Syntactic Parsing

Human Language from a Computational Perspective April 25, 2018

Language models reminder

Use an *n*-gram model to predict the next token:

* My only **wish I** My only **wish is**

Bigram counts

(starting with WISH):

wish I	8
WISH IS	6
WISH THEY	4
WISH WAS	4
WISH THAT	2
WISH YOU	1

Lexical ambiguity

The word wISH is ambiguous

wish (verb): לבקש, לאחל

wish (noun): משאלה

Some context helps

Verb: How I wish you were here Careful what you wish for Wish you a happy birthday

Noun:

Your **wish** is my command If you could have one **wish** Make a **wish**

But sometimes it doesn't

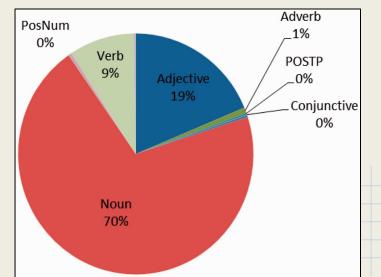
- Squad helps dog **bite** victim
- Eye **drops** off shelf
- Reagan wins on budget, but more **lies** ahead

Parts of speech (POS)

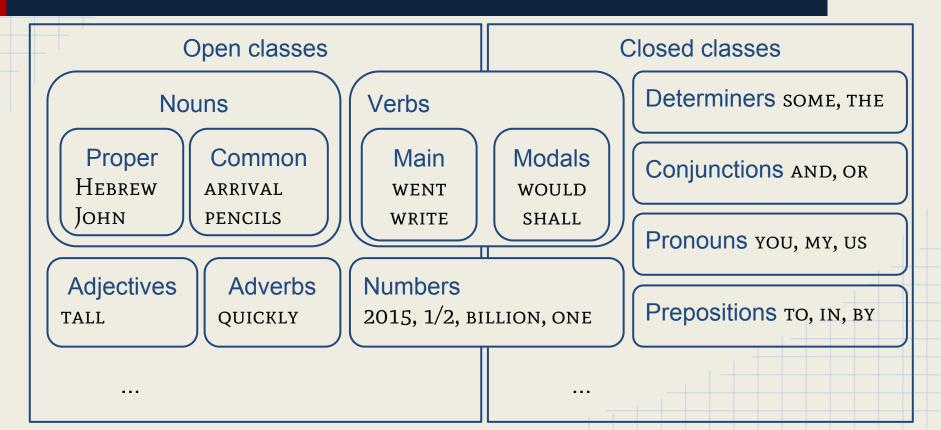
Words can roughly be divided into

distributional categories based on their

syntactic roles.



Part-of-speech hierarchy



Part-of-speech tags

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	"	Left quote	(' or ")
POS	Possessive ending	's	"	Right quote	(' or ")
PP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
PP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),},>)
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ;)
RP	Particle	up, off			

Tag guide: https://catalog.ldc.upenn.edu/docs/LDC99T42/tagguid1.pdf

Penn Treebank Part-of-Speech Tags

for English

Language variations

AD	adverb	还
AS	aspect marker	着
BA	把 in ba-construction	把,将
$\mathbf{C}\mathbf{C}$	coordinating conjunction	和
CD	cardinal number	一百
\mathbf{CS}	subordinating conjunction	虽然
DEC	的 in a relative-clause	的
DEG	associative 的	的
DER	得 in V-de const. and V-de-R	得
DEV	地 before VP	地
DT	determiner	这
ETC	for words 等, 等等	等,等等
\mathbf{FW}	foreign words	ISO
IJ	interjection	পট্য
$\mathbf{J}\mathbf{J}$	other noun-modifier	男,共同
\mathbf{LB}	被 in long bei-const	被给
\mathbf{LC}	localizer	里
М	measure word	个
MSP	other particle	所

