67800: Probabilistic Methods in AI

Recitation 3: More on Bayesian and Markov Networks

Teaching Assistant: Eitan Richardson

Recommended reading:

• PGM Book, Chapters 4, (5) [1]

3.1 Reminder – independencies and I-maps

Definition 3.1 *I-map (a general definition)*

A graph \mathcal{K} associated with a set of independencies $\mathcal{I}(\mathcal{K})$ is an I-map for a set of independencies \mathcal{I} if $\mathcal{I}(\mathcal{K}) \subseteq \mathcal{I}$.

Definition 3.2 $\mathcal{I}(P)$ We define $\mathcal{I}(P)$ to be the set of all independencies of the form $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ that hold in P.

3.1.1 In directed models – BNs

We defined the local Markov independencies:

$$\mathcal{I}_{LM}(\mathcal{G}) = \forall i : (X_i \perp \text{NonDescendants}_{X_i} \mid Pa_{X_i}^{\mathcal{G}}))$$

And the global independencies:

$$\mathcal{I}(\mathcal{G}) = \{ (\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}) : d\text{-sep}_{\mathcal{G}}(\mathbf{X}; \mathbf{Y} \mid \mathbf{Z}) \}$$

We proved the following theorems:

- 1. $\mathcal{I}_{LM}(\mathcal{G}) \subseteq \mathcal{I}(\mathcal{G})$ every conditional independence in $\mathcal{I}_{LM}(\mathcal{G})$ appears in $\mathcal{I}(\mathcal{G})$
- 2. $P \models \mathcal{I}_{LM}(\mathcal{G}) \iff P \models \mathcal{I}(\mathcal{G})$ they are equivalent (imply each other)
- 3. ${\mathcal G}$ is an I-map for $P \Longleftrightarrow P$ factorizes according to ${\mathcal G}$

 $\overset{\text{\tiny IM}}{\longrightarrow}$ Claim 3 is true with respect to both $\mathcal{I}_{LM}(\mathcal{G})$ and $\mathcal{I}(\mathcal{G})$, because of claim 2.

Property 1 is less important since the two sets are equivalent.

3.1.2 In undirected models – MNs

We defined three sets of independencies associated with the MN graph:

 $\mathcal{I}(\mathcal{H}) = \{ (\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}) : \text{Sep}_{\mathcal{H}}(\mathbf{X}; \mathbf{Y} \mid \mathbf{Z}) \}$

Spring 2017/18

 $^{^1}Original \ LaTeX \ template \ courtesy \ of \ UC \ Berkeley.$

$$\mathcal{I}_{P}(\mathcal{H}) = \{ (X \perp Y \mid \mathcal{X} - \{X, Y\}) : X - Y \notin \mathcal{H}) \}$$
$$\mathcal{I}_{LM}(\mathcal{H}) = \{ (X \perp \mathcal{X} - \{X\} - MB_{\mathcal{H}}(X) \mid MB_{\mathcal{H}}(X)) : X \in \mathcal{X}) \}$$

We proved (partially) the following theorems:

1. $P \models \mathcal{I}(\mathcal{H}) \implies P \models \mathcal{I}_{LM}(\mathcal{H}) \implies P \models \mathcal{I}_P(\mathcal{H})$

2. P factorizes according to $\mathcal{H} \implies \mathcal{H}$ is an I-map for P

 \mathbb{W} We proved claim 2 w.r.t. the global independence $\mathcal{I}(\mathcal{H})$ and therefor it implies the other independencies.

For **positive** distributions, the following is true as well:

1. $P \models \mathcal{I}(\mathcal{H}) \iff P \models \mathcal{I}_{LM}(\mathcal{H}) \iff P \models \mathcal{I}_P(\mathcal{H})$

2. \mathcal{H} is an I-Map for $P \implies P$ factorizes according to \mathcal{H}

3.2 I-maps

A is a graph (MN or BN) with an associated set of independencies $\mathcal{I}(A)$, B is a graph or a distribution with an associated set of independencies $\mathcal{I}(B)$:

Definition	Meaning	Always exists
A is an I-map for B	$\mathcal{I}(A) \subseteq \mathcal{I}(B)$	\checkmark
A is a minimal I-map for B	$\mathcal{I}(A) \subseteq \mathcal{I}(B), \forall \mathcal{E} : \mathcal{I}(A \setminus \mathcal{E}) \not\subseteq \mathcal{I}(B)$	\checkmark
A is a P-map (perfect map) for B	$\mathcal{I}(A) = \mathcal{I}(B)$	No

We discussed an algorithm for constructing a directed (BN) minimal I-map given the set of independencies $\mathcal{I}(B)$ and a **predefined topological order** – when adding X_i , pick the minimal required subset of nodes as parents s.t. X_i is independent of already-added nodes given the set of parents (see Algorithm 3.2 in the book).

