CS 67800, Spring 2017/18 Problem Set 2: Markov Networks Submission Date : Thursday 17/5/18, 23:59

1. Prove that for a Bayesian Network $\mathcal{G}: \mathcal{I}(\mathcal{M}[\mathcal{G}]) \subseteq \mathcal{I}(\mathcal{G})$, where $\mathcal{M}[\mathcal{G}]$ is the moral graph of \mathcal{G} . In other words: $\mathcal{M}[\mathcal{G}]$ is an I-map for \mathcal{G} .

Bonus: Prove that $\mathcal{M}[\mathcal{G}]$ is a minimal I-map.

Answer:

Assume by contradiction that there exists $\operatorname{Sep}_{\mathcal{M}[\mathcal{G}]}(X;Y|\mathbf{Z})$ but $(X \perp Y | \mathbf{Z}) \notin \mathcal{I}_{d-sep}(\mathcal{G})$. So there exists an active trail from X to Y given \mathbf{Z} in \mathcal{G} . This trail also exists in $\mathcal{M}[\mathcal{G}]$ (by construction).

If there are no v-structures along this trail, then none of its nodes are in \mathbf{Z} (otherwise the trail would not be active in \mathcal{G}). So this trail is also active in $\mathcal{M}[\mathcal{G}]$, in contradiction.

On the other hand, for any v-structure on that trail in \mathcal{G} , say $X_{i-1} - X_i - X_{i+1}$, with X_i or one of its descendants in \mathbb{Z} (since the path is active in \mathcal{G}). Therefore, $\mathcal{M}[\mathcal{G}]$ has an edge $X_{i-1} - X_{i+1}$ (by construction), and the path is active in $\mathcal{M}[\mathcal{G}]$, in contradiction.

- 2. (a) Show an example for a distribution P (not necessarily positive) and a Markov Network \mathcal{H} , such that P satisfies $\mathcal{I}_{LM}(\mathcal{H})$, but not $\mathcal{I}(\mathcal{H})$ (i.e. not $\mathcal{I}_{sep}(\mathcal{H})$.
 - (b) Show an example for a distribution P (not necessarily positive) for which the intersection property:

 $(X \perp Y \mid Z, W) \land (X \perp W \mid Z, Y) \Longrightarrow (X \perp Y, W \mid Z)$

does $\underline{\text{not}}$ hold.

- 3. We say that a node X in \mathcal{H} is *eliminable* if all its neighbors are connected (i.e. the node and its neighbors form a clique).
 - (a) Show that a chordal graph has an eliminable node.
 - (b) Show that if you eliminate that node (and the edges connected to it), the remaining graph is still chordal, and still has an eliminable node.
- 4. (*I-Maps and P-Maps*) Consider a probability distribution *P* over the variables A, B, C and D that satisfies only the following independencies:
 - 1. $A \perp C | B$.
 - 2. $A \perp C | B, D$.
 - 3. $A \perp D|B$.
 - 4. $A \perp D|B, C$.
 - 5. $B \perp D$.
 - 6. $B \perp D | A$.
 - 7. $A \perp D$.
 - (a) Draw a Bayesian network that is a perfect map for P.

Answers: The 2 graphs below are both perfect maps for P. Either of them is valid, and the other is the I-equivalent graph for part (b).

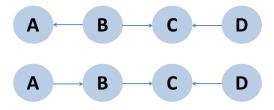


Figure 1: BN graphs for (a)

(b) Does this perfect map have any I-equivalent graphs? If so, draw them. If not, explain why not.

Answers: Yes. See the solution to part (a) for the graph.

(c) Draw a Markov network that is a minimal I-map for P and explain why the Markov network is or is not also a perfect map.

Answers: A Markov net with these undirected edges and additional B - D edge

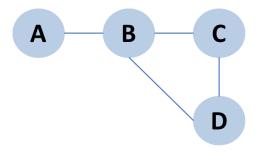


Figure 2: MN for (c)

is a valid I-map. This Markov net is not a perfect map because B and D are not independent in this network, while they are independent in the original probability distribution.