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In many cases we have a graphical model which describes our data well but in which exact inference is
intractable (e.g., NP hard). Luckily there are approximation methods that work rather well in many practical
applications. Here we discuss some of those.

1 Mean Field Methods
For simplicity we consider a pairwise undirected model:

p(x) =
1
Z

∏
ij∈E

φij(xi, xj)
∏
i

φi(xi) (1)

It will be easier for us to introduce θij(xi, xj) = log φij(xi, xj) and θi(xi) = log φi(xi) and write:

p(x) =
1
Z
e

P
ij θij(xi,xj)+

P
i θi(xi) (2)

Say we want to calculate the marginals p(xi), but for this graph structure it is hard to do. Here’s an
idea for approximation: we will approximate p(x) with a distribution q(x) for which we can calculate the
marginals. The simplest example of such q(x) is the fully factored (independent) distribution:

q(x) =
∏
i

qi(xi) (3)

defined by the singleton distributions qi(xi). Clearly qi(xi) are the singleton marginals of q(x) (i.e.,
q(xi) = qi(xi)). Now there are two key questions:

1. How can we find the distribution q(x) that best approximates p(x)?

2. Why should we expect this to be a good approximation?

3. Can the result be used to approximate the partition function?

Regarding the second question, clearly there are cases for which it will be a bad approximation. But, one
case in which this would be a good approximation is when p(x) is sharply peaked around one assignment
x∗. For example, in the extreme case where p(x∗) = 1 then clearly it is of the same form of q(x). This
sharp peak often happens when p(x) is obtained after conditioning on evidence that makes one particular
assignment very likely. There are other cases where it can be shown that this approximation is exact (e.g.,
some instances of Gaussian models)

Regarding the first question, it seems somewhat unintuitive that we could approximate a distribution
which we can’t evaluate. In fact, we will see that in some sense we can’t find the best approximation, but
we will be able to progressively improve it.

Lets see how the approximation is done. A natural measure of similarity between distributions is the
KL divergence:

DKL[p|q] =
∑
x

p(x) log
p(x)
q(x)

(4)
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It has several useful properties: it is non-negative and equal to zero iff p(x) = q(x) for all x (assuming a
finite set of x). Also, it is non-symmetric (DKL[p|q] 6= DKL[q|p]).

We want to find a factorized q (see Eq. 3) that is as close as possible to p. So it makes sense to look for q
that is closest to p in KL. Because of asymmetry of KL there are two ways of doing that: namely minimizing
DKL[q|p] w.r.t. q or minimizing DKL[p|q] w.r.t q. Turns out the first is easier to handle (Exercise: What is
the problem with minimizing DKL[p|q] w.r.t. q?).

DKL[q|p] =
∑
x

q(x) log
q(x)
p(x)

=
∑
x

q(x) log q(x)−
∑
x

q(x) log p(x)

Because of the structure of q we can considerably simplify the above.∑
x

q(x) log q(x) =
∑
x

q(x)
∑
i

log qi(xi) =
∑
i

∑
x

q(x) log qi(xi) =
∑
i

∑
xi

q(xi) log qi(xi) (5)

(note that the LHS is minus the entropy of q and the RHS is minus the sum of entropies of q(xi)). Also, we
have (by definition of p(x) that:

∑
x

q(x) log p(x) =
∑
x

q(x)

∑
ij

θij(xi, xj) +
∑
i

θi(xi)− logZ


=

∑
ij

∑
xi,xj

q(xi, xj)θij(xi, xj) +
∑
i

∑
xi

q(xi)θi(xi)− logZ

=
∑
ij

∑
xi,xj

qi(xi)qj(xj)θij(xi, xj) +
∑
i

∑
xi

q(xi)θi(xi)− logZ

where the last equality follows from the structure of q(x). Putting it together we have:

DKL[q|p] = −
∑
ij

∑
xi,xj

qi(xi)qj(xj)θij(xi, xj)−
∑
i

∑
xi

q(xi)θi(xi) +
∑
i

∑
xi

q(xi) log qi(xi) + logZ

Our goal is to find the q that minimize it, namely qMF = arg minDKL[q|p]. The key thing to note is that
we can easily evaluate the above function except for the constant logZ. So we define a new function:

