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1. Consider the following distribution over 3 binary variables X,Y, Z:

P (x, y, z) =
{

1/12 x⊕ y ⊕ z = 0
1/6 x⊕ y ⊕ z = 1

(where ⊕ denotes a XOR function).
Show that there is no DAG structure such that Id−sep(G) = I(P ).
(Hint: show that (X ⊥ Z) ∈ I(P ) and (X ⊥ Y ) ∈ I(P )).

2. Let X,Y, Z be binary random variables with joint distribution that factorizes over the
directed graph X → Z ← Y (v-structure). We define the following quantities:

a =P (X = 1)

b =P (X = 1|Z = 1)

c =P (X = 1|Z = 1, Y = 1)

(a) For all the following cases, provide examples of conditional probability tables (table
CPDs), and compute a, b, c, such that:

• a > c

• a < c < b

• b < a < c

(b) Think of X,Y as causes of Z, and for all the above cases summarize (in a sentence or
two) why the statements are true for your examples.

(Hint: think about positive and negative correlations along edges).

3. Markov blanket
Let X = {X1, ..., Xn} be a set of random variables with distribution P given by the
following graph.
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(a) Consider the variable X5. What is the minimal subset of the variables, A ⊆ X−{X5},
such that (X5 ⊥ X −A− {X5}|A)? Justify your answer.

(b) Now, generalize this to any BN defined by (G, P ). Specifically, consider variable
Xi. What is the Markov blanket of Xi? Namely, the minimal subset of variables
A ⊆ X −{Xi} such that (Xi ⊥ X −A−{Xi}|A)? Prove that this subset is necessary
and sufficient.

(Hint: Think about the variables that Xi cannot possibly be conditionally indepen-
dent of, and then think some more).

4. Bayesian networks (Exercise 3.11 from Koller-Friedman)

TV

EarthquakeBurglary

JohnCall MaryCall

Alarm Nap

(a) Consider the Burglary Alarm network given above. Construct a Bayesian network over
all the node except the Alarm that is a minimal I-map for the marginal distribution
over the remaining variables (namely, over B,E,N, T, J,M). Be sure to get all the
dependencies from the original network.

(b) Generalize the procedure you used above to an arbitrary network. More precisely,
assume we are given a network BN, an ordering X1, · · · , Xn that is consistent with
the ordering of the variables in BN, and a node Xi to be removed. Specify a network
BN ′ such that BN ′ is consistent with this ordering, and such that BN ′ is a minimal
I-map of PBN (X1, · · · , Xi, Xi+1 · · ·Xn). Your answer must be an explicit specification
of the set of parents for each variable in BN ′.

5. Towards inference in Bayesian networks

Suppose you have a Bayes’ net over variables X1, · · · , Xn and all variables except Xi are
observed. Using the chain rule and Bayes’ rule, find an efficient algorithm to compute
P (xi|x1, · · · , xi−1, xi+1, · · · , xn). In particular, your algorithm should not require evalua-
tion of the full joint distribution.

6. Programming Task

In this programming assignment, we will investigate the structure of the binarized MNIST
dataset of handwritten digits using Bayesian networks. The dataset contains images of
handwritten digits with dimensions 28 × 28 (784) pixels. Consider the Bayesian network
in Figure 1. The network contains two layers of variables. The variables in the bottom
layer, X1:784 denote the pixel values of the flattened image and are referred to as manifest
variables. The variables in the top layer, Z1 and Z2, are referred to as latent variables,
because the value of these variables will not be explicitly provided by the data and will
have to be inferred.

The Bayesian network specifies a joint probability distribution over binary images and
latent variables p(Z1, Z2, X1:784). The model is trained so that the marginal probability of
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Figure 1: Bayesian network for the MNIST dataset. X1:784 variables correspond to pixels in an
image. Z1 and Z2 variables are latent.

the manifest variables, p(x1:784) =
∑

z1,z2
p(z1, z2, x1:784) is high on images that look like

digits, and low for other images.

For this programming assignment, we provide a pretrained model trained mnist model.
The starter code pa1.py loads this model and provides functions to directly access the
conditional probability tables. Further, we simplify the problem by discretizing the la-
tent and manifest variables such that V al(Z1) = V al(Z2) = {−3,−2.75, . . . , 2.75, 3} and
V al(Xj) = {0, 1}, i.e., the image is binary.

(a) How many values can the random vector X1:784 take, i.e., how many different 28× 28
binary images are there?

(b) How many parameters would you need to specify an arbitrary probability distribution
over all possible 28× 28 binary images?

(c) How many parameters do you need to specify the Bayesian network in Figure 1?

For parts 6d-6g below, refer to pa1.py. The starter code contains some helper func-
tions for solving these questions. It is not compulsory to use them and you are allowed
to use your own implementations. Also, feel free to introduce your own additional
helper functions when useful.

(d) Produce 5 samples from the joint probability distribution (z1, z2, x1:784) ∼ p(Z1, Z2, X1:784),
and plot the corresponding images (values of the pixel variables).

Hint: they should look like (binarized) handwritten digits. Imagine we could build
such a model not for handwritten digits, but for Renaissance paintings. Each sample
from the model would produce a new piece of art!

(e) For each possible value of

(z1, z2) ∈ {−3,−2.75, . . . , 2.75, 3} × {−3,−2.75, . . . , 2.75, 3},

compute the conditional expectation E[X1:784|Z1, Z2 = (z1, z2)]. This is the expected
image corresponding to each possible value of the latent variables Z1, Z2. Plot the
images on on a 2D grid where the grid axes correspond to Z1 and Z2 respectively.
What is the intuitive role of the Z1, Z2 variables in this model?

(f) In q 6f.mat, you are given a validation and a test dataset. In the test dataset, some
images are “real” handwritten digits, and some are anomalous (corrupted images). We
would like to use our Bayesian network to distinguish real images from the anomalous
ones. Intuitively, our Bayesian network should assign low probability to corrupted
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images and high probability to the real ones, and we can use this for classification.
To do this, we first compute the average marginal log-likelihood,

log p(x1:784) = log
∑
z1

∑
z2

p(z1, z2, x1:784)

on the validation dataset, and the standard deviation (again, standard deviation over
the validation set). Consider a simple prediction rule where images with marginal
log-likelihood, log p(x1:784), outside three standard deviations of the average marginal
log-likelihood are classified as corrupted. Classify images in the test set as corrupted
or real using this rule. Then plot a histogram of the marginal log-likelihood for the
images classified as “real”. Plot a separate histogram of the marginal log-likelihood
for the images classified as “corrupted”.

Hint: If you run into any flow issues, search for the “log-sum-exp trick” online for
help.

(g) In q 6g.mat, you are given a labeled dataset of images of handwritten digits (the
label corresponds to the digit identity). For each image Ik, compute the conditional
probabilities p((Z1, Z2) = (z1, z2)|X1:784 = Ik). Use these probabilities to compute
the conditional expectation

E[(Z1, Z2)|X1:784 = Ik)]

Plot all the conditional expectations in a single plot, color coding each point as per
their label. What is the relationship with the figure you produced for part 6e?


