
67800: Probabilistic Methods in AI Spring 2017/18

Recitation 5: Sampling-based Inference
Teaching Assistant: Eitan Richardson

Recommended reading:

• PGM Book, Chapters 12 [1]

5.1 Background

5.1.1 Sampling from a BN

Sampling from a BN is easy – forward sampling (aka ancestral sampling): Sample each RV from its CPD in
topological order.

� The conditional probability (defined by the CPD table) of a discrete RV with k possible values, given its
observed parents, is a multinomial distribution with k − 1 free parameters p1 . . . pk. There is a ”trick”
for sampling from such a distribution in O(log k) – divide the unit interval to sections of length p1 . . . pk,
uniformly sample a value between 0 and 1 and check which section it fell into.

5.1.2 Sampling-based inference

We saw in previous class that inference (probability query) is a hard problem. In some cases, approximate
inference (e.g. Loopy Belief Propagation) is a possible solution (although there are no convergence or error
bound guarantees). Sampling (or particle) based approximate inference is another possible solution.

� We generate samples and them use them to answer probability queries (inference). This is different from
estimating model parameters from real samples (learning).

Some (confusing) notations:

• f(X ) – a general function f : X 7→ R (defines a new RV)

• ξ〈Y〉 – the assignment in ξ to variables in Y

• 1{ξ〈Y〉 = y} – an indicator RV – equals 1 if the assignment in ξ to Y is y

• D = {ξ[1], . . . , ξ[M ]} – A set of M samples

• y[m] – short for ξ[m]〈Y〉 (the assignment in sample ξ[m] to the subset of variables Y)

1Original LaTeX template courtesy of UC Berkeley.
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Approximating the expectation of f(X ) by sampling:

EP f(X ) ≈ ÊDf(X ) =
1

M

M∑
m=1

f(ξ[m])

Specifically, if we choose f(X ) = 1{y[m] = y}, we get:

EP [1{y[m] = y}] = P (Y = y) ≈ P̂D(y) =
1

M

M∑
m=1

1{y[m] = y}

� This is an approximate estimation of the unconditional marginal probability.

5.2 Approximation error bounds

How accurate is the sampling-based approximation? How many samples do we need?

1{Y = y} is a Bernoulli RV with p = P (y), so our sample D defines M independent Bernoulli trials.

Theorem 5.1 Hoeffding bound
Let {x[1], . . . x[M ]} be M independent Bernoulli trials with success probability p and let q̂ = 1

M

∑M
m=1 x[m],

then:
P (q̂ > p+ ε) ≤ e−2Mε2 , P (q̂ < p− ε) ≤ e−2Mε2

P (|p− q̂| > ε) ≤ 2e−2Mε2

So if we want an estimate with an approximation error not larger than ε with probability of at least 1− δ,
we need:

M ≥ ln(2/δ)

2ε2

How many samples do we need if we want to bound the error relative to the event probability (e.g. not more
than 1% of the real event probability)?

Applying Chernhoff bound, we get:

P (q̂ > p(1 + ε)) ≤ e−2Mpε2/3 , P (q̂ < p(1− ε)) ≤ e−2Mpε2/3

P (q̂ 6∈ p(1± ε)) ≤ 2e−2Mpε2/3

So:

M ≥ 3 ln(2/δ)

pε2

� To estimate the probability of a rare event, we’ll need much more data!

5.3 Conditional Probability Queries

How do we estimate P (Y = y |E = e)?

Maybe we can do forward sampling except that we force all variables in E to e?
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Example 5.2 (bad solution) Forward sampling and forcing observed variables:
Sample A from its prior P (A), set B = b, sample C from P (C|B = b) and sample D from P (D|A = a).

� The process above will not generate samples from P (A,C,D |B = b). The reason is that we’re not taking
into account that P (A | E = e) 6= P (A). This affects both samples of A and of D.

Possible solution: Rejection Sampling – sample all variables, reject all samples in which E 6= e, calculate
as before using remaining samples:

P (Y = y |E = e) ≈
∑M
m=1 1{y[m] = y, e[m] = e}∑M

m=1 1{e[m] = e}

� Rejection sampling will provide an accurate estimate (with enough samples), but if P (E = e) is small, we’ll
throw away almost all our samples...

A better solution is presented below – Likelihood Weighting.

5.3.1 Likelihood Weighting

The idea is to perform forward sampling, force observed variables to their evidence value but re-weight the
samples according to the likelihood:

P (y | e) ≈ P̂D(y | e) =

∑M
m=1 w[m]1{y[m] = y}∑M

m=1 w[m]
, w[m] =

∏
E∈E

P (e | PaE [m])

w[m] is the likelihood of the observed parameters given their parents. Since these are independent events,
we take the product of the CPD entries.

Algorithm 1 Likelihood-weighted Sampling (single sample)

1: procedure LW-Sample(B,E = e)
2: w = 1
3: for i = 1 . . . n do . topological order
4: if Xi ∈ E then
5: xi = e〈Xi〉 . Assignment to Xi in the evidence
6: w = w · P (xi | PaXi) . Likelihood of evidence given already sampled parents
7: else
8: Sample xi from P (Xi | PaXi

)

9: return (x1, . . . , xn), w
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� We didn’t prove this (intuitive) method is correct – we’ll do it using the more general method of Importance
Sampling.

