CS67800 Hidden Markov Models

1 Introduction

Assume you are given the following problem. A real-world process produces a
sequence of observable symbols, Our job is to guess the state of the process from
the observation sequence. For example, assume you are given a set of sensor
readings from a robot while it moves around in a room. Here, we might like to
cuess the robot’s real position from the sensor readings, In general, the states
and observations might be continuous. We will discuss only the case when both
are discrete and Hnite. In the robot example we may choose to assume that it
moves on a 100x100 grid and that the sensor readings can take on a finite set
of values.

We assume that the relation between state and observation is probabilistie. Lets
assume that there are N possible states, M possible sensor values and T time
steps. In order to deseribe the probabilities of the model one needs to specify
the joint probability of every possible pair of state sequence and observation
sequence. This would require specifying N7 x M7 valnes which is simply not
possible for any reasonable problem size. For example, in the robot problem,
with a 10 x 10 position grid, 100 sensor values and 10 time steps we get 1029
values. Obviously we need a simplified model.

The simplifying assumptions that are made in HMM are that the state sequence
is Markov, i.e. that the future of the process is independent of its past given its
current state. Also we assume that the observation at time t is independent of
anything else given the current process state. An additional assumption that is
usually made is that the process is stationary, i.e. that the probabilities are not
dependent of the specific time. These assumptions are approximately correct in
many real-world situations.

2 The Model

e A random variable is denoted by a capital letter (e.g. X) and a specific
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value (instance) by the corresponding small case (e.g. @).

o A random time series (a.k.a. process)is also denoted by the corresponding
bold-face letter (e.g. X is the same as {J\';}L} )

o Similarly, an instantiation of a random time series is also denoted by the

: - 1 3
corresponding small-case bold-face letter (e.g. x is the same as {1 | |

Definition 1 (Markov Process) A process X is a Markov Process if p(Xo| X 4) =
p(Nig X))o In words, The future is independent of the past given the present.

Definition 2 (Hidden Markov Model) A pair of processes {X, Y} is con-
stitutes a Hidden Markov Model (HMM) if:

o X is a Markov Process.

o p(YiY1,.... Y7, X) =p(Yi| X))
We will usually assume that X is hidden and Y is observed. From the definition
we can see that the process is defined by p(XX, | X, 1), p(Y;]X,) and p(X;). We
also assume that the process is stationary, that is, the probabilities are not time

dependent:
p(Xe =JlXi 1 =4) = A(ij)
p(Ye=jlXe=14) = B(.j)
pX1=1) = @

This means that we can represent the process by the set of parameters A =
{4, B.gq} where A and B are matrices and ¢ is a vector.

There are many independences which are not explicitly given by the model
definition but can be derived by standard probability axioms. For example

Statement 1 For an HMM p (X, Y) = p (X)) [, p(Ni|Xom1) p (Y| XY)

Proof:
p(X.Y) = p(X)p(Y[|X)
= pX)pWM[X)p(¥2[X)...p(Yr|X)
= pX) [[p(vilx)
!
= 1’-’(.&\.1)!)(1\.1x\.l)[)(x\.sx\.jx\.l)IJ(A\.IA\.]I_[)HJJ()J‘\.I)
!
= P(J\-JHP(:\': Xe) p (] XY)
!
O

Another example is:
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Example 1 p( X Xs, X7) = p(Xg Xs)
Proof:
p(XaolXg, X7) = D p(Xi0, Xo| Xs, Xr)
Xo
= Z P(Xo| Xs, X7)p(Xig/ X, X7, Xo)
Xo

Z P(Xo| X )p( X Xy, Xy)

Xo

- Zf’(l‘ll]-foJ \s)
Xo

= p(Nio|Xs)

Markovity

O
1t is also true that p(Yio|Xg. X7) = p(Yi0|Xs)

Deriving independence relations by such algebraie manipulations is rather tire-
some. To ease these derivations, one can (with some additional proofs) use
graphical representations.

Definition 3 (The graph that corresponds to aun HMM) The undirected
graph that corresponds to an HMM is a graph with 21" vertexes, one for each

Xy and for each Y, with an edge between any to consecutive X, and X,y and
between Xy and Yy, See fig. | for an illustration.