F (q, θ) = −
∑
ij

∑
xi,xj

qi(xi)qj(xj)θij(xi, xj)−
∑
i

∑
xi

q(xi)θi(xi) +
∑
i

∑
xi

q(xi) log qi(xi) (6)

This function is sometimes called the free energy because of its relation to statistical mechanics. Clearly:

min
q
F (q, θ) = min

q
DKL[q|p] (7)

Since they differ only by a constant. So we can define:

qMF = arg min
qi(xi) ≥ 0∑
xi
qi(xi) = 1

F (q, θ) (8)

The key thing to observe again is that we now have a constrained minimization problem over a function
that is easy to evaluate. There is one caveat though: the function F (q, θ) is not convex in its variables, and
generally we can only find its local optima (in fact you can convince yourself, as an exercise, that if you
could solve this problem, you would have been able to calculate MAP efficiently, which we know cannot
be done).

What can be done is to find local optima of F (q, θ)? One simple approach is to change only a subset
of the q variables at each iteration while keeping the others fixed. Here’s one way of doing this. At each
iteration:

2



• Pick some k.

• Fix all values in q except qk(xk) (for all xk). Now seek the values of qk(xk) that minimize F (q, θ).

This scheme is known as block coordinate descent or block coordinate minimization. What is particularly
nice is that the above optimal value of qk(xk) can be found in closed form. We are now viewing F as a
function only of qk (with the other being fixed). So we can write:

F (qk) = −
∑

j∈N(k)

∑
xj ,xk

qj(xj)qk(xk)θkj(xk, xj)−
∑
xk

qk(xk)θk(xk) +
∑
xk

qk(xk) log qk(xk) (9)

We would like to minimize this subject to non-negativity and normalization of qk. Lets forget about non-
negativity for now. So the Lagrangian is:

L(qk, λ) = F (qk) + λ

(∑
xk

qk(xk)− 1

)
(10)

Deriving wrt qk(xk) (i.e., for a particular value of xk. e..g, xk = 1) we have:

∂L(qk, λ)
∂qk(xk)

= −
∑

j∈N(k)

∑
xj

qj(xk)θkj(xk, xj)− θk(xk) + 1 + log qk(xk) + λ (11)

Yielding:
qk(xk) = e

θk(xk)+
P

j∈N(k)
P

xj
qj(xk)θkj(xk,xj)−λ−1 (12)

To solve for λ we need to write substitute the above into the normalization constraint:

1 =
∑
xk

qk(xk) =
∑
xk

e
θk(xk)+

P
j∈N(k)

P
xj
qj(xk)θkj(xk,xj)−λ−1 (13)

Yielding:
e1+λ =

∑
xk

e
θk(xk)+

P
j∈N(k)

P
xj
qj(xk)θkj(xk,xj) (14)

So:

qk(xk) =
e
θk(xk)+

P
j∈N(k)

P
xj
qj(xk)θkj(xk,xj)∑

x′k
e
θk(x′k)+

P
j∈N(k)

P
xj
qj(x′k)θkj(x′k,xj)

(15)

Or simply:
qk(xk) ∝ e

θk(xk)+
P

j∈N(k)
P

xj
qj(xk)θkj(xk,xj) (16)

This is the mean field update, and should be performed for all k. The order in which you select k should be
chosen. A natural choice is just k = 1, . . . , n but others are possible.

The updates decrease the function F (q, θ) at every iteration. They will not necessarily reach its global
minimum because the function F is not convex.

1.1 Mean-field as a lower bound on the partition function
We now show that mean-field can be used to find lower bounds on the partition function. To see this we
note that:

F (q, θ) = DKL[q|p]− logZ (17)

So that F (q, θ) ≥ − logZ or logZ ≥ −F (q, θ). So, for every value of q we get a lower bound on logZ.
Every iteration decreases F and thus increases the lower bound (makes it tighter). Exercise: when is the
bound tight?
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