67800: Probabilistic Methods in Al Spring 2017/18

Recitation 3: More on Bayesian and Markov Networks

Teaching Assistant: FEitan Richardson

Recommended reading:

e PGM Book, Chapters 4, (5) [1]

3.1 Reminder — independencies and I-maps

Definition 3.1 I-map (a general definition)
A graph K associated with a set of independencies Z(K) is an I-map for a set of independencies T if Z(KK) C T.

Definition 3.2 Z(P)
We define Z(P) to be the set of all independencies of the form (X L Y| Z) that hold in P.

3.1.1 In directed models — BNs

We defined the local Markov independencies:
Zrm(G) =Vi: (X; L NonDescendantsy;, | Pag(i))
And the global independencies:

Z(G) = {(X LY [Z) : d-sepg(X; Y | Z)}

We proved the following theorems:
1. Zrm(G) CZ(G) — every conditional independence in Zy,5/(G) appears in Z(G)
2. PETIm(G) < P EZ(G) — they are equivalent (imply each other)

3. G is an I-map for P <= P factorizes according to G
BE" Claim 3 is true with respect to both Ty (G) and Z(G), because of claim 2.

& Property 1 is less important since the two sets are equivalent.

3.1.2 In undirected models — MNs

We defined three sets of independencies associated with the MN graph:

I(H) ={(X LY|Z) : Sepy(X;Y|Z)}

1 Original LaTeX template courtesy of UC Berkeley.
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Tp(H) = {(X LY [ X~ {X.Y}) : X~V ¢H))
Tuae(H) = {(X L X — {X} - MBx(X) | MBx(X)) : X € X)}

We proved (partially) the following theorems:

2. P factorizes according to H = H is an I-map for P

IZ” We proved claim 2 w.r.t. the global independence Z(#) and therefor it implies the other independencies.

For positive distributions, the following is true as well:

1. P):I('H) = P):ILM(’H) = P):IP(H)

2. H is an I-Map for P = P factorizes according to H

3.2 I-maps

A is a graph (MN or BN) with an associated set of independencies Z(A), B is a graph or a distribution with
an associated set of independencies Z(B):

Definition \ Meaning | Always exists
A is an I-map for B Z(A) CZI(B) v
A is a minimal I-map for B I(A) CI(B),VE:I(A\E) L I(B) v
A is a P-map (perfect map) for B IZ(A) =ZI(B) No

We discussed an algorithm for constructing a directed (BN) minimal I-map given the set of independencies
Z(B) and a predefined topological order — when adding X;, pick the minimal required subset of nodes
as parents s.t. X; is independent of already-added nodes given the set of parents (see Algorithm 3.2 in the
book).

We saw in class a method for constructing an undirected minimal I-map — add an edge between every pair of
variables that are not independent in P given all other variables. We saw that the resulting minimal I-map
is unique.

BZ" We didn't learn how to construct a perfect map. See book section 3.4.3

3.3 From Markov to Bayesian Networks

Reminder: Last time we saw how to construct a MN that will be a minimal I-map for a given BN — the
Moral Graph (undirected skeleton of the BN plus edges between co-parents).

Converting a MN to a BN is more challenging — we will see that converting an undirected MN # to a directed
BN G might add many edges and dependencies.
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3.3.1 Constructing a minimal I-map

Definition 3.3 Chordal Graph
In a chordal (or triangulated) graph, there are no minimal loops (i.e. undirected cyclic trails without short-
cuts) longer than three edges.

Theorem 3.4 G is a minimal I-map for H = G has no immoralities.
This is true for every topological order.

Proof: Lets assume, by contradiction, that the following immorality exists in G:
Xi; = X; < X}, with no edge between X; and X}, and assuming i < k < j.

The minimal I-map construction chooses as Pax; the minimal set s.t. X; 1 X | Pax,,
therefore (X; L X;| Pax, — X;) € I(H),
and therefore a path X ... X; exists in H, which is not cut by other parents of X;.

Similarly, a path X ... X}, exists in H, which is not cut by other parents of Xj,
and so, a path X;... X;... X}, exists in H.

Lets consider X}’s parents Pay, . Because of the assumed immorality, X; ¢ Pax, , therefore:
Pax, cuts the path X;...X;... X}.

Lets assume WLOG that Pax, separates (in H) X; from X;. This would cause (some variable in) Pax, to
replace X}, as a parent of X; — a contradiction.