NN	common noun	书
NR	proper noun	美国
NT	temporal noun	今天
OD	ordinal number	第一
ON	onomatopoeia	哈哈, 哗哗
Р	preposition excl. 被 and 把	从
PN	pronoun	他
PU	punctuation	• ? •
SB	被 in short bei-const	被,给
\mathbf{SP}	sentence-final particle	吗
VA	predicative adjective	紅
\mathbf{VC}	是	是
VE	有 as the main verb	有
VV	other verb	走

Penn Treebank Part-of-Speech Tags

for Mandarin Chinese

Part-of-speech tagging

- Tag the following text for POS:
- ALICE WAS BEGINNING TO GET VERY TIRED
 - NNP VBD VBG TO VB RB JJ

Statistical POS tagging

We can use counts from the corpus to

tag text for POS,

but it requires **annotation**:

just the text is not enough.

Annotated corpus example

Alice/NNP was/VBD beginning/VBG to/TO get/VB very/RB tired/JJ of/IN sitting/VBG by/IN her/PRP\$ sister/NN on/IN the/DT bank/NN ,/, and/CC of/IN having/VBG nothing/NN to/TO do/VB ./. Once/RB or/CC twice/RB she/PRP had/VBD peeped/VBN into/IN the/DT book/NN her/PRP\$ sister/NN was/VBD reading/VBG ,/, but/CC it/PRP had/VBD no/DT pictures/NNS or/CC conversations/NNS in/IN it/PRP ,/, "/" and/CC what/WDT is/VBZ the/DT use/NN of/IN a/DT book/NN ,/, "/" thought/VBD Alice/NNP ,/, "/" without/IN pictures/NNS or/CC conversations/NNS ?/. "/" So/CC she/PRP

Word/tag counts

Simple method: count the times each word occurred with each POS in the corpus

THE	DT	1527
WELL	RB	37
WELL	NN	3
SLEEP	NN	4
SLEEP	VBP	2
THAT	IN	197
THAT	DT	50

Algorithm to count word/tag

count(L, T): L: list of tokens, T: list of correct tags Cwt ← [0] create a table of zeros i ← 1 assign 1 to i while $i \leq \text{len}(L)$: \triangleright repeat while i is at most len(L)=len(T) $Cwt[L[i], T[i]] \leftarrow Cwt[L[i], T[i]] + 1$ increment count i ← i + 1 increment i return Cwt output is the counts table

Find POS sequence of token sequence

[BOB WENT OUT FOR A SWIM .] \rightarrow [NNP VBD IN IN DT NN .]

This is the wanted result, but no algorithm is perfect

tag1(L, Cwt): [] → T i ← 1 while $i \leq \text{len}(L)$: $T[i] \leftarrow argmax(Cwt[L[i], \cdot])$ $i \leftarrow i + 1$ return T

L: tokens, Cwt: word-tag counts create empty list of tags initialize i to 1 repeat for all tokens most common tag for L[i] increment i output is list of tags

tag1(L, Cwt): [] → T i ← 1 while $i \leq \text{len}(L)$: $T[i] \leftarrow argmax(Cwt[L[i], \cdot])$ $i \leftarrow i + 1$ return T

L: tokens, Cwt: word-tag counts
 create empty list of tags
 initialize i to 1
 repeat for all tokens
 [i], ·]) > most common tag for L[i]

▷ increment i

output is list of tags

The same algorithm as prediction with bigram

Surprising accuracy

This simple approach actually gets about 90% of the POS tags correctly! Most words almost always appear with

the same POS.

Problem 1: variability

NN

Use the most common POS for each word

- THE FISH SLEEP IN THAT WELL
- DT NN NN IN H RB
- But the correct tags are:
 - DT NNS VBP IN DT

State of the art

The best methods today get slightly

more than 97% accuracy,

so 90% is not so bad.

