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1. Grid Policies
Consider the following grid environment. Starting from any unshaded square, you can
move up, down, left, or right. Actions are deterministic and always succeed (e.g. going left
from state 1 goes to state 0) unless they will cause the agent to run into a wall. The thicker
edges indicate walls, and attempting to move in the direction of a wall results in staying in
the same square. Taking any action from the green target square (no. 5) earns a reward of
+5 and ends the episode. Taking any action from the red square of death (no. 11) earns a
reward of -5 and ends the episode. Otherwise, each move is associated with some reward
r ∈ {−1, 0, 1} . Assume the discount factor is γ = 1, unless otherwise specified.

(a) Define the reward r for actions taken in each unshaded state (using the same reward
for all actions in each sate) that would cause the optimal policy to return the shortest
path to the green target square (no. 5). Try to use the simplest possible reward.

(b) Using r from part (a), find the optimal value function for each square.

(c) Does setting γ = 0.8 change the optimal policy? Why or why not?

(d) All transitions are even better now: each transition now has an extra reward of 1 in
addition to the reward you defined in (a). Assume γ = 0.8 as in part (c). How would
the value function change? How would the policy change? Explain why.

Answer:

(a) Let all rewards be −1.

(b) Optimal values:
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(c) No, changing γ changes the value function but not the relative order.

(d) The value function would change but the policy would not.

2. Bellman Equation for Optimal State-Value Function
In class we saw the recursive equation for the optimal action-value function Q∗. Similarly,
derive (step-by-step) the recursive equation for the optimal state-value function V ∗.

Answer:

V ∗(s) = max
a

Q∗(s, a)

= max
a

max
π

Eπ
[ T∑
t=0

γtRt | S0 = s,A0 = a
]

= max
a

max
π

[
r(s, a) +

∑
s′

p(s′ | s, a)Eπ
[ T∑
t=1

γtRt | S1 = s′, S0 = s,A0 = a
]]

= max
a

[
r(s, a) +

∑
s′

p(s′ | s, a) max
π

Eπ
[ T∑
t=1

γtRt | S1 = s′
]]

= max
a

[
r(s, a) + γ

∑
s′

p(s′ | s, a) max
π

Eπ
[ T∑
t=0

γtRt | S0 = s′
]]

= max
a

[
r(s, a) + γ

∑
s′

p(s′ | s, a) max
π

V π(s′)
]

= max
a

[
r(s, a) + γ

∑
s′

p(s′ | s, a)V ∗(s′)
]

Where Eπ stands for the expectation over environment behavior when we follow policy π.

3. Convergence of Value Iteration
In class we saw how an iterative approach for policy evaluation converges by showing that
the update operator is a contraction. Use the same technique to show that the value
iteration algorithm converges.


