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Data structures so far
● Lists [3, 16, 8, 0]

[he, gave, her, a, book]

● Tables [the: 462, fish: 31, see: 9]



Reminder: phrase structure
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Trees
At most one incoming edge per node
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Phrase structure trees
Syntactic theory 
based on phrases.

Nodes have labels.

Tokens are leaves.



Dependency parsing
http://nlp.stanford.edu/software/dependencies_manual.pdf

Also syntax, but based 
on dependencies, not 
phrases.

http://nlp.stanford.edu/software/dependencies_manual.pdf


Dependency parsing
Also a tree, but edges are labeled

Tokens are all the nodes (not just leaves)



Syntactic ambiguity



Universal dependencies
universaldependencies.org

http://universaldependencies.org/u/dep/index.html

http://universaldependencies.org/
http://universaldependencies.org/u/dep/index.html


universaldependencies.org

Many 
languages 
parsed 
manually.

http://universaldependencies.org/


Resources: Treebanks
● Many text corpora parsed by humans

● Used for training automatic parsers



Treebank conversion
Trees can be 
automatically 
converted to save 
manual work



Dependency Parsing algorithm
Input: sentence (list of tokens)

Output: dependency tree

or simply, for each word, what is its head
and arc label



Dependency Parsing algorithm

[alice, saw, bob] →

[(2, nsubj), (0, root), (2, dobj)]

Use the index for each token.

The root node is denoted by 0.

alice saw bob



Evaluation
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We have a corpus to train the algorithm,

And another labeled corpus to test it.

What if it returned an 
incorrect tree?



Evaluation
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Labeled Attachment Score (LAS):
% of words with correct head and label

Unlabeled Attachment Score (UAS):
% of words with correct head

Always 0 ≤ LAS ≤ UAS ≤ 100%



Evaluation example
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Correct tree:

Evaluated tree:

LAS = 5/7 ≅ 71%

UAS = 6/7 ≅ 86%

“hat” has an incorrect head
“man” has a correct head but incorrect label



Parser scores (English)
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Parser UAS (%) LAS (%)
MaltParser 90.93 88.95

MSTParser 92.17 89.86

ZPar 92.93 91.28

TurboParser 93.80 92.00

Parsey McParseface 94.41 92.55

googleresearch.blogspot.co.il/2016/05/announcing-syntaxnet-worlds-most.html

http://googleresearch.blogspot.co.il/2016/05/announcing-syntaxnet-worlds-most.html


Transition-based parsing
Incremental parsing algorithms:

Build the tree one arc at a time.

Apply transitions until the full tree is built.



Transition-based parsing
Using two lists: stack and buffer.

The stack keeps nodes being processed.

The input tokens are taken from the buffer.

Stack Buffer Stack StackBuffer Buffer

... ...



Transition-based parsing
Possible transitions at each time step:

shift                     left-arc                    right-arc
Need to say the label to create (e.g. dobj)

(Move node from buffer to stack) (Create left/right arc between two rightmost stack nodes, and delete child)



Transition-based parsing



Transition-based parsing



Transition-based parsing
Where is the learning in the algorithm?

When we have a labeled tree, we know which 

transitions we need to get to it.

The parser learns how to make these decisions 

so it can parse new sentences correctly.



Transition-based parsing
If we see the state on the left here, we 

need to know to apply right-arcdobj



Machine learning
Learning: getting better in a task based 

on experience.

Examples we have seen in this course:

Language modeling,

Part-of-speech tagging

wish I could 20

wish I had 10
I wish I _ sleep well

nn        rb
the dt 1527

well rb 37

nn nn 312

nn in 690



Machine learning
Count-based learning would not work 

well for transition-based parsing



Machine learning
Learning algorithms used for parsing:

● Perceptron

● Neural networks

● ...