Problem 2: unknown words

'T WAS BRILLIG, AND THE SLITHY TOVES VBD CC DT First stanza of DID GYRE AND GIMBLE IN THE WABE; Jabberwocky from Through **VBD** CC IN DT the ALL MIMSY WERE THE BOROGOVES, Looking-Glass, and What Alice VBD DT DT Found There AND THE MOME RATHS OUTGRABE. (1871) by Lewis Carroll CC DT

Solutions

Context (above the word level)

• Morphology (below the word level)

Transition counts

Count the times each tag	NN	NN	312
	NN	IN	690
follows another tag.	NN	DT	113
These are tag bigram	IN	NN	262
	DT	NN	1256
counts (transition counts).	PRP	VBD	847
	VBD	DT	464

Algorithm to count tag pairs

count(T): T: list of correct tags from corpus Ct2 ← [0] create a table of zeros i ← 2 assign 2 to i while $i \leq \text{len}(L)$: repeat while i is at most len(L) Ct2[T[i − 1], T[i]] \leftarrow Ct2[T[i − 1], T[i]] + 1 ▷ increment $i \leftarrow i + 1$ increment i return Ct2 output is the counts table The same algorithm as for counting word bigrams

tag2(L, Cwt, Ct2): L: tokens, Cwt: word-tag counts, [] → T Ct2: tag bigram counts $T[1] \leftarrow argmax(Cwt[L[1], \cdot]) \triangleright most common tag for first token$ i ← 2 ▷ initialize i to 2 while $i \leq \text{len}(L)$: repeat for all tokens $T[i] \leftarrow argmax(Cwt[L[i], \cdot] \times Ct2[T[i - 1], \cdot]) > multiply counts$ $i \leftarrow i + 1$ increment i return T output is list of tags

tag2(L, Cwt, Ct2): L: tokens, Cwt: word-tag counts, Ct2: tag bigram counts $T \leftarrow []$ $T[1] \leftarrow argmax(Cwt[L[1], \cdot]) \triangleright most common tag for first token$ ▷ initialize i to 2 $i \leftarrow 2$ while $i \leq len(L)$: ▷ repeat for all tokens $T[i] \leftarrow argmax(Cwt[L[i], \cdot] \times Ct2[T[i - 1], \cdot]) > multiply counts$ $i \leftarrow i + 1$ ▷ increment i

Multiply corresponding elements in the two tables

Combining counts

Cwt	THE	DT	1527	Ct2	NN	NN	312
	WELL	RB	37		NN	IN	690
	WELL	NN	3		NN	RB	113
	SLEEP	NN	4		IN	NN	262
	SLEEP	VBP	2		DT	NN	1256

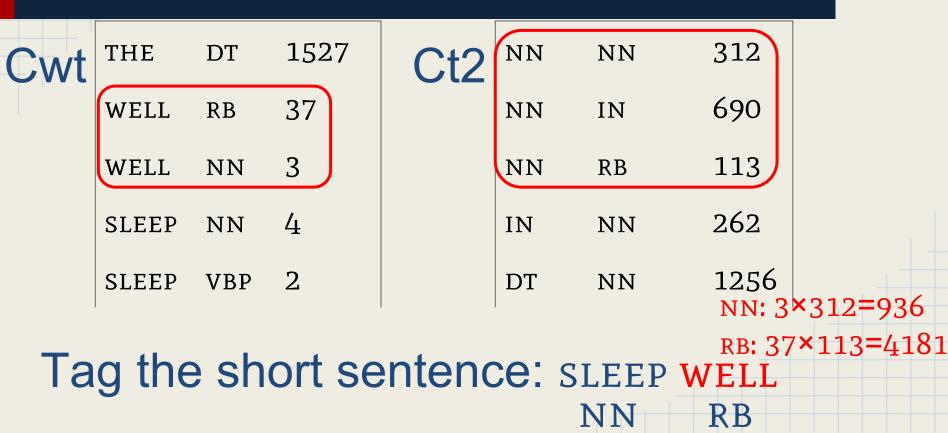
Tag the short sentence: SLEEP WELL

Combining counts

Cwt	THE	DT	1527	Ct2	NN	NN	312
	WELL	RB	37		NN	IN	690
	WELL	NN	3		NN	RB	113
	SLEEP	NN	4		IN	NN	262
	SLEEP	VBP	2		DT	NN	1256

Tag the short sentence: SLEEP WELL

Combining counts



Phrases

Parts of speech are for single words, but multi-word phrases may have

similar syntactic roles.

