 1 to i

while i ≤ len(L): ▹ repeat while i is at most len(L)=len(T)

Cwt[L[i], T[i]] ← Cwt[L[i], T[i]] + 1 ▹ increment count

i ← i + 1 ▹ increment i

return Cwt ▹ output is the counts table

POS tagging algorithm
Find POS sequence of token sequence
[bob went out for a swim .] → [nnp vbd in in dt nn .]

This is the wanted result, but no algorithm is perfect

POS tagging algorithm 1
tag1(L, Cwt): ▹ L: tokens, Cwt: word-tag counts

T ← [] ▹ create empty list of tags
i ← 1 ▹ initialize i to 1
while i ≤ len(L): ▹ repeat for all tokens

T[i] ← argmax(Cwt[L[i], ·]) ▹ most common tag for L[i]
i ← i + 1 ▹ increment i

return T ▹ output is list of tags

POS tagging algorithm 1
tag1(L, Cwt): ▹ L: tokens, Cwt: word-tag counts

T ← [] ▹ create empty list of tags
i ← 1 ▹ initialize i to 1
while i ≤ len(L): ▹ repeat for all tokens

T[i] ← argmax(Cwt[L[i], ·]) ▹ most common tag for L[i]
i ← i + 1 ▹ increment i

return T ▹ output is list of tags

The same algorithm as prediction with bigram
model

Surprising accuracy
This simple approach actually gets

about 90% of the POS tags correctly!

Most words almost always appear with

the same POS.

Problem 1: variability
Use the most common POS for each word

the fish sleep in that well
dt nn nn in in rb

But the correct tags are:
dt nns vbp in dt nn

dt nn nn in in rb

State of the art
The best methods today get slightly

more than 97% accuracy,

so 90% is not so bad.

Problem 2: unknown words
't was brillig , and the slithy toves

did gyre and gimble in the wabe ;

all mimsy were the borogoves ,

and the mome raths outgrabe .

First stanza of
Jabberwocky
from Through

the
Looking-Glass,
and What Alice

Found There
(1871) by

Lewis Carroll

? vbd ? , cc dt ? ?

vbd ? cc ? in dt ? :

dt ? vbd dt ? ,

cc dt ? ? ? .

Solutions
● Context (above the word level)

● Morphology (below the word level)

Transition counts
Count the times each tag

follows another tag.

These are tag bigram

counts (transition counts).

nn nn 312

nn in 690

nn dt 113

in nn 262

dt nn 1256

prp vbd 847

vbd dt 464

Algorithm to count tag pairs
count(T): ▹ T: list of correct tags from corpus

Ct2 ← [0] ▹ create a table of zeros

i ← 2 ▹ assign 2 to i

while i ≤ len(L): ▹ repeat while i is at most len(L)

Ct2[T[i − 1], T[i]] ← Ct2[T[i − 1], T[i]] + 1 ▹ increment

i ← i + 1 ▹ increment i

return Ct2 ▹ output is the counts table

The same algorithm as for counting word bigrams

POS tagging algorithm 2
tag2(L, Cwt, Ct2): ▹ L: tokens, Cwt: word-tag counts,

T ← [] ▹ Ct2: tag bigram counts
T[1] ← argmax(Cwt[L[1], ·])▹ most common tag for first token
i ← 2 ▹ initialize i to 2
while i ≤ len(L): ▹ repeat for all tokens

T[i] ← argmax(Cwt[L[i], ·] × Ct2[T[i − 1], ·])▹ multiply counts
i ← i + 1 ▹ increment i

return T ▹ output is list of tags

POS tagging algorithm 2
tag2(L, Cwt, Ct2): ▹ L: tokens, Cwt: word-tag counts,

T ← [] ▹ Ct2: tag bigram counts
T[1] ← argmax(Cwt[L[1], ·])▹ most common tag for first token
i ← 2 ▹ initialize i to 2
while i ≤ len(L): ▹ repeat for all tokens

T[i] ← argmax(Cwt[L[i], ·] × Ct2[T[i − 1], ·])▹ multiply counts
i ← i + 1 ▹ increment i

return T ▹ output is list of tags
Multiply corresponding elements in the two tables

