
67800: Probabilistic Methods in AI Spring 2017/18

Recitation 3: More on Bayesian and Markov Networks
Teaching Assistant: Eitan Richardson

Recommended reading:

• PGM Book, Chapters 4, (5) [1]

3.1 Reminder – independencies and I-maps

Definition 3.1 I-map (a general definition)
A graph K associated with a set of independencies I(K) is an I-map for a set of independencies I if I(K) ⊆ I.

Definition 3.2 I(P )
We define I(P ) to be the set of all independencies of the form (X ⊥ Y | Z) that hold in P .

3.1.1 In directed models – BNs

We defined the local Markov independencies:

ILM (G) = ∀i : (Xi ⊥ NonDescendantsXi | Pa
G
Xi

))

And the global independencies:

I(G) = {(X ⊥ Y | Z) : d-sepG(X ; Y | Z)}

We proved the following theorems:

1. ILM (G) ⊆ I(G) – every conditional independence in ILM (G) appears in I(G)

2. P |= ILM (G) ⇐⇒ P |= I(G) – they are equivalent (imply each other)

3. G is an I-map for P ⇐⇒ P factorizes according to G

� Claim 3 is true with respect to both ILM (G) and I(G), because of claim 2.

� Property 1 is less important since the two sets are equivalent.

3.1.2 In undirected models – MNs

We defined three sets of independencies associated with the MN graph:

I(H) = {(X ⊥ Y | Z) : SepH(X ; Y | Z)}
1Original LaTeX template courtesy of UC Berkeley.
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IP (H) = {(X ⊥ Y | χ− {X,Y }) : X − Y 6∈ H)}

ILM (H) = {(X ⊥ χ− {X} −MBH(X) | MBH(X)) : X ∈ χ)}

We proved (partially) the following theorems:

1. P |= I(H) =⇒ P |= ILM (H) =⇒ P |= IP (H)

2. P factorizes according to H =⇒ H is an I-map for P

� We proved claim 2 w.r.t. the global independence I(H) and therefor it implies the other independencies.

For positive distributions, the following is true as well:

1. P |= I(H) ⇐⇒ P |= ILM (H) ⇐⇒ P |= IP (H)

2. H is an I-Map for P =⇒ P factorizes according to H

3.2 I-maps

A is a graph (MN or BN) with an associated set of independencies I(A), B is a graph or a distribution with
an associated set of independencies I(B):

Definition Meaning Always exists
A is an I-map for B I(A) ⊆ I(B) X
A is a minimal I-map for B I(A) ⊆ I(B), ∀E : I(A \ E) 6⊆ I(B) X
A is a P-map (perfect map) for B I(A) = I(B) No

We discussed an algorithm for constructing a directed (BN) minimal I-map given the set of independencies
I(B) and a predefined topological order – when adding Xi, pick the minimal required subset of nodes
as parents s.t. Xi is independent of already-added nodes given the set of parents (see Algorithm 3.2 in the
book).

We saw in class a method for constructing an undirected minimal I-map – add an edge between every pair of
variables that are not independent in P given all other variables. We saw that the resulting minimal I-map
is unique.

� We didn’t learn how to construct a perfect map. See book section 3.4.3

3.3 From Markov to Bayesian Networks

Reminder: Last time we saw how to construct a MN that will be a minimal I-map for a given BN – the
Moral Graph (undirected skeleton of the BN plus edges between co-parents).

Converting a MN to a BN is more challenging – we will see that converting an undirected MN H to a directed
BN G might add many edges and dependencies.
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3.3.1 Constructing a minimal I-map

Definition 3.3 Chordal Graph
In a chordal (or triangulated) graph, there are no minimal loops (i.e. undirected cyclic trails without short-
cuts) longer than three edges.

Theorem 3.4 G is a minimal I-map for H =⇒ G has no immoralities.
This is true for every topological order.

Proof: Lets assume, by contradiction, that the following immorality exists in G:
Xi → Xj ← Xk with no edge between Xi and Xk, and assuming i < k < j.

The minimal I-map construction chooses as PaXj
the minimal set s.t. Xj ⊥ X<j | PaXj

,
therefore (Xj ⊥ Xi | PaXj

−Xi) 6∈ I(H),
and therefore a path Xj . . . Xi exists in H, which is not cut by other parents of Xj .

Similarly, a path Xj . . . Xk exists in H, which is not cut by other parents of Xj ,
and so, a path Xi . . . Xj . . . Xk exists in H.

Lets consider Xk’s parents PaXk
. Because of the assumed immorality, Xi 6∈ PaXk

, therefore:
PaXk

cuts the path Xi . . . Xj . . . Xk.

Lets assume WLOG that PaXk
separates (in H) Xj from Xk. This would cause (some variable in) PaXk

to
replace Xk as a parent of Xj – a contradiction.