Noun phrases (NP)

I saw a [dog]

[SMALL DOG]

[SMALL DOG WITH A BLACK TAIL]

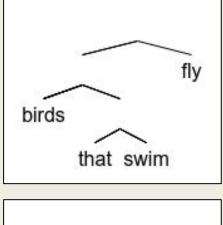
Verb phrases (VP)

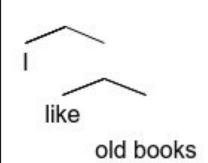
- I [walk]
- I [walk home]
- I [walk home quickly but surely]

Bracketing

A hierarchy of constituents

[BIRDS [THAT SWIM]] FLY]

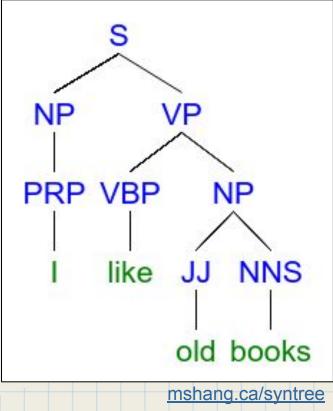




Phrase structure

Represents text structure as

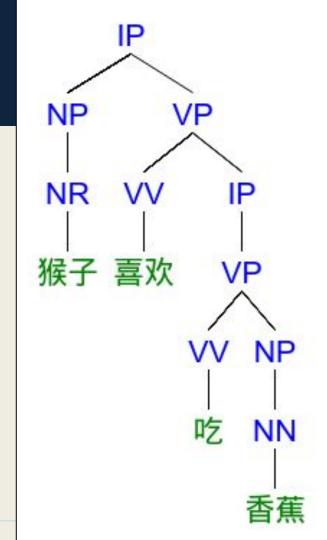
a tree: tokens are leaves



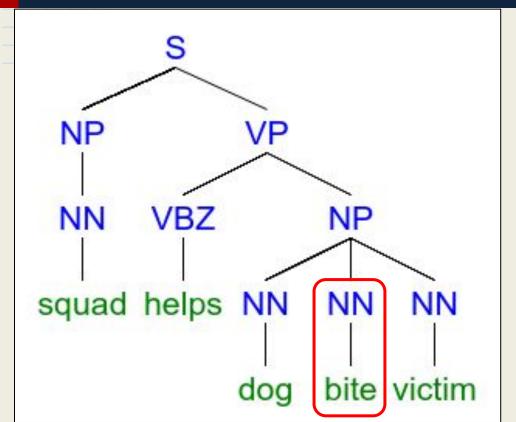
Chinese example

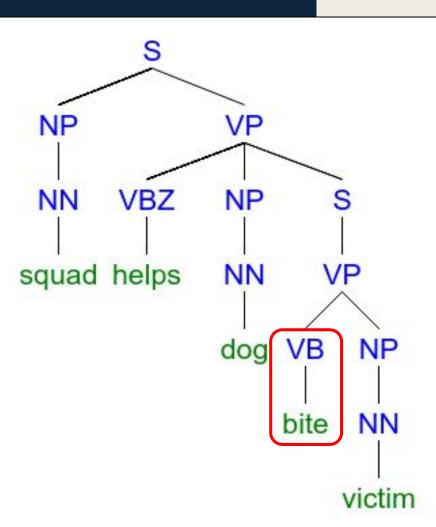
