
Sentiment Analysis
Human Language from a Computational Perspective
June 27, 2018



Outline
● Text classification

● Machine learning algorithms



Text classification
Many problems involve classification:

● Topic [news,  sports,  ...]

● Author/gender [male,  female]

● Spam filtering [spam,  not-spam]



Sentiment classification
Given an input sentence, return its 

sentiment label:

+1 (positive) 0 (neutral) -1 (negative)

(or a number on a finer scale, e.g. 1-5)



News and stocks

sentdex.com

http://www.sentdex.com


Twitter

sentiment140.com

V_FSD: RT @FreeMemesKids: Love my new fidget spinner https://t.co/IcA6Ui6fsV 

MeqzEdits: @23Duckk Oh no the fidget spinner? 

fffaraa: @ibrahimyussop Omg.. not the fidget spinner 

boybrunch: RT @a1andar: The Born This Way album cover except Gaga is a fidget spinner 

eve_bertie: I bought a fidget spinner and I think it's the best thing I've ever done 

Hamza0207: I broke this little girls fidget spinner and I legit feel so bad ?? 

http://www.sentiment140.com
http://www.twitter.com/V_FSD
https://t.co/IcA6Ui6fsV
http://www.twitter.com/MeqzEdits
http://www.twitter.com/fffaraa
http://www.twitter.com/boybrunch
http://www.twitter.com/eve_bertie
http://www.twitter.com/Hamza0207


Algorithm requirements
Input: sequence of tokens

[oh, no, the, fidget, spinner, ?]

Output: label (number)

-1



Bag of words
Simple approach: ignore the order, and 

just look for indicative tokens:

not    great    damn    love    hate    ...

Assign a weight to each token:
0         +1          -1          +2         -2     ...



Bag of words: classification
Calculate score for sentence:
the only reason i love mondays ... zumba !!!!
   0  +   0    +     0    +    0 + (+2) +      (-1)   +    0  +  (+1) +  (+1)

  = +3

Since 3 > 0, predict:
+1 (positive)



Bag of words algorithm
classify(L, W): ▷ L: input sentence,
s ← 0    W: table of weights for words
i ← 1
while i ≤ len(L):

s ← s + W[L[i]]
i ← i + 1

return sign(s)

+1 if s > 0
 0 if s = 0
-1 if s < 0



Learning a model
How to determine the word weights?

In language models and POS tagging, 

we learned the statistics as Counts.

Here we can learn Weights.



Perceptron
The perceptron is a learning algorithm.

Input: list of samples (sentence + label)

Labels given as numbers:   +1     0     -1

Output: table of weights for each word
(which can then be used to classify new sentences.)



Perceptron
The algorithm goes over all samples 
repeatedly, until there are no errors.
Whenever there is an error, it updates 
the weights of all tokens in the sample.



Perceptron algorithm
train(X, Y): ▷ X: list of input sentence (samples)
W ← [0 for all words]     Y: list of labels (one per sample)
while W is changing: ▷ training iterations

i ← 1
while i ≤ len(X): ▷ go through all samples

if classify(X[i], W) ≠ Y[i]: ▷ if the model is wrong,
update(X[i], Y[i], W)     update its weights

i ← i + 1
return W ▷ return final learned weights



Perceptron algorithm
update(L, y, W): ▷ L: input sentence, y: label,

i ← 1    W: table of weights for words

while i ≤ len(L): ▷ go through sentence tokens

W[L[i]] ← W[L[i]] + y ▷ update weight by

i ← i + 1 adding y to it



Example

X = [this is great,
  this is awful]

Y = [1,
  -1]



Example

this is great
  0  + 0 + 0 = 0

Result: 0 (neutral)

First iteration, first sample

W = 

this 0

is 0

great 0

awful 0

X[1] =

Y[1] = 1     ≠ 0



Example

this is great
  0  + 0 + 0 = 0

Result: 0 (neutral)

First iteration, first sample

W = 

this 1

is 1

great 1

awful 0

X[1] =

Y[1] = 1     ≠ 0 Updating weights



Example

this is awful
  1  + 1 + 0 = 0

Result: 1 (positive)

First iteration, second sample

W = 

this 1

is 1

great 1

awful 0

X[2] =

Y[2] = -1     ≠ 1



Example

this is awful
  1  + 1 + 0 = 0

Result: 1 (positive)

First iteration, second sample

W = 

this 0

is 0

great 1

awful -1

X[2] =

Y[2] = -1     ≠ 1 Updating weights



Example
Second iteration, first sample

W = 

this 0

is 0

great 1

awful -1

X[1] =

Y[1] = 1

this is great
  0  + 0 + 1 = 1

Result: 1 (positive)



Example
Second iteration, second sample

W = 

this 0

is 0

great 1

awful -1

X[2] =

Y[2] = -1

this is awful
  0  + 0 + -1 = -1

Result: -1 (negative)



Example
Finished iteration without 
updating weights, so return W.

W can now be used to classify 
new sentences.

W = 

this 0

is 0

great 1

awful -1



Problem: order matters
that is not true , it is great

has the same tokens as

that is true , it is not great

Will be classified the same



Generalizing
Instead of single words, use features.

Examples for features:

● first token is great?
● contains not followed by bad?
● contains taste with part of speech nn?



Generalizing
In Bag of Words, all features are:

● contains <w>?

where <w> is some word.

This is also called unigram features.



Generalizing
We can also use bigram features:

● contains <w1> followed by <w2>?

where <w1> and <w2> are words. Or:

● contains <w> with part-of-speech <p>?

etc.



