
CS67800 Problem Set #3 1

CS 67800, Spring 2017/18
Problem Set 3: Exact and Approximate Inference
Submission Date : Sunday 10/6/18, 23:59

1. Elimination Ordering: In this problem we will consider the computational implications
of various variable elimination ordering strategies.

Definition: The Induced Graph
Let Φ be a set of factors over X = X1 . . . Xn and ≺ be an elimination ordering for some
subset X ∈ X . The induced graph IΦ,≺ is an undirected graph over X, where Xi and Xj

are connected by an edge if they both appear in some intermediate factor generated by the
VE algorithm using ≺ as an elimination ordering.

Note: The moralized graph is the first step of the induced graph since a child and its parents
will always be together in some term.

Figure 1: G and M [G]

(a) Consider the student BN G above (Similar to PGM book, Fig. 3.3) and its undirected
moralized graph M[G]. For the elimination ordering ≺ of G, D, I, L, and S, show
the resulting induced graph IG,≺.

Answers: Eliminating G adds edges D − L and I − L. Eliminating D then adds
no edges because I and L are already connected. Eliminating I adds an edge S − L
(NOT an edge S −D since D has already been eliminated). Then eliminating L and
S add no extra edges.

G

D

L

I

S

Figure 2: IG,≺

(b) Consider the following greedy algorithm for producing a good elimination ordering:

Greedy VE Ordering

• Initialize G′ = G, set all nodes in G′ as unmarked

• for k = 1 . . . n

CS67800 Problem Set #3 2

– Choose the unmarked node in G′ that minimizes some greedy function f

– Assign it to be Xk (number k in the elimination ordering) and mark it in G′

– Add edges in G′ between all neighbors of Xk in G that are unmarked in G′

• Output X1 . . . Xn (the chosen elimination order in G)

Consider three greedy functions f for the above algorithm:

• fA(Xi) = Number of unmarked neighbors of Xi in G′

• fB(Xi) = Number of added edges caused by marking Xi

• fC(Xi) = Size (number of entries in the table) of the intermediate factor produced
by eliminating Xi at this stage

Show that none of these functions dominate the others. That is, show that no function
results in an algorithm that, in all cases, produces an ordering that is better than all
other orderings with respect to the computational cost of full variable elimination
(e.g. to compute the normalization constant for a MN). For instance, you could show
an undirected graph G where an ordering produced by fC results in less computations
in variable elimination than an ordering produced by fB , another example where fC
performs better than fA, and another example where fB performs better than fC .

For each case, define the undirected graph, the factors over it, and the number of
values each variable can take. From your examples, argue that none of the above
heuristic functions is optimal.

Answers: I will show an example where fC is better than both fA and fB and an
example where fA is better than fC .

Y

Z W

X

Figure 3: fC better than fA and fB

Consider Figure (3). Suppose pairwise factors φ(X,Y), φ(Y,W), φ(X,Z), and φ(Z,W).
Suppose |V al(X)| = |V al(W)| = d, |V al(Y)| = |V al(Z)| = D, and D >> d.

fC could choose the ordering Y , Z, X, W (it’s ensured to pick one of Z or Y first to avoid
creating a large factor over both Z and Y). The cost of variable elimination under this
ordering is Dd2 multiplications and (D−1)d2 additions to eliminate Y , Dd2 multiplications
and (D−1)d2 additions to eliminate Z, d2 multiplications and (d−1)d additions to eliminate
X, and (d− 1) additions to eliminate W .

fA and fB could each choose the ordering X, Y , Z, W (any possible ordering is equally
attractive to these heuristics because they don’t consider information about domain sizes).
The cost of variable elimination under this ordering is D2d multiplications and D2(d− 1)
additions to eliminate X, D2d multiplications and (D−1)Dd additions to eliminate Y , Dd
multiplications and (D − 1)d additions to eliminate Z, and (d− 1) additions to eliminate
W .

CS67800 Problem Set #3 3

Since D � d the D2(d − 1) terms in the cost of variable elimination under an ordering
produced by fB or fA outweigh the cost of variable elimination under an ordering produced
by fC . So neither fA nor fB dominates. The intuition in this example is that fA and fB can
create unnecessarily large factors because they don’t consider the domain sizes of variables.

VX WZY

Figure 4: fA better than fC

Consider Figure (4). Suppose pairwise factors φ(X,Y), φ(Y, Z), φ(Z,W), and φ(W,V).
Suppose |V al(Y)| = |V al(Z)| = |V al(W)| = d, |V al(X)| = |V al(V)| = D, D = 13, and
d = 2.

fA could choose the ordering X, Y , Z, W , V (it’s ensured to only pick from the ends
of chain). The cost of variable elimination under this ordering is (D − 1)d additions to
eliminateX, d2 multiplications and (d−1)d additions to eliminate Y , d2 multiplications and
(d− 1)d additions to eliminate Z, Dd multiplications and (d− 1)D additions to eliminate
W , and (D − 1) additions to eliminate V . This is 34 multiplications and 53 additions.

fC could choose the ordering Z, X, Y , W , V (it’s ensured to pick Z first since the size of a
factor over X, Z, W is 8, which is less than that for eliminating X or V (26) and less than
that for eliminating Y or W (52)). The cost of variable elimination under this ordering is
d3 multiplications and (d−1)d2 additions to eliminate Z, Dd multiplications and (D−1)d
additions to eliminate X, d2 multiplications and (d − 1)d additions to eliminate Y , Dd
multiplications and (d− 1)D additions to eliminate W , and (D− 1) additions to eliminate
V . This is 64 multiplications and 55 additions.