Different rules/labels are

used for different languages



Lexical ambiguity



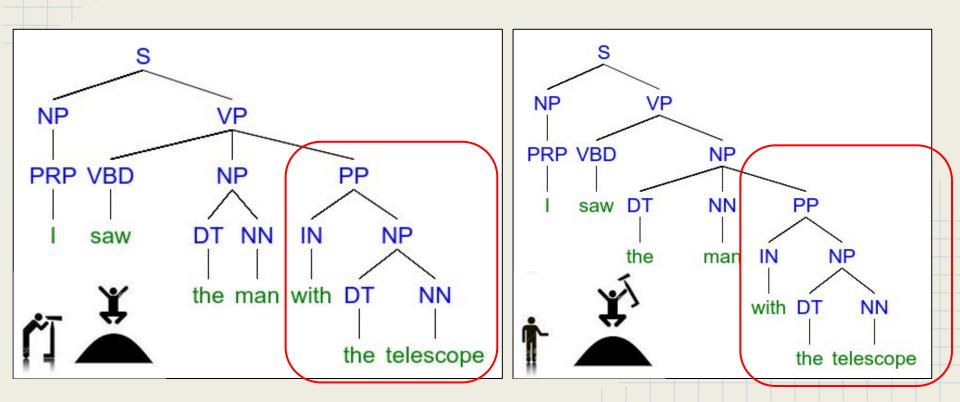


Prepositional phrases (PP)

CATS FALL [ON THEIR FEET]

I'M WEARING THE SHIRT [FROM ITALY] I'M TAKING THE BUS [FROM TEL AVIV]

Syntactic ambiguity



Adjective phrases (AP)

This car is [fast]

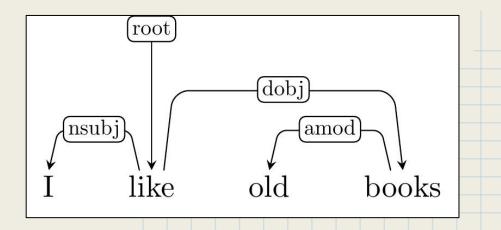
This car is [really very fast]

This car is [faster than my old one]

Dependency parsing

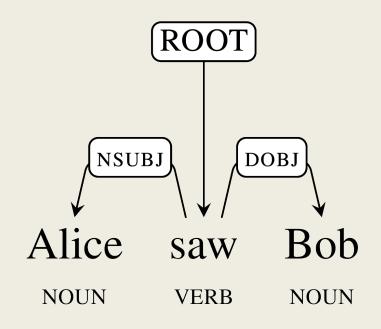
Represents text structure as a **tree**:

tokens are all the nodes (not just leaves)

