lower and farther-to-the-back word means "other" or "far from the self." That is front vowels are found in the word that means "self" or "near the self," the as this and that, here and there, and me and you, the higher and farther-to-the-

true not only in English but in many families of languages.⁵³ with a constricted mouth cavity and the tongue close to the visible part of the mouth cavity and the tongue buried from view. That may call to mind the convocal tract, whereas low back and central vowels are pronounced with a large linguist Roger Wescott has pointed out that high front vowels are pronounced ceptual distinction between presentness and pastness. Pastness may remind people of a cavity or space, because a past event is separated by an interval of space. It may also remind people of remoteness or distance, because metaphorically speaking long ago equals far away. Perhaps as Indo-European time from the present moment, and metaphorically speaking time equals was developing, speakers vaguely felt that lower and farther back vowels fit that higher and farther front vowels fit better with an event in the here and better with the concept of an event separated in time from the present, and now.54 Of course, the Indo-Europeans had to pick some vowel contrast if they unrelated languages with similar roles, and was preserved and embellished in ily gone the other way. But the fact that the vowel contrast appears in many were to mark tense with a vowel, and for all we know they could just have eas-Perhaps this ubiquitous vowel contrast is a case of sound symbolism. The our own 5500-year game of Broken Telephone, hints that it might have some semantic resonance for human minds.

IN SINGLE COMBAT

of memorized words, each an arbitrary pairing between a sound and a meangenerated by rule, irregular forms are memorized by rote. ular and irregular forms exemplify the two ingredients: Regular forms are ing, and a set of productive rules that assemble words into combinations. Regways not so well. According to the theory, the ingredients of language are a list the words-and-rules theory hold up? In some ways quite well; in other ow that we know all about regular and irregular verbs, how well does

weet. The irregular verbs are shot through with patterns: expect. But the excavation in chapter 3 showed that the depository for irregrgular forms are elegant combinatorial systems, just as the theory had led us ular verbs is not disorganized and inert, which is what the theory had led us to The dissection of language in chapter 2 showed that the organs that secrete

wind-bound, find-found, grind-ground, wind-wound blow-blew, grow-grew, know-knew, throw-threw urink-drank, shrink-shrank, sink-sank, stink-stank ear-bore, swear-swore, tear-tore, wear-wore

dars were truly acquired one by one they could just as easily have been whereas if the exception, whereas if the not what we would expect if they were a laundry list of arbitrary items.

in the heads of speakers long ago, but history can explain only part of the part erated steadily since the rules became extinct, today's patterns should be viving verbs that fit the old patterns and a halo of distorted verbs that have tattered versions of the ancient Indo-European strong classes, with a core of sur terning. If the irregulars got all of their patterning from old rules and have described original ones. Ring-rang originally was weak (with a past tense like ringed and have jumped from class to class, and today's irregular families cross-classify the drifted off in various directions. But many verbs have joined the strong classic and was attracted to the ing-ang-ung class by analogy to verbs like sing. The sum duced into strong classes, such as fling-flung and sling-slung. Others swinded Some verbs that entered the language after the Old English period also were well happened to dig-dug, stick-stuck, wear-wore, show-shown, and many when drough). Still others found the weak irregular patterns appealing, such as how the and creep-crept. from one strong class to another, such as slay-slew and draw-drew to such as We have seen that many irregular patterns are fossils of extinct rules that had

conversions were a thing of the distant past. Perhaps the vowel-change rules did not die out completely with the Indo-European or Germanic urbes dur ing up the ghost. Unfortunately, some of the conversions are fairly recent Jane Austen used quitted. And as we saw, snuck came into English a cenum the nineteenth century; George Washington, for example, used carelled and Kneel-knelt, dive-dove, catch-caught, and quit-quit became popular only in lingered in weakened form in parts of England for a few centuries below me The words-and-rules theory would be off the hook if these attractions and

such as help-holp, climb-clim, and creep-crope, many, if not most, are home ries. While some rural irregulars are quaint holdovers of old standard lums ago and is only now becoming standard. grown products of the creativity of local speakers: bring-brune brune dive-div, chide-chode, snow-snew, climb-clomb, drag-drug, shiles and The funny irregulars in the nonstandard dialects of English add to the wor

fling-flang, and literally hundreds of others.2 knowledge no one has yet studied irregular verbs in rats, but the linguists looking the line of the li unless it can be demonstrated in the laboratory on rats or sophomores. Bybee and Carol Moder have studied them in sophomores and how shows that the state of the state asked the students in a university linguistics course (not only sophomore, that they are all too happy to generalize irregular patterns to novel vebs the course) to write down the past-tense forms of existing and made up to As an experimental psychologist I have been trained not to believe inclined

