67800: Probabilistic Methods in Al Spring 2017/18

Recitation 1: Bayesian Networks

Teaching Assistant: FEitan Richardson

Recommended reading:

e PGM Book, chapters 3, 5 [I]

1.1 Reminder — Bayesian Networks

We have a set of (discrete) random variables and we want to represent the joint distribution. An explicit
joint probability distribution (table) grows exponentially with the number of variables. We want a more
compact representation that exploits (and expresses) conditional independence between variables.

BE™ Any joint distribution can be factorized (in many ways) as a product of conditional distributions per the
chain rule: P(X1,...,Xy) = P(X;)P(X2|Xy) - P(Xg|X1,...,Xk_1), but without assuming conditional
independencies, this will not reduce the complexity.

1.1.1 Naive Bayes Model

In this simplified model, we assume that all random variables depend on a single one (the class) and are
conditionally independent of each other given the class:

Vitj, PE(X;LX;|0).

Therefore:
k

P(C,X1,...,Xy) = P(C)[[ P(X: | ©)

Number of parameters (assuming |Val(C)| = n. and Vi, |Val(X;)| = n,) is just: ne(1 + k- ny)

Example 1.1 A Naive Bayes model with two features

Figure 1.1: Naive Bayes example

1 Original LaTeX template courtesy of UC Berkeley.
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Lets verify that P = (X7 L X5 | C):

Proof:
P(X1,X2|C) = P(XI;’(;Q’C) = P(C)P(X}J(ggp% 1) _ P(X,|C)P(X,|C)

Example for prior and conditional probability tables P(C), P(X1|C)and P(Xz | C):

ClPC) C|lXi1=0 X;=1 C(C[Xo=0 Xp=1
0] 04 0] 05 0.5 0] 09 0.1
1| 06 1| 02 0.8 1| 04 0.6

The resulting joint probability table P(C, X1, X3) = P(C)P(X1 | C)P(X2 | C):

X1 | X |C=0 C=1

0 0 0.18 0.048
0 1 0.02 0.072
1 0 0.18  0.192
1 1 0.02  0.288

Lets check if in our examples, X1 and X2 are marginally independent (i.e. P = (X7 L X3)?)

P(X1,X3) =Y P(C=c,X1,X5)

P(Xy) =Y P(X1, Xy =m,), P(X3)=)» P(X1=um1,X,)

T2 1
X1 | Xo | P(X1,X5) X1| X2 | P(X1)P(X,)
0] o0 0.228 X1 | P(X1) Xo| P(Xy) 00 0.192
0|1 0.092 0 | 032 0] 06 0| 1 0.128
1]0 0.372 1 | 0.68 1 0.4 110 0.408
1|1 0.308 1|1 0.272

The result shows that, as expected, P(X1, X3) # P(X1)P(X2) = P}~ (X1 L Xo).

1.1.2 A General Bayesian Network

Formally, a BN is a pair B = (G, P) of a DAG G, whose nodes are RVs and whose edges indicate ”direct
influences”, and of a set P of local conditional probability distributions — CPDs defining the direct influences
— the conditional distributions of nodes given their parents.

A BN can be viewed as:
e A factorization structure of the joint distribution:

n

Ps(X1,...,X,) = HPi(XZ- | Pa%;.)

i=1
e A map of the conditional independence assumptions about the joint distribution:

Zrm(G) =Vi: (X; L NonDescendantsy;, | Pa%i))
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UL~ |n additional to the local independencies Z,,(G), the BN graph G defines other independencies, which will
be discussed later on.

Example 1.2 The Stopped Car

We have 5 binary random variables describing different events that may occur on the way to the university
(Mechanical problems, Forgot to fill the tank, need a New car, car Stopped and Late for Class).

A general joint probability distribution will have 25 — 1 = 31 free parameters.

If we have some prior knowledge or assumptions about conditional independence between variables, we can
use a more compact and modular representation like the Bayesian Network in Fig. [I.2}

mm Mechanical Forgot to Fill mm

09 0.1 Problem m o the Tank 06 04

00 1 0 NeedNewCar [ SIME | 50 |
m 06 04
Late for Class o m ! 0
EEEEY o5 os
[ Lis | =0 | L=1 | M=1, F=0

0 09 o1 =Y o oo

| s=1 KRN P(S|M=1,F = 0)

Figure 1.2: Bayesian Network example — The Stopped Car

The local conditional independence assumptions expressed in our BN are:

(MLF), (NLSFL|M), (SLN|MF) and (LLN,MF|S)

The number of free parameters in the our BN is only 10 (one for each CPD row, in the case of binary
variables), as opposed to 31 in the general joint distribution.