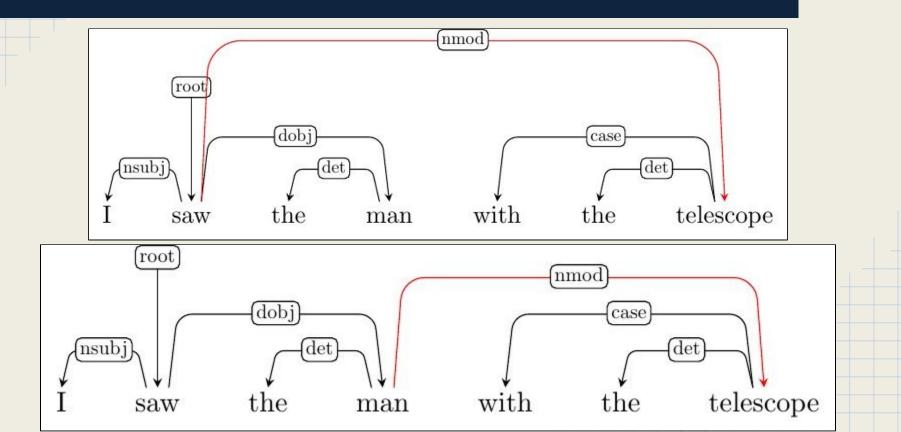


googleresearch.blogspot.co.il/2016/05/announcing-syntaxnet-worlds-most.html

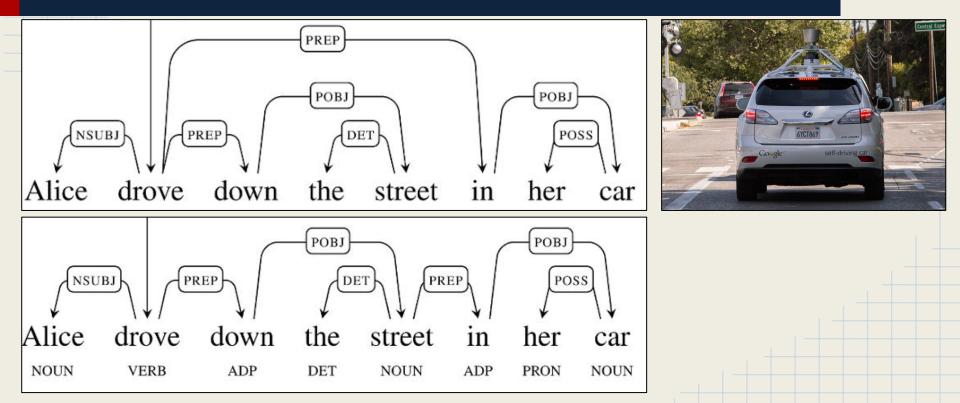
Dependency Parsing



Syntactic ambiguity

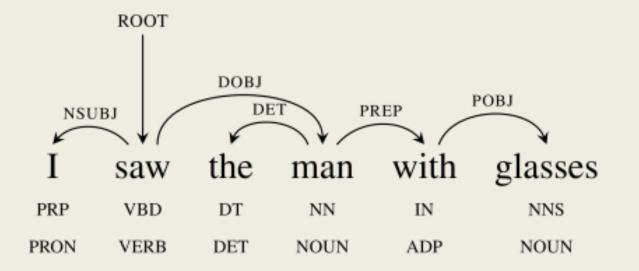


Syntactic Ambiguity



github.com/tensorflow/models/tree/master/syntaxnet

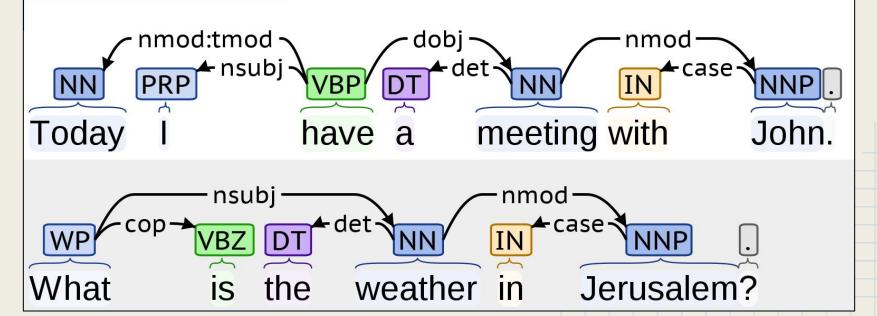
Syntactic Ambiguity



Who had the glasses?

