67800: Probabilistic Methods in Al Spring 2017/18

Recitation 5: Sampling-based Inference

Teaching Assistant: FEitan Richardson

Recommended reading:

e PGM Book, Chapters 12 [I]

5.1 Background

5.1.1 Sampling from a BN

Sampling from a BN is easy — forward sampling (aka ancestral sampling): Sample each RV from its CPD in
topological order.

IS The conditional probability (defined by the CPD table) of a discrete RV with k possible values, given its
observed parents, is a multinomial distribution with k — 1 free parameters py ...pg. There is a "trick”
for sampling from such a distribution in O(log k) — divide the unit interval to sections of length p; ...pg,
uniformly sample a value between 0 and 1 and check which section it fell into.

5.1.2 Sampling-based inference

We saw in previous class that inference (probability query) is a hard problem. In some cases, approximate
inference (e.g. Loopy Belief Propagation) is a possible solution (although there are no convergence or error
bound guarantees). Sampling (or particle) based approximate inference is another possible solution.

IZ” We generate samples and them use them to answer probability queries (inference). This is different from
estimating model parameters from real samples (learning).

Some (confusing) notations:

e f(X) — a general function f : X — R (defines a new RV)

&(Y) — the assignment in £ to variables in Y

1{¢(Y) = y} — an indicator RV — equals 1 if the assignment in £ to Y is y
e D={¢[1],...,£[M]} — A set of M samples

e y[m] — short for {[m]{Y) (the assignment in sample {[m] to the subset of variables Y)

1 Original LaTeX template courtesy of UC Berkeley.
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Approximating the expectation of f(X’) by sampling:

) | M
Epf(X) = Epf(X) = 17 > f(E[m])
Specifically, if we choose f(X) = 1{y[m| = y}, we get:
M
Ep[1{y[m] = y}] = P(Y =y) ~ Pp(y) = % > 1{ylm] =y}

m=1

I This is an approximate estimation of the unconditional marginal probability.

5.2 Approximation error bounds

How accurate is the sampling-based approximation? How many samples do we need?

1{Y = y} is a Bernoulli RV with p = P(y), so our sample D defines M independent Bernoulli trials.

Theorem 5.1 Hoeffding bound
Let {z[1],...z[M]} be M independent Bernoulli trials with success probability p and let ¢ = 37 Zf\f:l x[m],
then:

2

P(@@>p+e) <e ™M PG<p—e) <e2Me
P(lp—q| > ) < 2e72M<

So if we want an estimate with an approximation error not larger than € with probability of at least 1 — §,
we need:
In(2/0)

M >
- 2€?

How many samples do we need if we want to bound the error relative to the event probability (e.g. not more
than 1% of the real event probability)?

Applying Chernhoff bound, we get:
P((j > p(l + 6)) < 672Mp62/37 P((j < p(l _ 6)) < 6*2Mp62/3

PG &p(lEe)) < 2e2Mpe/3

So:
M 31n(2/6)
=2

B To estimate the probability of a rare event, we'll need much more data!

5.3 Conditional Probability Queries

How do we estimate P(Y =y |E =¢)?

Maybe we can do forward sampling except that we force all variables in E to e?
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Example 5.2 (bad solution) Forward sampling and forcing observed variables:
Sample A from its prior P(A), set B =1b, sample C from P(C|B =1b) and sample D from P(D|A = a).

&—@—0©
®)

I&” The process above will not generate samples from P(A,C,D| B =1b). The reason is that we're not taking
into account that P(A | E = e) # P(A). This affects both samples of A and of D.

Possible solution: Rejection Sampling — sample all variables, reject all samples in which E # e, calculate
as before using remaining samples:

>y Hylm] = y, efm] = ¢}

P(Y = E=¢)~
W=vlE=a S 1elm] = e}

IE” Rejection sampling will provide an accurate estimate (with enough samples), but if P(E = e) is small, we’ll
throw away almost all our samples...

A better solution is presented below — Likelihood Weighting.

5.3.1 Likelihood Weighting

The idea is to perform forward sampling, force observed variables to their evidence value but re-weight the
samples according to the likelihood:

P(y|e)~Pp(yle) =

Yoy wm]1{y[m] =y}
, wlm] = || P(e| Pag[m])
Z%:l w[m] El;[E :

w[m] is the likelihood of the observed parameters given their parents. Since these are independent events,
we take the product of the CPD entries.

