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Bayesian networks can describe a wide array of distributions. As we have seen these are almost pre-
cisely the distributions that satisfy the Id−sep(G) properties (almost because they may satisfy more CI
properties, but this requires a very particular choice of parameters). It is clear that there are other set of CI
properties that cannot be captured by Bayes nets. We showed one example in class.

We now present a different type of model family for distributions p(x1, . . . , xn) that satisfy CI proper-
ties that cannot be captured by BNs. Assume we are given an undirected graph with nodes V = 1, . . . , n
and edges E where ij ∈ E is an unordered pair. Denote the set of cliques in the graph G by C. Give a set
of non-negative functions φc(xc) where c ∈ C we have the following definition of a model distribution:

Definition 1. The Markov Network (G,φ) is the distribution given by:

p(x) =
1

Z

∏
c∈C

φc(xc) (1)

Here Z is a normalization constant given by Z =
∑

x

∏
c∈C φc(xc). It is also called the partition function,

a term originating in statistical physics. We shall say that if p(x) can be written in such a form then it
factors according to the undirected graph G.

1 Conditional Independence Properties in Markov Networks
In BNs we showed that the fact that a distribution is a BN implies it has a set of conditional independence
properties (namely Id−sep(G)). Perhaps more surprisingly we also showed that the converse holds: namely,
that if it has the properties Id−sep(G) it must be a Bayesian network for the graph G. Here we will follow
a similar path for Markov Networks (MNs in what follows). We shall see that not all the results carry over
simply.

We begin with a set of CI properties that is the equivalent of Id−sep(G).

Definition 2. Given an undirected graph G and three sets of variables W,Y,Z corresponding to nodes in
the graph, we say that Z separates W and Y in G if every path between W and Y has a node in Z. We
now define the following conditional independence properties based on G:

Isep(G) = {W⊥Y |Z : Z separates W and Y in G} (2)

We then have the following result:

Theorem 1. If p factorizes according to G then I(p) ⊇ Isep(G).

The proof relies on the factorization lemma we showed in class and the decomposition lemma for CI
(see book).

You may wonder if the converse holds. The short answer is no (the long answer is yes, if p(x) > 0 for
all x).
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2 Other (smaller) CI sets and relation to Isep(G)

Recall that in BNs we discussed the Local Markov (LM) property which was a subset of Id−sep(G). But,
in fact we showed that LM was not a weaker property than Id−sep(G) in the sense that any distribution that
satisfies the former satisfies the latter. Below we show a related result for MNs.

Define the two following sets of CI properties:

Definition 3. Define Ipair(G) as the following sets of CI properties

Ipair(G) = {Xi⊥Xj |XV \{i,j} : ij /∈ E} (3)

Note that there are O(n2) such properties and that Ipair(G) ⊆ Isep(G).

In words, Ipair(G) states that two non-adjacent variables are conditionally independent given the rest
of the graph.

The next property says that a variable Xi is independent of the rest of the graph given its neighbors. By
neighbors of i we mean the nodes j such that ij ∈ E. We denote this set by Nbr(i).

Definition 4. Define ILM (G) as the following sets of CI properties

ILM (G) = {Xi⊥XNbr(i)|XV \{Nbr(i),i} : i = 1, . . . , n} (4)

Note that there are O(n) such properties and that ILM (G) ⊆ Isep(G). However, there is no strict relation
between Ipair(G) and ILM (G).

What is the relation between these three properties? Clearly Isep(G) is stronger than the other two
(since it contains them).

The next theorem shows that ILM (G) is stronger than Ipair(G):

Theorem 1. If I(p) ⊇ ILM (G) then I(p) ⊇ Ipair(G) (this is sometimes denoted by ILM (G)⇒ Ipair(G))

The proof is in the book and involves use of the weak union property:

X⊥Y,W |Z ⇒ X⊥Y |Z,W (5)

To understand the converse, we shall use a stronger result which says that Ipair(G) ⇒ Isep(G) when
p(x) is strictly positive.

Theorem 2. If p(x) is a strictly positive distribution and I(p) ⊇ Ipair(G) then I(p) ⊇ Isep(G).

The proof is in the book and involves use of the following intersection property which holds for strictly
positive distributions:

U⊥Y |Z,W & U⊥W |Z, Y ⇒ U⊥Y,W |Z (6)
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