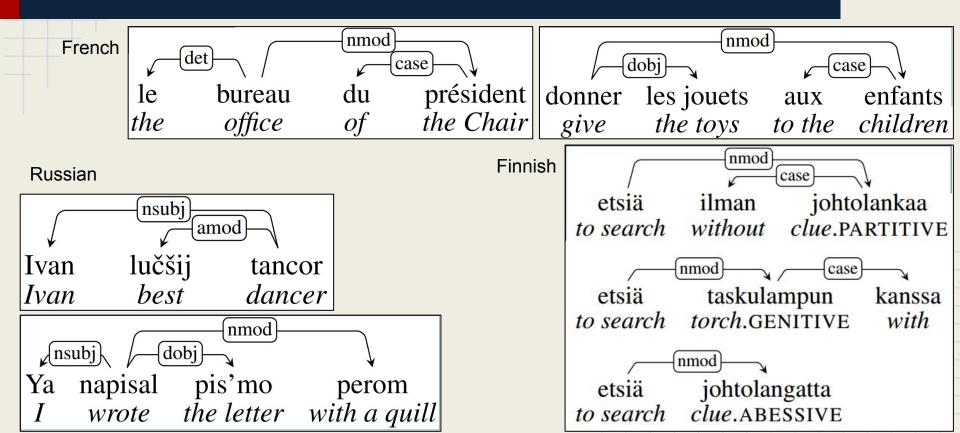
Representation

Natural Language Understanding: who did what to whom and where and when and how and why?



universaldependencies.org

Cross-Linguistic Examples



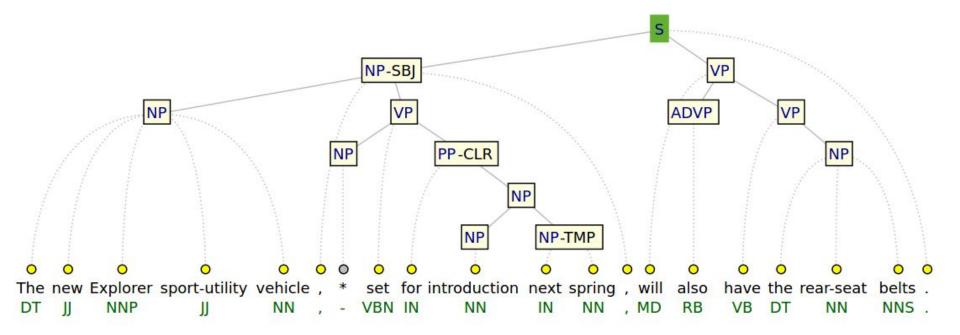
Resources: Treebanks

Many text corpora parsed by humans Used for training automatic parsers

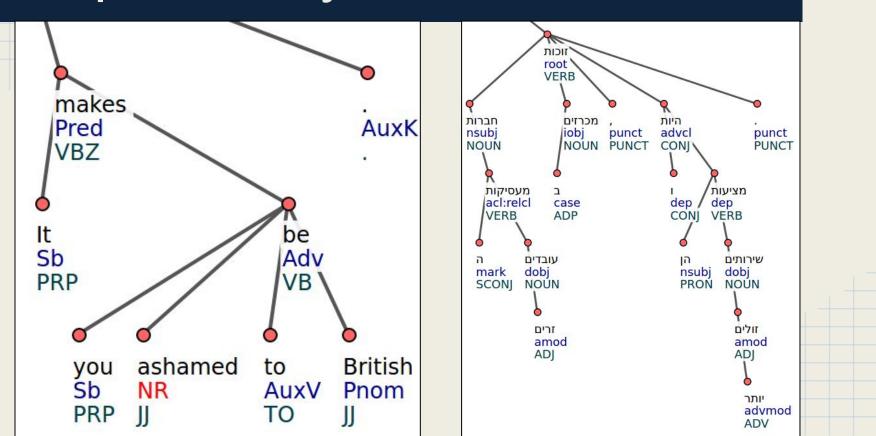
LANGUAGES:	≌ A	ncient Greek 3	Arabic 2	Basque 1	Bengali 1	Bulgarian 2	E Catalan 2	Chinese 3
Croatian	1	Czech 11	Danish 1	Dutch 2	English 11	Estonian 2	+ Finnish 2	French 1
German	4	Gothic 1	Greek 1 💻 H	lebrew 1 🏾 🎞 Hi	ndi 3 📃 I	Hungarian 1	Indonesian 1	lrish 1
Italian 1		• Japanese 2	Latin 7	Norwegian 1	I Old Church Sla	avonic 1 🗾 P	ersian 2 💻 P	olish 2
Portugue	se 2	Romanian 1	Russian 1	Slovak 1	Slovenia	n 3 💶 Spanis	h 3 🖬 Swedi	sh 2 👫 Tamil 2
💶 Telugu 💈		C Turkish 1						
TAGS: CoNLL	8	HamleDT 24	PDT 3 Penn Tr	eebank 6 Treex	1 Univers	al Dependencies 35	1	