We saw in class a method for constructing an undirected minimal I-map – add an edge between every pair of variables that are not independent in P given all other variables. We saw that the resulting minimal I-map is unique.

We didn't learn how to construct a perfect map. See book section 3.4.3

3.3 From Markov to Bayesian Networks

Reminder: Last time we saw how to construct a MN that will be a minimal I-map for a given BN – the *Moral Graph* (undirected skeleton of the BN plus edges between co-parents).

Converting a MN to a BN is more challenging – we will see that converting an undirected MN \mathcal{H} to a directed BN \mathcal{G} might add many edges and dependencies.

3.3.1 Constructing a minimal I-map

Definition 3.3 Chordal Graph

In a chordal (or triangulated) graph, there are no minimal loops (i.e. undirected cyclic trails without shortcuts) longer than three edges.

Theorem 3.4 \mathcal{G} is a minimal I-map for $\mathcal{H} \implies \mathcal{G}$ has no immoralities. This is true for every topological order.

Proof: Lets assume, by contradiction, that the following immorality exists in \mathcal{G} : $X_i \to X_j \leftarrow X_k$ with no edge between X_i and X_k , and assuming i < k < j.

The minimal I-map construction chooses as Pa_{X_j} the minimal set s.t. $X_j \perp X_{< j} \mid Pa_{X_j}$, therefore $(X_j \perp X_i \mid Pa_{X_j} - X_i) \notin \mathcal{I}(\mathcal{H})$, and therefore a path $X_j \ldots X_i$ exists in \mathcal{H} , which is not cut by other parents of X_j .

Similarly, a path $X_j \ldots X_k$ exists in \mathcal{H} , which is not cut by other parents of X_j , and so, a path $X_i \ldots X_j \ldots X_k$ exists in \mathcal{H} .

Lets consider X_k 's parents Pa_{X_k} . Because of the assumed immorality, $X_i \notin Pa_{X_k}$, therefore: Pa_{X_k} cuts the path $X_i \dots X_j \dots X_k$.

Lets assume WLOG that Pa_{X_k} separates (in \mathcal{H}) X_j from X_k . This would cause (some variable in) Pa_{X_k} to replace X_k as a parent of X_j – a contradiction.

We use the regular minimal I-map construction algorithm given some topological order. The result will always be a chordal BN.

Claim 3.5 \mathcal{G} is a minimal I-map for $\mathcal{H} \implies \mathcal{G}$ is chordal.

Proof: Any minimal loop larger than three edges will cause an immorality.

3.3.2 Constructing a P-map*

Theorem 3.6 For \mathcal{H} to have a directed *P*-map \mathcal{G} , \mathcal{H} must be chordal.

Proof: Any minimal I-map for \mathcal{H} must be chordal. If \mathcal{H} is not chordal, the skeleton of any I-map \mathcal{G} will contain edges that are not in \mathcal{H} , thus eliminating (pairwise) independencies that \mathcal{H} encodes.

* The proof for the opposite direction requires the definition of a Clique Tree – optional material.

Definition 3.7 Clique Tree A tree \mathcal{T} is a clique tree for a MN \mathcal{H} if:

- Each node in \mathcal{T} corresponds to a clique in \mathcal{H} (and each maximal clique has a node)
- For each sepset, we have: $\operatorname{Sep}_{\mathcal{H}}(W_{<(i,j)}; W_{<(j,i)} | S_{ij})$

Where the sepset is defined as $S_{ij} = C_i \cap C_j$, C_i and C_j are connected by an edge i - j in \mathcal{T} . $W_{\langle (i,j)}$ is the set of all variables to the C_i side of the edge i - j in \mathcal{T} . $\mathcal{X} = (W_{\langle (i,j)} - S_{ij}) \cup (W_{\langle (j,i)} - S_{ij}) \cup S_{ij})$

Theorem 3.8 \mathcal{H} is chordal $\implies \mathcal{H}$ has a clique tree.

Proof: By induction...

Theorem 3.9 If \mathcal{H} is chordal, a BN which is a P-map for \mathcal{H} exists.