IZ" We use the regular minimal I-map construction algorithm given some topological order. The result will
always be a chordal BN.

Claim 3.5 G is a minimal I-map for H —> G is chordal.

Proof: Any minimal loop larger than three edges will cause an immorality. ]

3.3.2 Constructing a P-map*

Theorem 3.6 For H to have a directed P-map G, H must be chordal.

Proof: Any minimal I-map for H must be chordal. If H is not chordal, the skeleton of any I-map G will
contain edges that are not in H, thus eliminating (pairwise) independencies that H encodes. |

IE™ * The proof for the opposite direction requires the definition of a Clique Tree — optional material.

Definition 3.7 Clique Tree
A tree T is a clique tree for a MN H if:

e Fach node in T corresponds to a clique in H (and each mazimal clique has a node)

e For each sepset, we have: Sepy (Wei iy Weiy | Sij)
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Where the sepset is defined as S;j = C; N Cj, C; and C; are connected by an edge i — j in T.
W (i,5) is the set of all variables to the C; side of the edge i —j in T.
X = Weiig) = Sij) U Weiiy — Sig) U Si;

Theorem 3.8 H is chordal = H has a clique tree.
Proof: By induction... ]
Theorem 3.9 If H is chordal, a BN which is a P-map for H exists.

Proof: (Proof sketch)

We first induce a topological order based on the clique tree:

We select some clique C in the clique tree T to be the root and then define an order for the other cliques
so that ¢ < j = C; is closer to the root than Cj.

We then define a topological order for the variables X' that is consistent with the cliques order and construct
the BN G using the minimal I-map algorithm.

Next, we show that G is a P-map for H (see proof for theorem 4.13 in the book).

3.4 The BN20 model

A BN20 network is a two-layer BN, where the top layer corresponds to causes (e.g. diseases) and the bottom
layer to symptoms (e.g. medical findings):

We assume all variables are binary and each bottom-layer CPD is defined by a noisy-or model:

P(f) | Pap) = (1=Xio) [ (1—xij)%

Dj EPaFi
where J; ; is the noise parameter associated with parent D; of variable F;.
The model is simple and intuitive:

e An edge indicate that a disease D; can cause a symptom Fj;

e The parameter \; ; defined the probability that d; =1 causes f; = 1 (in isolation)

We will prove two more very useful properties of BN20:
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1. The parents of a symptom Fj are independent given f°.

2. The posterior distribution with a negative observation Pg(- | f{) can be encoded by a BN B’ which
has an identical structure to B, except that F; is omitted.

Regarding the first property:

Generally in BNs, an observation of a child makes the parents dependent (v-structure), like in the ezplaining
away example. In general CPD tables, parents become dependent on either positive or negative child
observation.

The noisy-or CPD causes contezt-specific independence. Intuitively, if someone doesn’t have a fever, the fact
that he has a flu does not change the probability that he has strep.

Proof: The parents in a noisy-or BN are independent given a negative child observation.
Notation: D — the set of k parents, F' — the child.

P(D, f° L P(D)](1 = Xo) TTE, (1 — M)

P(D|f°) = <(fg)> T, P ( P(f(?;r[ (1= )
- _a _)\O)Hz L [PD) (1 = A)P]

S5 P(D, f0)

k k

x [[ [PD:) 1 = X)P] =] v(Ds)

i=1 i=1

If a joint distribution can be written as a product of functions of single variables, then the variables are
independent. [ |

BZ" We can also prove explicitly that P(D | f°) = [L(Di| f°) ... a few more lines.
The second property is useful, since most symptoms are typically negative.

Proof:
P(DaFszasz)
P(f7)
_ [H] 1 P(D )][Hk;ﬁz (Fk|PaFk)]P(fi0|PaFi)

P(f7)
[H P(D;)] [H P(Fy | Pap,)] P(Par, )M (Bayes rule)

j=1 k#i P(Pag, )M
[ T P@)I] PF: | Par)]] H p j:;a,/f

P(D,F — Fi| f?) =

)

J¢Par, k#i
[ TI P@)I]T P | Par,)] ] H P(D; | )]
Jj€Par, k#i jEPar,;

The parameters P(D;) for the parents of F; are changed to the posterior parameters P(D; | f?). Other
parameters are unchanged. [ |
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