Combining counts
the dt 1527

well rb 37

well nn 3

sleep nn 4

sleep vbp 2

nn nn 312

nn in 690

nn rb 113

in nn 262

dt nn 1256

Cwt Ct2

Tag the short sentence: sleep well

Combining counts
the dt 1527

well rb 37

well nn 3

sleep nn 4

sleep vbp 2

nn nn 312

nn in 690

nn rb 113

in nn 262

dt nn 1256

Cwt Ct2

Tag the short sentence: sleep well
nn

Combining counts
the dt 1527

well rb 37

well nn 3

sleep nn 4

sleep vbp 2

nn nn 312

nn in 690

nn rb 113

in nn 262

dt nn 1256

Cwt Ct2

Tag the short sentence: sleep well
nn rb

nn: 3×312=936
rb: 37×113=4181

Phrases
Parts of speech are for single words,

but multi-word phrases may have

similar syntactic roles.

Noun phrases (NP)
I saw a [dog]

 [small dog]

 [small dog with a black tail]

Verb phrases (VP)
I [walk]

I [walk home]

I [walk home quickly but surely]

Bracketing
A hierarchy of constituents

[i [like [old books]]]

[[birds [that swim]] fly]

Phrase structure

Represents text structure as

a tree: tokens are leaves

mshang.ca/syntree

http://mshang.ca/syntree

Chinese example
Different rules/labels are

used for different languages

Lexical ambiguity

Prepositional phrases (PP)
Cats fall [on their feet]

I’m wearing the shirt [from Italy]

I’m taking the bus [from Tel Aviv]

Syntactic ambiguity

Adjective phrases (AP)
This car is [fast]

This car is [really very fast]

This car is [faster than my old one]

Dependency parsing
Represents text structure as a tree:

tokens are all the nodes (not just leaves)

Dependency Parsing
googleresearch.blogspot.co.il/2016/05/announcing-syntaxnet-worlds-most.html

http://googleresearch.blogspot.co.il/2016/05/announcing-syntaxnet-worlds-most.html

Syntactic ambiguity

Syntactic Ambiguity

Syntactic Ambiguity
github.com/tensorflow/models/tree/master/syntaxnet

Who had the glasses?

https://github.com/tensorflow/models/tree/master/syntaxnet

Representation
Natural Language Understanding: who did what to whom
and where and when and how and why?

Cross-Linguistic Examples
universaldependencies.org

French

Russian Finnish

http://universaldependencies.org/

Resources: Treebanks
● Many text corpora parsed by humans
● Used for training automatic parsers

lindat.mff.cuni.cz/services/pmltq/#!/treebanks

https://lindat.mff.cuni.cz/services/pmltq/#!/treebanks

Penn Treebank (Constituency)
www.cis.upenn.edu/~treebank

https://www.cis.upenn.edu/~treebank/

Dependency Treebanks

Converted Treebanks
Trees can be
automatically
converted to save
manual work

Evaluation

51

Labeled Attachment Score (LAS):
% of edges both in predicted tree and in gold tree

Unlabeled Attachment Score (UAS):
same as LAS, but ignoring edge label

0 ≤ LAS ≤ UAS ≤ 100%

Evaluation Example

52

gold

predicted

Parser Scores

53

Parser UAS LAS
MaltParser 90.93 88.95

MSTParser 92.17 89.86

ZPar 92.93 91.28

TurboParser 93.80 92.00

Parsey McParseface 94.41 92.55

Summary
Dependency Constituency

Structure tree tree

Tokens are all nodes only leaves

Labels on edges nodes
54

References
● NLP class on Coursera: class.coursera.org/nlp

● Parts of speech: en.wikipedia.org/wiki/Part_of_speech
● Jurafsky, Daniel, and James H. Martin. 2009. Speech and Language Processing: An Introduction to Natural

Language Processing, Speech Recognition, and Computational Linguistics. 2nd edition. Prentice-Hall. Pg. 295.

https://class.coursera.org/nlp
http://en.wikipedia.org/wiki/Part_of_speech

xkcd.com/1443