> English.3 completing sentences such as Sam likes to spling. Yesterday he the process that gave us forms like fling-flung and drag-drug in the history kid-skud, and clip-clap. Bybee and Moder may have duplicated in the laborawith creative forms such as dig-dag, sting-stang, slink-slank, streak-strack, words, some of the subjects were tempted by irregular patterns and came up 80 percent of the subjects offered splang or splung. Even when given real

with creative forms. We know that outside the lab, people ruminate over irt, and perhaps they saw the task as a challenge to their ingenuity in coming ular patterns and sometimes deduce ways in which they ought to be genersh immigrant learning English at night school: ed. Here is Leo Rosten and Leonard Ross's character Hyman Kaplan, a But maybe not. University students treat anything that looks like a test as a

tought de pest time 'bite' should be—'bote.""

Miss Mitnick gave a little gasp.

"Bote'?" Mr. Parkhill asked in amazement. "'Bote'?'

"Bote'!" said Mr. Kaplan.

Mr. Parkhill shook his head. "I don't see your point."

nt bite, bote, bitten?" Well," sighed Mr. Kaplan, with a modest shrug, "if is 'write, wrote, written' so

Psychic cymbals crashed in Mr. Parkhill's ears.

personal affront. Her voice was small, but desperate. There is not such a word 'bote," protested Miss Mitnick, who took this all as

be soch a void?"4 is not soch a void? Did I say is soch a void? All I'm eskink is, isn't logical \circ ot-soch-a-void!" Mr. Kaplan repeated ironically. "Mine dear Mitnick, don' I

would have used when speaking naturally. limit outcal should be soch a void?," and may have concocted forms they never In students in the spling experiment also may have thought to themselves,

uncovered in the previous chapter and can see in these old jokes: who people's dialects, and consciously use them in wit and wordplay, as we when worry is that people make note of irregular forms, especially in

someplace where I can get scrod?" He says, "Gee, that's the first time tin the pluperfect subjunctive." description of the second of t

A friend of mine came across some cut flowers that were so spectacularly red The florist shook his head. "No, no, not at all," he said. "Just put 'em in water she thought they must be fake. "These are amazing," she said. "Are they dyed?" and they'll be fine."5

asked the arresting officer, "Was she drugged?" The policeman replied, "Yes, sir, A man was on trial for pulling a woman down the street by her hair. The judge

a whole block."6

wiseguy finds a novel past-tense form logical or amusing, it does not mean that if the words were unexceptional, there would be no joke. So just because some Verbal humor depends on the audience's recognizing that an odd word is odd; the form is a natural product of the system he uses in everyday speech. Instead the form may be a product of one's intellectual faculties reflecting back onto

one's language, an ability called metalinguistic awareness. But one kind of generalization cannot be a product of conscious cogitation,

namely, the errors preschool children make in their spontaneous speech:

It was neat-you should have sawn it!

Doggie bat me [bit].

The cheerios got aten by the Marky.

I know how to do that. I truck myself [tricked]

He could have brang his socks and shoes down quick. And they swang into a roller coaster and we went with their cars

Elsa could have been shotten by the hunter, right? and they were sliding and they did a leap.

So I took his coat and I shuck it [shook].

This is the best place I ever sot [sat].

I bate Paul up [beat].

You mean just a little bitty bit is dranken?7

nine children in an electronic archive and pulled out all the past tense and participle forms, 20,000 in all.8 We found numerous irregular forms that are The psychologist Fei Xu and I combed through transcripts of the speech. not standard English:

bite-bet beat-bate bring-brid crush-crooshed fit-feet tight-fooed

> lift-left jump-janged fling-flang

swing-swang sleep-slep

> brella9 and I remember that when I was twelve I had a persistent urge to use raught as a past tense of reach, on the analogy of teach-taught. into the school-age years. I have a drawing from a seven-year-old girl with the of the opportunities-but eight of the nine children made at least one while caption Win I Wit to Git a crismis chre and it wus Sowing so i braing my umthe tape was running, and we know that children continue to make them well Children don't make these errors very often—only in two tenths of 1 percent