www.cis.upenn.edu/~treebank

Penn Treebank (Constituency)

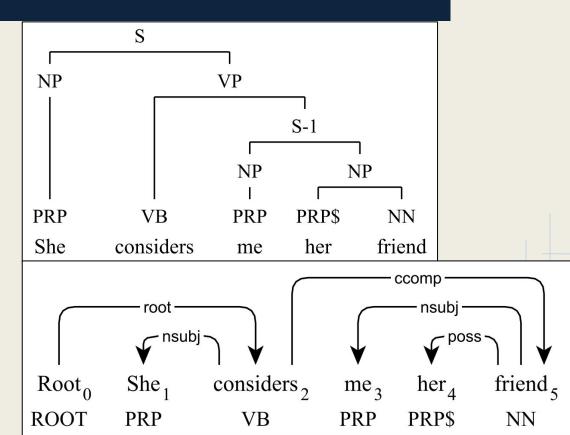


Dependency Treebanks



Converted Treebanks

Trees can be automatically converted to save manual work



Evaluation

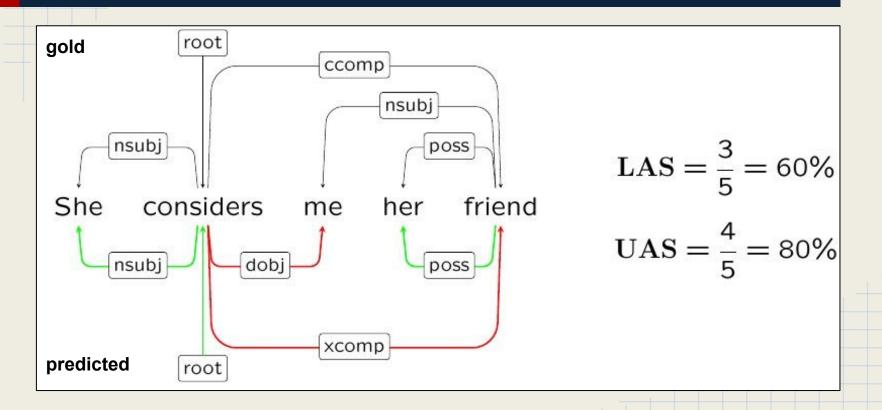
Labeled Attachment Score (LAS):

% of edges both in predicted tree and in gold tree Unlabeled Attachment Score (UAS):

same as LAS, but ignoring edge label

$0 \leq LAS \leq UAS \leq 100\%$

Evaluation Example



Parser Scores

Parser	UAS	LAS
MaltParser	90.93	88.95
MSTParser	92.17	89.86
ZPar	92.93	91.28
TurboParser	93.80	92.00
Parsey McParseface	94.41	92.55

	Dependency	Constituency
Structure	tree	tree
Tokens are	all nodes	only leaves
Labels on	edges	nodes

References

- NLP class on Coursera: <u>class.coursera.org/nlp</u>
- Parts of speech: <u>en.wikipedia.org/wiki/Part_of_speech</u>
- Jurafsky, Daniel, and James H. Martin. 2009. Speech and Language Processing: An Introduction to Natural Language Processing, Speech Recognition, and Computational Linguistics. 2nd edition. Prentice-Hall. Pg. 295.