So fC doesn’t dominate. The intuition in this example is that fC can avoid dealing with
large intermediate factors that it will eventually have to deal with anyways, and in the
meantime create a bigger mess for itself.

2. Sampling on a Tree: Suppose we have a distribution P (X,E) over two sets of variables
X and E. Our distribution is represented by a nasty BN with very dense connectivity,
and our sets of variables X and E are spread arbitrarily throughout the network. In
this problem our goal is to use the sampling methods we learned in class to estimate the
posterior probability P (X = x | E = e). More specifically, we will use a tree-structured
BN as the proposal distribution for use in the Importance Sampling algorithm.

(a) For a particular value of x and e: Can we compute P (x | e) exactly, in a tractable
way? Can we sample directly from the distribution P (X | e)? Can we compute
P̃ (x | e) = P (x, e) exactly, in a tractable way? For each question, provide a Yes/No
answer and a single sentence explanation or description.

Answers: No, No, Yes

(b) Now, suppose your friendly TAs have given you a tree network, where X1 is the
root and each Xi for i 6= 1 has exactly one parent XPA(i). They tell you that the
distribution Q(X,E) defined by this network is “close” to the distribution P (X,E).
You now want to use the posterior in Q as your proposal distribution for importance
sampling.

CS67800 Problem Set #3 4

i. Show how to sample from the posterior in Q. More specifically, provide an explicit
construction for a clique tree over this network, and show how to use it to compute
the posterior Q(X | E = e). Describe how to sample from this posterior, once it
has been computed.

ii. Now you must re-weight the samples according to the rules of importance sam-
pling. You want your weighted samples to accurately represent the actual poste-
rior in the original network P (X | E = e). Show precisely how you determine
the weights w[m] for the samples.

iii. Show the form of the final estimator P̂ (X = x | E = e) for P (X = x | E = e),
in terms of the samples from part i, and the weights from part ii.

Answer: Create a clique tree where each clique is a pair of variables (child and
parent). Multiply in the indicator functions for the evidence E = e. The distribution
across the tree now represents Q(X,E | E = e). Calibrate the tree. Now, the belief
at a clique over (X,PaX) is proportional to Q(X,PaX | E = e). From this belief,
we can easily compute Q(X | PaX ,E = e) (use Bayes’ Rule). Using these CPDs, we
can now forward sample directly from the posterior in Q (sample the first variable,
then instantiate it in neighboring cliques, repeating to forward sample).

To get weights:

w[m] =
P ′(x[m], e[m])

Q(x[m], e[m] | e)

The estimator:

P̂ (X = x | E = e) =

∑M
m=1 w[m]1{x[m] = x}∑M

m=1 w[m]

Additional Notes:

• Sampling directly from the BN tree results in sampling from the joint distribution.
We could try VE on the tree BN to calculate Q(E=e), but since the evidence is
spread all over, it is not trivial.

• The CT is a tool for us to factor-in the evidence. If we try to zero-out entries
directly in the BN, we will not have a valid representation.

• A CT can start with an unnormalized set of factors, for example a Gibbs dis-
tribution without 1/Z or the joint distribution in a BN with some evidence
P (X,E = e). VE can be performed on the unnormalized CT.

• Zeroing in all factors the entries that are not consistent with the evidence is a
way to factor-in the evidence in a clique tree.

3. Gibbs sampling: Consider a BN: X → Z ← Y , where the variables are all binary, X
and Y are both uniformly distributed, and Z is the deterministic exclusive or of X and Y .
In class we have seen that Gibbs sampling on this structure with the evidence Z = 1 will
estimate P (X = 1 | Z = 1) either as 1 or as 0.

(a) What happens if we make Z a slightly noisy exclusive or of its parents? (i.e., in the
CPD of P (Z|X,Y), 0 is replaced with some small probability q and 1 with 1 − q.)
Calculate the expected number of iterations until state transition as a function of q.
What can you conclude about problems that Gibbs sampling might encounter in its
attempt to do a random walk?

Answer: The probability to move from the current state is proportional to the
noise parameter q. Each Gibbs step can be seen as a Bernoulli trial, so the first

CS67800 Problem Set #3 5

success (transition) is distributed geometric with O(1
q) expected number of steps until

transition.

(b) Alternatively, we can think of a variant of Gibbs sampling where larger steps are
taken. Specifically, larger sets of variables are sampled simultaneously where the rest
are fixed. Show that sampling two variables given the third (rest) overcomes the
problem of Gibbs sampling in the XOR network (without noise).

(c) To use this last sampler we need to calculate P (Xi, Xj |X − {Xi, Xj}). Write down
the formula for this calculation in a general Markov Network.

Answer:

P (xi, xj |x−ij) =
P (xi, xj , x−ij)

P (x−ij)
=

P (xi, xj , x−ij)∑
x′
i,x

′
j
P (x′i, x

′
j , x−ij)

=
1
Z

∏
c ϕc((xi, xj , x−ij)c)∑

x′
i,x

′
j

1
Z

∏
c ϕc((x′i, x

′
j , x−ij)c)

=

∏
c:i∈c or j∈c ϕc((xi, xj , x−ij)c)

∏
c′:i/∈c′ and j /∈c′ ϕc′((x−ij)c′)∑

x′
i,x

′
j

∏
c:i∈c or j∈c ϕc((x′i, x

′
j , x−ij)c)

∏
c′:i/∈c′ and j /∈c′ ϕc′((x−ij)c′)

=

∏
c:i∈c or j∈c ϕc((xi, xj , x−ij)c)∑

x′
i,x

′
j

∏
c:i∈c or j∈c ϕc((x′i, x

′
j , x−ij)c)

So this is a local calculation involving only the factors that contain Xi or Xj .