LI

Figure 1: The Graph that corresponds to a Hidden Markov Process

Statement 2 let A, B, C'C XY (i.e. eachis aset of vertexes) then p(A|B,C') =
plAB) iff B separates A from Cin the graph (i.e. any path from A to C pusses
through B).

Proof: Specific case of the Hammersley Cliford theorem (which will be proved
later on in the course).

O



CS67800 Hidden Markov Models

3 The Three Problems of HMM

There are three key problems of interest that must be solved for HMMs to be
useful. These are:

Likelihood: Given a series of observations y and a model A, compute the

likelihood p(y|A).

Inference: Given a series of observations y and a model A, compute the most
likely series of hidden states x.

Learning: Given a series of observations, learn best model A.

3.1 Likelihood

Given a model X = {4, B¢}, we can, in theory, compute the likelihood by

'F T
p(y) =py[N) =D p()p(y1x) = Y @ [[ Alwilwrsr) ] Blailye)

X X t=1 t=1

However, this computation is impossible in practice since its time complexity is
OR21 — 1)NT where N is the number of possible values for @, This problem
can be overcome by a dynamic programming solution, Consider the forward
variable evi (i) = plyr .4 @ = i|A), Le. the probability of the partial observation
sequence (until time ) and the state @ at time ¢ given the model A, One can see

that
ply) =Y ar(i)

The a;s can be found efficiently by the recursive procedure given in algorithm

1

Algorithm 1 The Trellis (lattice) algorithm
L () = ¢iBG,y1), 1<ji<N

2. fort=12,....T—1 1<i<N

N
1 (8) = B, yr41) Z Al e (d)

i—1

The proof of the algorithm is as follows
Proof:of algorithi 1]

by definition of a,(¢) we sce that oy (i) = (i) B(i, y1).
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induction step:

arp 41 (%) = Py1,. b1, g1 = 0)
= ZP(I: =J. T4 = LY, 1)
J

Markovity

Markovity

J

= Y By AG, D)
J

= B(,yn) Y AG D)o(d)
J

a

Another equivalent way of computing the likelihood is by a backward proce-
dure. Counsider the backward variable 5,()) = plyip1rlay = i, A). Le. the
probability of the partial observation sequence from ¢+ 1 to the end, given state
i at time ¢ and the model A. Then

p(y) = Y plu..ale = ipla =)
= ) plye. rlw =i y)plyla = i)pley = i)

= Y plys. . rley = D)plysley = i)play = i)

D BBy )ali)
The 3,(i) satisfies the following recursion:
1. Br(j) =1, 1<j<N

2. fort=7-1,T-2,...,1, 1<j<N

N
Bi() = A(. i) B(i, yrs1)Brra (8)

i=1
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The proof of this recursion is similar to the one for the as and is left as an

OXOTCISe.

A third way of computing the likelihood is by combination of o, (i) and 3;(i)
for any time ¢:

ply) = Y ply,a =)

= > ol
= Y a()Bi)

i

This is sometimes known as the forward-backward method.

3.2 Inference

Given a series of observations we wish to learn best model X There are several
plausible optimality criteria for the hest state sequence’. One is to choose the
states which are individually most likely. This maximizes the expected number
of correct individual states. Le. max )", p(a,|y). This is sometimes referved to
as the Bit error rate. Note that this maximization can be done by maximizing
for each element separately. Another optimality eriterion is to maximize the
probability of the whole series. Le. maxp(x|y). This is sometimes referred to
as the Word error rate. 'The difference between these criteria can be large if the
first. method results in a transition @, — x4 with low probability.

3.2.1 DMaximizing the bit error rate

The maximization is done by calculating p(w, = ily) for cach t and i and
choosing the i with the highest probability for each . This computation can be
done efficiently using a and 7 defined in section 3.1 as follows:

; _ 1: i)
play =ily) ,u(y)i ( . ¥)

(= i,y a0 = i 31..0)
= P = Ly e )P e e = B U
py)

1 : : ; \
= pler = iyn.0)p(Ws.. e = i)
ply)

1
= m(l,(f}j;(ﬁ‘)
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3.2.2 Maximizing the word error rate