The resulting joint probability distribution is:

M| F|N|S L=0 L=1

0 0 0 0 0.486 0.054

0 0 0 1 0.0 0.0

0 0 1 0 0.0 0.0

0 0 1 1 0.0 0.0

0 1 0 0 0.162 0.018

0 1 0 1 0.054 0.126

0 1 1 0 0.0 0.0
P(M,F,N,S,L) = P(M)P(F)P(N | M)P(S| M,F)P(L|S)= o |1|1[1] o0 0.0

1 0 0 0 | 0.00648 0.00072

1 0 0 1 | 0.00864 0.02016

1 0 1 0 | 0.00432 0.00048

1 0 1 1 | 0.00576 0.01344

1 1 0 0 | 0.00216 0.00024

1 1 0 1 | 0.00648 0.01512

1 1 1 0 | 0.00144 0.00016

1 1 1 1 0.00432 0.01008
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& Typically (when we have many random variables) we wouldn’t want to compute or hold the full joint-
distribution table.

1.1.3 Reasoning using the Bayesian Network

Below are some examples for different types of reasoning that can be performed using the BN:

Causal (downstream) reasoning:

P(L=1,F=1)
P(F=1)
C m 2 PL=1,M=m,S=5F=1)
B P(F=1)
=> > [PM=m)P(S=s|M=mF=1)PL=1|8=s)]

P(L=1|F=1)=

=(0.9-0.5-0.1) + (0.9-0.5-0.7) 4+ (0.1-0.1-0.1) + (0.1-0.9- 0.7) = 0.424

Evidential (upstream) reasoning;:

B .. _PL=1,F=1) P(L=1,F=1) N
PiF=11L=1)= P(L=1)  P(L=1,F=0)+P(L=1,F=1) ~ 06563
Another example:
PM|S=1)= Pj(f’]\(/[,é’i:l)l) = > ]Jj((]]\\;[’j ;7152 —y (notice how the numerator is reused)

where P(M,S=1)=>» P(M,F=fS=1)=)Y P(M)P(F=f)P(S=1|M,F = f)
f f
Doing the calculation gives P(M =1|S =1) ~ 0.318

Inter-causal reasoning (explaining away):

P(M,S=1F=1) P(M,S=1F=1)
P(M|S=1,F=1)= _
(M]§=1, ) P(S=1,F=1) S P(M=m,S=1,F=1)

Doing the calculation gives P(M =1|S=1,F =1) =~ 0.166

BE” | ooking at the last two results, we see that knowing we forgot to fill the fuel tank reduced the probability
that we have a mechanical problem given that our car stopped. This is called explaining away.

1.2 Local and Global Independence in Bayesian Networks

1.2.1 I-Maps

As discussed earlier, the BN is both a factorization of the joint distribution and a ”map” defining conditional
independencies. Here we provide more formal definitions.
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Definition 1.3 Z(P)
We define Z(P) to be the set of all independencies of the form (X L Y| Z) that hold in P.

Definition 1.4 I-Map
A BN graph G is an I-Map for a distribution P if the set of local independencies it defines hold in P i.e.
Zim(9) CI(P).

Theorem 1.5 G is an I-Map for P <= P factorizes according to G.

We saw the proof for theorem [I.5]in class.

1.2.2 D-separation

So far we discussed the local independencies in a BN: I, (G) — a node is independent of its non-descendants
given its parents. Here we define additional independencies encoded in the graph.

Random variables (nodes) influence each other via trails in the graph. We can define the following cases in
which X influences Y via Z:

e Causal trail X - Z =Y

e Evidential trail X <+~ Z + Y

e Common cause trail X «+ Z - Y

e Common effect trail X — Z « Y a.k.a v-structure
Returning to example the trail L < S < F' enables L to influence F' (if someone sees us come late to

class, it increases the probability that we forgot to fill the fuel tank), that is: P(F =1|L=1) > P(F =1).
This means that Pg [~ (F L L).

What happens if S is observed? Intuitively, once we know that our car stopped, the fact that we're late (or
not) to class, does no longer affect the probability that we forgot to fill the tank, i.e. Ps = (F L L | 5).
The fact that S is observed blocked the trail from L to F' and it is no longer active.

Now lets look at the trail M — S < F. Does the fact we forgot to fill the tank changes the probability we’ll
have a mechanical problem? Intuitively it doesn’t.

Proof:

_P(M?F) _ ZsP(M7F75:5) _Zs [P(M)P(F)P(S:S‘MaF)] _
PO ="p@y = =P P(F) P

What happens if S is observed?

P(M,F,S) P(M)P(S | M, F)

P(M|F,S) = S P(m,FS) 5. P(m)P(S|m,F)

# P(M]S)

We can see that in this trail, observing the middle node Z has an opposite effect — it made the trail active
and the influence possible.

Definition 1.6 Active Trail
A trail X3 — ... — X,, in a BN is active given a set of observed RVs Z if, whenever there is a v-structure
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along the trail: X;—1 — X; < X;+1, than X; or one of its descendants is in Z, and all other nodes along
the trail are not in Z.