� We use the regular minimal I-map construction algorithm given some topological order. The result will
always be a chordal BN.

Claim 3.5 G is a minimal I-map for H =⇒ G is chordal.

Proof: Any minimal loop larger than three edges will cause an immorality.

3.3.2 Constructing a P-map*

Theorem 3.6 For H to have a directed P-map G, H must be chordal.

Proof: Any minimal I-map for H must be chordal. If H is not chordal, the skeleton of any I-map G will
contain edges that are not in H, thus eliminating (pairwise) independencies that H encodes.

� * The proof for the opposite direction requires the definition of a Clique Tree – optional material.

Definition 3.7 Clique Tree
A tree T is a clique tree for a MN H if:

• Each node in T corresponds to a clique in H (and each maximal clique has a node)

• For each sepset, we have: SepH(W<(i,j) ;W<(j,i) | Sij)
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Where the sepset is defined as Sij = Ci ∩ Cj, Ci and Cj are connected by an edge i− j in T .

W<(i,j) is the set of all variables to the Ci side of the edge i− j in T .

X = (W<(i,j) − Sij) ∪ (W<(j,i) − Sij) ∪ Sij

Theorem 3.8 H is chordal =⇒ H has a clique tree.

Proof: By induction...

Theorem 3.9 If H is chordal, a BN which is a P-map for H exists.

Proof: (Proof sketch)
We first induce a topological order based on the clique tree:
We select some clique C1 in the clique tree T to be the root and then define an order for the other cliques
so that i < j =⇒ Ci is closer to the root than Cj .
We then define a topological order for the variables X that is consistent with the cliques order and construct
the BN G using the minimal I-map algorithm.

Next, we show that G is a P-map for H (see proof for theorem 4.13 in the book).

3.4 The BN2O model

A BN2O network is a two-layer BN, where the top layer corresponds to causes (e.g. diseases) and the bottom
layer to symptoms (e.g. medical findings):

We assume all variables are binary and each bottom-layer CPD is defined by a noisy-or model:

P (f0i | PaFi) = (1− λi,0)
∏

Dj∈PaFi

(1− λi,j)dj

where λi,j is the noise parameter associated with parent Dj of variable Fi.

The model is simple and intuitive:

• An edge indicate that a disease Dj can cause a symptom Fi

• The parameter λi,j defined the probability that dj = 1 causes fi = 1 (in isolation)

We will prove two more very useful properties of BN2O:



Recitation 3: More on Bayesian and Markov Networks 3-5

1. The parents of a symptom Fi are independent given f0i .

2. The posterior distribution with a negative observation PB(· | f0i ) can be encoded by a BN B′ which
has an identical structure to B, except that Fi is omitted.

Regarding the first property:

Generally in BNs, an observation of a child makes the parents dependent (v-structure), like in the explaining
away example. In general CPD tables, parents become dependent on either positive or negative child
observation.

The noisy-or CPD causes context-specific independence. Intuitively, if someone doesn’t have a fever, the fact
that he has a flu does not change the probability that he has strep.

Proof: The parents in a noisy-or BN are independent given a negative child observation.
Notation: D – the set of k parents, F – the child.

P (D | f0) =
P (D, f0)

P (f0)
=

[∏k
i=1 P (Di)

]
(1− λ0)

∏k
i=1(1− λi)Di

P (f0)

=
(1− λ0)

∏k
i=1

[
P (Di)(1− λi)Di

]∑
D P (D, f0)

∝
k∏

i=1

[
P (Di)(1− λi)Di

]
=

k∏
i=1

ψ(Di)

If a joint distribution can be written as a product of functions of single variables, then the variables are
independent.

� We can also prove explicitly that P (D | f0) =
∏

i(Di | f0) ... a few more lines.

The second property is useful, since most symptoms are typically negative.

Proof:

P (D,F − Fi | f0i ) =
P (D,F − Fi, f

0
i )

P (f0i )

=

[∏n
j=1 P (Dj)

][∏
k 6=i P (Fk | PaFk

)
]
P (f0i | PaFi

)

P (f0i )

=
[ n∏
j=1

P (Dj)
][∏

k 6=i

P (Fk | PaFk
)
]P (PaFi

| f0i )�
��P (f0i )

P (PaFi
)�

��P (f0i )
(Bayes rule)

=
[ ∏
j 6∈PaFi

P (Dj)
][∏

k 6=i

P (Fk | PaFk
)
][
�

���
���∏

j∈PaFi

P (Dj)
]P (PaFi | f0i )

����P (PaFi
)

=
[ ∏
j 6∈PaFi

P (Dj)
][∏

k 6=i

P (Fk | PaFk
)
][ ∏

j∈PaFi

P (Dj | f0i )
]

The parameters P (Dj) for the parents of Fi are changed to the posterior parameters P (Dj | f0i ). Other
parameters are unchanged.
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