The solution to this problem is very similar to the solution for the bit error rate
but with a different recursion variable 6,(#) which is similar to o, (i)

d¢(i) = max pla, =4, y1. 1)
Elr—1

The following recursion holds:

de(i) = Irlrl(}‘:l play =i,y1.4)
= max p(r =i,y1.-1)pYe|or = i Y1)
= max plar =i, y1a—1)p(yea = 1)
= plyele = 1) Jll‘fli-}flij(i'r =t Y1..4-1)
= plye|m = 1) ‘rltﬂ‘}f_) m}lxy(x,,l =Jy.a-)plo = ile g = j)

= plye; = i) maxp(e, = ile,y = F) max ple,1 = F.01..0-1)
J T1..1-2

Li—1 — J)fix—l(J)

= plye; = i) maxpla;, =i
J

= B(i,y) mjlx A7, 4)6-1(9)

The initial condition is

b1 (1) = ¢iB(i, y1)
From §'s definition it is obvious that max;d, (i) is the joint probability of the
observation and the most likely state sequence, To find the most likely sequence
we define another parameter that remembers the choices in each max stage.

Y (i) = argmax &1 (J)A(j. 1)
i
The most likely sequence is
iy = argmaxdy(i)
?

iy = wpliy) t=7T-1,...,1
This algorithm is known as the Viterbi algorithm

3.3 Learning

The problem at hand is that of estimating the model’s parameters A = {4, B, ¢}
from given samples. We discuss two settings, the fully observed and the par-
tinlly observed. ln the fully observed setting, both the observations y and the
true corresponding state sequence x are known, while in the partially observed
setting, only the observations y are given. In both cases, we find the maximum-
likelihood estimator.
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3.3.1 Fully observed
We are interested in finding
A, B, = arg max p(x,y; A B,q)
A By

We do so by using a variation principle. We start by writing the log-likelihood
and a set of constraints

logp(x,y; A4, B, q) = logg(x)+ Z log Az, x) + Z log Bxy,y1)
[ [

= loggla) +Z:a(£.j}h)g;l(.‘__j) +Zm(r'_.j) log B(i,j)

ij i
where

n(i,j) = #lw=i,m=7)
m(i,j) = oy =im =J)

And the constraints are
ST AG) = 1 vi
k]
SN B(i,j) = 1 vi
i
Sa) =1

i

Applying the Lagrange Multipliers technique to solve for A

£ = const+ Zn(i:j)lug;l(i.j) + Z)\; Z;l(.‘f,»j) -1
i i

i

Deriving with respect to A(i, j) and equating with 0 yields

ac nli, j)
— = =2l -0
oAG) | AG)
= A, j) = —Xin(i,j)
normalization e o H(I‘J)
—= Al j) = =———
oy ndig)
similarly,
- g mii,j)
B(i,j) —_—
S mii)
ny ()

{I(J) - ZJ; ”-l(.'j,)
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Note that n(i,j) and m(i, j) are sufficient statistics for the model.

3.3.2 Partially observed

In the partially observed setting, the state sequences are unknown, Therefore we
can not count m(Z, j) and n(i, j). Instead, we treat them as random variables.
The relevant likelihood which we would like to maximize is

A B¢ = arg max ply: A B.g)
ABy
To fill in the missing (hidden) data, we use the EM (Expectation Maximization)
algorithm. The algorithm consists of iterations between two steps:
In the first step, termed the EXPECTATION (E) step, the expected x is found,
given the current model (found in the next step).

In the second MAXIMIZATION (M) step, the maximum-likelihood model is
re-estimated nsing the currently expected x (found in the previous step).

To find the expected x we define the following variables:
n@) = ply =iy A)
&(.7) = ploy =i +1=jly,A)

From the definition of a; (¢) and F,() given in sec. 3.1 it is clear that their values
are given by:

e oy (£) 5 (7)
ili) p(y[A)

The expectation is calculated by summing over ¢ of v and € and the maximiza-
tion step consists of assigning the expectancies to A, B and ¢:
a(@) = 7l

AGyj) = 2 bl
T (4)

The following theorem gives justification for the usage of EM:
Theorem 1
ply; AP, BO 4y >4 (y;;pi—l;_ﬁ:i—l): qw’—l;)

The proof will be given later in the course.