Definition 1.7 D-separation
The sets X and Y are d-separated given Z, denoted d-sepg(X; Y | Z) if there are no active trails between
any node X € X and Y € Y given Z.

Definition 1.8 Global Markov Independencies
The set of all independencies that correspond to d-separation:

2(G) ={(X L Y[ 2) : d-sepg(X; Y| 2)}
What is the relationship between Zp,)(G) and Z(G)?
Claim 1.9 ILM(Q) g I(g)

Proof: We need to prove that a node is d-separated from its non-descendants given its parents
i.e. d-sepg(X ;Y | Z) and we know that Y is not a descendant of X.

If there is no trail between X and Y than X and Y are d-separated (no active trail).
If a trail exists in G, it can pass either via one of X’s parents or one of its children.

Considering the first option, the trail is: X < Z —--- —Y. Z is observed (being a parent) and is not a
v-structure, hence the trail is blocked.

Considering the second option, the trail is: X — --- — Y. We can start at X and continue along the
trail until we reach a left (opposite direction) edge. If we reached Y before encountering such an edge, Y
is a descendant of X, which is not the case. This means that we have some v-structure along the trail
X — -+ > W<« —--- =Y. For the trail to be active, W or one of its descendants must be observed i.e.
must be a parent of X, but since W is a descendant of X, this would create a cycle in G, hence the trail is
blocked in this option as well.

The next three theorems define the relation between the conditional independencies defined by d-separation
in G to those that hold in the probability distributions that factorize according to G.

Theorem 1.10 If P factorizes according to G than Z(G) C Z(P)

IS The proof for the above theorem requires some tools we'll learn when discussing undirected representation.
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Theorem 1.11 If X and Y are not d-separated given Z (i.e. an active trail exists between X to 'Y given
Z), than X and Y are dependent given Z in some distribution P that factorizes over G.

I The above theorem is proved by constructing such distribution by a set of CPDs along the trail.

Theorem 1.12 For almost all distributions P that factorizes over G: Z(G) = Z(P)

BE™ Proof sketch in the book [I]

Returning to our stopped car example, lets check if the fact that we forgot to fill the tank affects the
probability that we will need a new car, given that our car has stopped. Examining the trail N < M —
S « F, we can see that it is active, since the only observed variable (.5) is part of a v-structure. This means
that in almost all sets of CPSs over our graph, N and F will be dependent. In our specific distribution,
knowing that we forgot to fill the tank reduces the probability that we’ll need a new car (given that our car
has stopped).

IE” Notice that we sometime refer to BN as the pair B = (G, P), which defines a specific distribution Pg. In
other cases, we only talk about the BN graph structure G that defines Z(G) and can be thought of as a
filter that passes only distributions that factorize according to G and in which Z(G) C Z(P).

1.3 Local Conditional Probability Distributions

So far we assumed the local CPDs are explicit tables. If a node has many parents, the CPD table can
become large (the number of parameters in a regular table CPD grows exponentially with the number of
parent random variables). Here we discuss alternative representations of the local CPDs.

1.3.1 Tree CPD

One method to reduce the number of parameters is representing the CPD as a tree, where every leaf
represents a distribution over the dependent (child) RV and the path from the root to the leaf represents
the combinations of parent values that lead to this distribution.

This representation is useful when different combinations of parent values share the same conditional distri-
bution. For example, the CPD below can be represented by the tree-CPD in Fig.

X1 | Xo || PY =0]X1,X0) | P(Y = 1] X1, X5)
00 0.1 0.9
011 0.1 0.9
110 0.2 0.8
1] 1 0.5 0.5
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(02,08  [05,0.5]

Figure 1.3: Tree-CPD example

1.3.2 Noisy Or

In example we defined a CPD for the conditional dependency P(S| M, F). In many cases, we don’t need
to model a complex interaction between the different causes (combinations of parent values) — we might want
the CPD to represent some sort of a probabilistic OR model that scales linearly with additional variables.
The Noisy Or model provides this kind of independence of causal influence:

Definition 1.13 Noisy Or
A binary RV'Y depends on k binary parents X1, ..., Xy in a noisy-or model if:

k
P(Y =0]|zy,...,25) = (1= o) [J(1 = X)™

=1

Ao is the leak parameter, allowing a positive probability for Y = 1 even of all X; are 0.
\; are the noise parameters defining the amount by which X; = 1 reduces the probability that Y = 0.
When Ag = 0 and all noise parameters \; equal 1, the model behaves like a deterministic OR.

The parameters that match the CPD we defined in example [[.2] are A\g = 0, Ap = 0.5, Apr = 0.8.

1.3.3 Logistic CPD

Another model that expresses independence of causal influence is the logistic CPD defined as:

k
P(Y: 1‘:513"'71.]6) :U(WO‘szil’i)
=1

In this model, the dependent variable Y is influenced by a linear combination of the parent variables, followed
by a sigmoid function.
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