Linear classifier
classify(L, F, W): ▷ L: input sentence, F: features to check,
s ← 0    W: table of weights for features
i ← 1
while i ≤ len(F): ▷ go through possible features

f ← F[i]
if f(L): ▷ the feature f is true for L

s ← s + W[f] ▷ add the feature’s weight to the score
i ← i + 1

return sign(s) ▷ 1 if s > 0,    0 if s = 0,    1 if s > 0



Linear classifier
The same as the Bag of Words 

classifier, but using general features 

and not just words.

Might be even millions of features!



Example

sentiment140.com

MeqzEdits: @23Duckk Oh no the fidget spinner? 

The unigram features Oh and no may not 

be clearly negative (weights will stay ~0),

but the bigram feature Oh no is negative.

http://www.sentiment140.com
http://www.twitter.com/MeqzEdits


Multi-class classifier
So far we discussed binary classifiers, 

but there can be more than two labels.

Example:
2 (very positive), 1 (positive), 0, -1 (negative), -2 (very negative)



Multi-class classifier
Instead of a single score, the classifier will 

have a score for each possible label, and 

then choose the label with the top score.

Learning: different weights for each label.



Linear multi-class classifier
classify(L, F, W): ▷ L: input sentence, F: features to check
S ← [0 for all labels]   W: table of weights for features for each
i ← 1     label
while i ≤ len(F): ▷ go through possible features

f ← F[i]
if f(L): ▷ the feature f is true for L

S ← S + W[f] ▷ add the feature’s weight to the score
i ← i + 1      for each label

return argmax(S)



Back to parsing



Perceptron for parsing
If we see the state on the left here, we 

need to know to apply right-arcdobj



Features for parsing
● rightmost token on the stack is <w>?
● buffer leftmost part-of-speech is <p>?
● second stack token is a parent?
● etc.



Perceptron for parsing
Perceptron + word/part-of-speech

unigram, bigram features: pretty good parser.

Parser UAS (%) LAS (%)
MaltParser 90.93 88.95

Parsey McParseface 94.41 92.55



Twitter sentiment analysis
Training any model requires labeled data: 

learning from examples.



Problem: labeling

Manually annotating tweets 

takes time and money.



Avoiding manual work
Automatically building a training set 
using the emoticons in the tweets:

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification using distant supervision. 
Technical report, Stanford.

positive negative
:) :D : ) :( =( : (

:-) =) ;) :-( :/ =/

http://cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf


Problem: sarcasm

People sometimes say the 

opposite of what they mean.



Sarcasm recognition
Sarcasm: “saying the opposite of what you mean in a way intended to make 

someone else feel stupid or show you are angry”.

1. Oren Tsur, Dmitry Davidov, Ari Rappoport. ICWSM - A Great Catchy Name: Semi-Supervised Recognition of Sarcastic Sentences in Product Reviews. 

Fourth International AAAI Conference on Weblogs and Social Media (ICWSM) 2010.

2. Oren Tsur, Dmitry Davidov, Ari Rappoport. Semi-Supervised Recognition of Sarcastic Sentences in Twitter and Amazon. Computational Natural 

Language Learning (CoNLL) 2010.

listening to Andrew Ridgley by Black Box Recorder on 
@Grooveshark: http://tinysong.com/cO6i #goodmusic

I guess you should expect a WONDERFUL video 
tomorrow. #sarcasm

Accuracy: 94.7%

http://www.cs.huji.ac.il/~arir/10-sarcasmAmazonICWSM10.pdf
http://www.icwsm.org/2010/index.shtml
http://www.cs.huji.ac.il/~arir/10-sarcastic-twitter-conll-2010.pdf
http://www.cnts.ua.ac.be/conll/
http://www.cnts.ua.ac.be/conll/


Multi-class labels

Dmitry Davidov, Oren Tsur, Ari Rappoport. Enhanced Sentiment Learning Using Twitter Hashtags and Smileys. 
COLING 2010.

Hashtags Smileys

#sad ;)

#crazy :(

#bored X(

#fun :S

Hashtag- and 
smiley-based labels: 
51 or 16 labels 
instead of just two 
(positive/negative)

http://www.cs.huji.ac.il/~arir/10-hashtags-twitter-coling-2010.pdf
http://www.coling-2010.org/


Artificial neural networks
Instead of using the score 

for classification, give it to 

another linear classifier 

(“multi-layer perceptron”)



Artificial neural networks
Only the output of the last 

layer is actually used for 

classification.



Deep neural networks
Many layers 

sometimes work 

better.

(“deep learning”)



Training neural networks
Perceptron only works for one layer.

Instead, use gradient descent algorithms.



Sentiment treebank

nlp.stanford.edu/sentiment/treebank.html

https://nlp.stanford.edu/sentiment/treebank.html


Word embedding
Use vectors to represent words.



NNs for parsing
NN + word embedding features: 

best parsers today.

Parser UAS (%) LAS (%)
MaltParser 90.93 88.95

Parsey McParseface 94.41 92.55



Links
● http://www.sciencefriction.net/blog/2010/12/06/1120/

● https://www.aclweb.org/anthology/E/E17/E17-2017.pdf

● https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

● http://www.cs.huji.ac.il/~danielh/P17-1104.pdf

● https://github.com/ayushoriginal/Sentiment-Analysis-Twitter

http://www.sciencefriction.net/blog/2010/12/06/1120/
https://www.aclweb.org/anthology/E/E17/E17-2017.pdf
https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
http://www.cs.huji.ac.il/~danielh/P17-1104.pdf
https://github.com/ayushoriginal/Sentiment-Analysis-Twitter