Proof: (Proof sketch)

We first induce a topological order based on the clique tree:

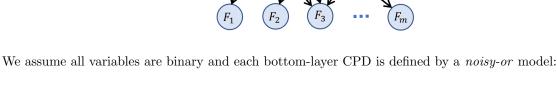
We select some clique C_1 in the clique tree \mathcal{T} to be the root and then define an order for the other cliques so that $i < j \implies C_i$ is closer to the root than C_j .

We then define a topological order for the variables \mathcal{X} that is consistent with the cliques order and construct the BN \mathcal{G} using the minimal I-map algorithm.

Next, we show that \mathcal{G} is a P-map for \mathcal{H} (see proof for theorem 4.13 in the book).

3.4 The BN2O model

A *BN2O* network is a two-layer BN, where the top layer corresponds to *causes* (e.g. diseases) and the bottom layer to symptoms (e.g. medical findings):



$$P(f_i^0 \mid \mathbf{Pa}_{F_i}) = (1 - \lambda_{i,0}) \prod_{D_j \in \mathbf{Pa}_{F_i}} (1 - \lambda_{i,j})^{d_j}$$

where $\lambda_{i,j}$ is the noise parameter associated with parent D_j of variable F_i .

The model is simple and intuitive:

- An edge indicate that a disease D_j can cause a symptom F_i
- The parameter $\lambda_{i,j}$ defined the probability that $d_j = 1$ causes $f_i = 1$ (in isolation)

We will prove two more very useful properties of BN2O:

- 1. The parents of a symptom F_i are independent given f_i^0 .
- 2. The posterior distribution with a negative observation $P_B(\cdot \mid f_i^0)$ can be encoded by a BN B' which has an identical structure to B, except that F_i is omitted.

Regarding the first property:

Generally in BNs, an observation of a child makes the parents dependent (v-structure), like in the *explaining* away example. In general CPD tables, parents become dependent on either positive or negative child observation.

The noisy-or CPD causes *context-specific independence*. Intuitively, if someone doesn't have a fever, the fact that he has a flu does not change the probability that he has strep.

Proof: The parents in a *noisy-or* BN are independent given a negative child observation. Notation: D – the set of k parents, F – the child.

$$P(D \mid f^{0}) = \frac{P(D, f^{0})}{P(f^{0})} = \frac{\left[\prod_{i=1}^{k} P(D_{i})\right](1 - \lambda_{0}) \prod_{i=1}^{k} (1 - \lambda_{i})^{D_{i}}}{P(f^{0})}$$
$$= \frac{(1 - \lambda_{0}) \prod_{i=1}^{k} \left[P(D_{i})(1 - \lambda_{i})^{D_{i}}\right]}{\sum_{D} P(D, f^{0})}$$
$$\propto \prod_{i=1}^{k} \left[P(D_{i})(1 - \lambda_{i})^{D_{i}}\right] = \prod_{i=1}^{k} \psi(D_{i})$$

If a joint distribution can be written as a product of functions of single variables, then the variables are independent.

We can also prove explicitly that $P(D \mid f^0) = \prod_i (D_i \mid f^0) \dots$ a few more lines.

The second property is useful, since most symptoms are typically negative.

Proof:

$$\begin{split} P(D, F - F_i \mid f_i^0) &= \frac{P(D, F - F_i, f_i^0)}{P(f_i^0)} \\ &= \frac{\left[\prod_{j=1}^n P(D_j)\right] \left[\prod_{k \neq i} P(F_k \mid Pa_{F_k})\right] P(f_i^0 \mid Pa_{F_i})}{P(f_i^0)} \\ &= \left[\prod_{j=1}^n P(D_j)\right] \left[\prod_{k \neq i} P(F_k \mid Pa_{F_k})\right] \frac{P(Pa_{F_i} \mid f_i^0) P(f_i^{\Theta})}{P(Pa_{F_i}) P(f_i^{\Theta})} \quad (\text{Bayes rule}) \\ &= \left[\prod_{j \notin Pa_{F_i}} P(D_j)\right] \left[\prod_{k \neq i} P(F_k \mid Pa_{F_k})\right] \left[\prod_{j \in Pa_{F_i}} P(D_j)\right] \frac{P(Pa_{F_i} \mid f_i^0)}{P(Pa_{F_i})} \\ &= \left[\prod_{j \notin Pa_{F_i}} P(D_j)\right] \left[\prod_{k \neq i} P(F_k \mid Pa_{F_k})\right] \left[\prod_{j \in Pa_{F_i}} P(D_j \mid f_i^0)\right] \\ \end{split}$$

The parameters $P(D_j)$ for the parents of F_i are changed to the posterior parameters $P(D_j | f_i^0)$. Other parameters are unchanged.

References

[1] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.