Example 5.3 The Stopped Car – Likelihood Weighting
Estimate P (M = 1 | L = 1, N = 0)
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Figure 5.1: Bayesian Network example – The Stopped Car

We sample m from P (M), f from P (F ), set n to 0, sample s from P (S |m, f) and set l to 1. The weight of
the sample is P (N = 0 |m) · P (L = 1 | s).

iteration m f s P (N = 0 |m) P (L = 1 | s) w P̂D(M = 1 | L = 1, N = 0)
0 0 1 1 1.0 0.7 0.7 0.0
1 0 0 0 1.0 0.1 0.1 0.0
2 0 0 0 1.0 0.1 0.1 0.0
3 1 0 1 0.6 0.7 0.42 0.31818181818181823
4 0 1 0 1.0 0.1 0.1 0.29577464788732394
5 0 0 0 1.0 0.1 0.1 0.2763157894736842
6 0 0 0 1.0 0.1 0.1 0.25925925925925924
7 0 0 0 1.0 0.1 0.1 0.24418604651162787
8 0 1 0 1.0 0.1 0.1 0.23076923076923073
9 0 1 0 1.0 0.1 0.1 0.21874999999999994
10 0 0 0 1.0 0.1 0.1 0.20792079207920786
. . .
995 0 1 0 1.0 0.1 0.1 0.15340604326837382
996 0 1 1 1.0 0.7 0.7 0.15292754656447996
997 0 0 0 1.0 0.1 0.1 0.15285943345804645
998 0 1 0 1.0 0.1 0.1 0.1527913809990232
999 0 0 0 1.0 0.1 0.1 0.1527233891064462
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5.4 Importance Sampling

Normalized and un-normalized distributions: P (X) = 1
Z P̃ (X)

(relevant for MNs and for BNs with evidence (Z = P (e)))

Calculating an expectation over distribution P using a second distribution Q:

EP [f(x)] =

∫
P (x)f(x)dx =

∫
Q(x)f(x)

P (x)

Q(x)
dx =

1

Z

∫
Q(x)f(x)

P̃ (x)

Q(x)
dx

=
1

Z
EQ[f(x)

P̃ (x)

Q(x)
] =

1

Z
EQ[f(x)w(x)]

The Un-normalized Importance Sampling estimator (for Z = 1):

ÊUISD [f(x)] =
1

M

M∑
m=1

f(x[m])
P (x[m])

Q(x[m])

The Normalized Importance Sampling estimator (for the general case):

EQ[w(x)] = EQ[
P̃ (x)

Q(x)
] =

∫
P̃ (x)dx = Z

EP [f(x)] =
1

Z
EQ[f(x)w(x)] =

EQ[f(x)w(x)]

EQ[w(x)]

So the normalized estimator is:

ÊNISD [f(x)] =

∑M
m=1 f(x[m])w(x[m])∑M

m=1 w(x[m])

5.4.1 Likelihood Weighting as Importance Sampling

� The Likelihood Weighting method has a similar form to NIS... What Q did we use?

Definition 5.4 The Mutilated BN
Let B be a BN with evidence E = e. We define the Mutilated BN BE=e as follows:

• Incoming edges to each node Xi ∈ E are removed (i.e. no parents) and its CPD is set to
P (Xi = e〈Xi〉) = 1

• All other edges and CPDs are unchanged



5-6 Recitation 5: Sampling-based Inference

M F

S

L

Forgot to Fill
the Tank

Mechanical
Problem

Car Stopped

Late for Class

N

Need New Car

F=0 F=1

0.6 0.4

M=0 M=1

0.9 0.1

S|M,F S=0 S=1

M=0, F=0 1 0

M=0, F=1 0.5 0.5

M=1, F=0 0.2 0.8

M=1, F=1 0.1 0.9

N=0 N=1

1 0

L=0 L=1

0 1

Figure 5.2: Mutilated Bayesian Network example for E = {N = 0, L = 1}

Proposition 5.5 LW is equivalent to NIS with Q(X) = PBE=e
(X)

Proof: Proof sketch
We need to show that:

1. x[m] ∼ PBE=e
(X) – The LW samples are drawn from the mutilated BN distribution

2. w[m] = PB(x[m])
PBE=e

(x[m])

Proof for 1:
For Xi 6∈ E ∪DescE, we sample from PB, which is identical to BE=e above the first evidence.
For Xi ∈ E, we force the evidence, which is consistent with the deterministic CPDs.
For the remaining Xi ∈ DescE we can show (by induction, from E ∈ E downwards) that PBE=e

(Xi |ParXi
) =

PB(Xi | ParXi
,E = e)

Proof for 2:
Let’s start with our example: (the [m] index was removed to keep the expression short)

PB(x)

PBE=e
(x)

=
PB(m)PB(f)PB(N = 0 |m)PB(s |m, f)PB(L = 1 | s)

PBE=e
(m)PBE=e

(f)PBE=e
(N = 0)PBE=e

(s |m, f)PBE=e
(L = 1)

=
PB(m)PB(f)PB(N = 0 |m)PB(s |m, f)PB(L = 1 | s)

PB(m)PB(f) · 1 · PB(s |m, f) · 1
= PB(N = 0 |m) · PB(L = 1 | s) = w

It is easy to show that this is true in the general case.
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