Algorithm 1 Likelihood-weighted Sampling (single sample)
1: procedure LW-SAMPLE(B,E = ¢)
2 w=1
3 fori=1...ndo > topological order
4 if X; € E then
5: x; = e(X;) > Assignment to X; in the evidence
6
7
8
9

w=w- P(x; | Pax,) > Likelihood of evidence given already sampled parents
else
Sample z; from P(X; | Pax;,)

return (x1,...,2,), w
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¥ We didn't prove this (intuitive) method is correct — we'll do it using the more general method of Importance

Sampling.

Example 5.3 The Stopped Car — Likelihood Weighting
Estimate P(M =1|L=1,N =0)

mm Mechanical

0.1

0.9

Problem m

| s=1 ERIY

Figure 5.1: Bayesian Network example — The Stopped Car

Forgot to Fill mm

o the Tank 0.6 04

We sample m from P(M), f from P(F), set n to 0, sample s from P(S | m, f) and set | to 1. The weight of
the sample is P(N =0|m) - P(L=1]s).

iteration | m | f | s | P(N=0|m) | P(L=1|s)| w |Pp(M=1|L=1,N=0)
0 011 1.0 0.7 0.7 0.0
1 0]0]0 1.0 0.1 0.1 0.0
2 0]0]0 1.0 0.1 0.1 0.0
3 101 0.6 0.7 0.42 | 0.31818181818181823
4 010 1.0 0.1 0.1 0.29577464788732394
5 0]0]0 1.0 0.1 0.1 0.2763157894736842
6 000 1.0 0.1 0.1 0.25925925925925924
7 0]0]0 1.0 0.1 0.1 0.24418604651162787
8 010 1.0 0.1 0.1 0.23076923076923073
9 010 1.0 0.1 0.1 0.21874999999999994
10 0]0]0 1.0 0.1 0.1 0.20792079207920786
995 |0 |1]0 1.0 0.1 0.1 0.15340604326837382
996 | 0|11 1.0 0.7 0.7 | 0.15292754656447996
997 | 0|00 1.0 0.1 0.1 0.15285943345804645
998 |0 |1]0 1.0 0.1 0.1 0.1527913809990232
999 | 0|00 1.0 0.1 0.1 0.1527233891064462
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5.4 Importance Sampling

Normalized and un-normalized distributions: P(X) = %p(X )
(relevant for MNs and for BNs with evidence (Z = P(e)))

Calculating an expectation over distribution P using a second distribution Q:

Brlf(o) = [ Pl)f@)ds = [ Qs gt = 7 [ QEir@g
= ~Bolf( >g§jj)1 Eq[f(@)u(2)

M
BYS11@)] = 7 S Jalml)

The Normalized Importance Sampling estimator (for the general case):

P(x)

Bolu(a)) = Balg ) = [ Pla)ds = 2

5.4.1 Likelihood Weighting as Importance Sampling

I&” The Likelihood Weighting method has a similar form to NIS... What Q did we use?

Definition 5.4 The Mutilated BN
Let B be a BN with evidence E = e. We define the Mutilated BN Bg_. as follows:

e Incoming edges to each node X; € E are removed (i.e. no parents) and its CPD 1is set to

e All other edges and CPDs are unchanged
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Figure 5.2: Mutilated Bayesian Network example for E = {N =0,L = 1}

Proposition 5.5 LW is equivalent to NIS with Q(X) = Pg,_,(X)

Proof: Proof sketch
We need to show that:

1. x[m] ~ Pg,_.(X) — The LW samples are drawn from the mutilated BN distribution

2. wlm] = 7y

Proof for 1:

For X; € EU Descg, we sample from Pg, which is identical to Bg—. above the first evidence.

For X; € E, we force the evidence, which is consistent with the deterministic CPDs.

For the remaining X; € Descg we can show (by induction, from E € E downwards) that Pg,__(X;|Parx,) =
Pp(X; | Parx,,E=¢)

Proof for 2:
Let’s start with our example: (the [m] index was removed to keep the expression short)
Pg(z) Pg(m)Pg(f)Ps(N =0|m)Ps(s|m, f)Ps(L=1]s)
Ppy_. (.T) PBE e<m>PBE e( )PBE e(N = O)PBE:e (S ‘ m, f)PBE:e (L = 1)
_ P(m)Ps(f)Ps(N = 0|m)Ps(s|m, f)Ps(L =1]s)
Pg(m)Ps(f)-1-Pg(s|m, f) 1

=Pg(N=0|m)-Pg(L=1]s) =
It is easy to show that this is true in the general case. |
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