and rules, is not so clear anymore. Either the irregular patterns are generated errors like breaked, in neologisms like moshed, and in the wug-test. The disterns and extend them to new words, just as they do with the regular pattern in patterning left behind by long-defunct rules. Instead, people extract the patarbitrary words memorized by rote, just like duck and walk, with only a trace of sociate the patterns in known words with the patterns in new ones. by rules, just like the regular pattern, or linguistic productivity does not detinction between regular and irregular inflection, and therefore between words pend on rules in the first place but can arise from words via some ability to as The irregular patterns refuse to die. Irregular verbs are supposed to be a list of

wy are similar to old words. 11 Both theories invoke a single kind of mental the mental lexicon. According to the theory of parallel distributed processing squeezed out into rules, and only the compressed, desiccated residue is stored rule. 10 Every drop of patterning in past-tense forms, regular or irregular, is senerative phonology developed by Noam Chomsky and Morris Halle, rules versies in the modern study of the mind, echoing through psychology, linguiswinds of past-tense forms, and generalize the associations to new words if "o rules: People store associations between the sounds of stems and the onnectionism developed by David Rumelhart and James McClelland, there ues, philosophy, computer science, and neuroscience. According to the theory the English past-tense system. Their clash is one of the most vigorous contromemory all the way up. merative phonology it's rules all the way down, whereas for connectionputation to explain how people generate regular and irregular forms, but Both alternatives have been developed into famous, full-blown theories of

men wer two very different ways of understanding the mind: he past-tense debate is the latest battle in a centuries-old disagreeheated because so little is at stake. But in this case something is at whish over irregular verbs may call to mind the remark that academic de-

other; which, if it be done by words, is conceiving of the consequence of the tion of parcels, or conceive a remainder from subtraction of one sum from an-When a man reasons, he does nothing else but conceive a sum total from addinames of all the parts to the name of the whole, or from the names of the whole and one part to the name of the other part. . . . For REASON is nothing but

pose the definition of "man" is "rational animal." Then if we are told that somethe original sense of counting, calculating, or computing. For example, supthing is "rational" and an "animal" (names of parts) we can deduce it is a "man and that it is "rational" (name of one part) we can deduce that it is a rational (name of whole), and if we are told that something is a "man" (name of whole) instructions to recognize and copy words, a kind of symbol, and therefore "animal" (name of the other part). These steps could be laid out as mechanical cepts "rational" and "animal" even mean. If the symbols are patterns in the could be "reckoned" or computed by someone who has no idea what the conbrain rather than words on a page, and the patterns trigger other patterns because of the way the brain is wired, then we have a theory of thinking. In this passage from Leviathan, written in 1651, Hobbes uses reckoning in

chapter 1. Leibniz took Hobbes literally when he said that reason is nothing well by John Wilkins and other designers of artificial languages discussed in perfect the computations underlying thought, turning arguments into calculate but reckoning. He devoted much of his life to inventing a scheme that would tions and making fallacies as obvious as errors in arithmetic. "Once this has been done," he wrote, "if ever further controversies should arise, there should calculators. All that will be necessary is that, pen in hand, they sit down to be no more reason for disputes between two philosophers than between two gether at a table and say to each other . . . 'let us calculate.'"13 In one version of Leibniz's scheme, "man" is assigned the number 6, "animal" is assigned since $6 \div 3 = 2$, a man is not just any old rational being but specifically a rational but specifically a and "rational" is assigned 3. Since $2 \times 3 = 6$, a rational animal must be a man Among the people influenced by Hobbes was Leibniz, who was inspired as nal animal. If the number for "monkey" is 10, one may calculate that monkey are not men or vice versa, and that monkeys, while animals, are not rational is a major doctrine of the school of thought called rationalism, generally The idea that intelligence arises from the manipulation of symbols by me

> artificial intelligence systems that run on them, and many models of human inference, we have logic, which became the basis for digital computers, the of Cartesian linguistics, which later inspired Humboldt and then Chomsky, When the symbols stand for concepts and the rules string them into chains of

But symbol manipulation is not the only way the mind might work

endowed with similar sensible qualities, is produced, we expect similar powers number of uniform effects, resulting from certain objects. When a new object, semblance, contiguity in time or place, and cause or effect. Experience shows us a with bread we expect like nourishment and support. 16 and forces, and look for a like effect. From a body of like color and consistence There appear to be only three principles of connection among ideas, namely, re-

a separate principle) and generalizes to new objects according to their resemconnection between words and things as the quintessential example of how usay Concerning Human Understanding, John Locke pointed to the arbitrary grammar, the associationists were obsessed by memorized words. In his 1689 rienced together or that look alike (Hume later eliminated cause and effect as school of thought called empiricism. The mind connects things that are expe-David Hume summarizes the theory of associationism, a major tenet of the whe qualities" with "stimuli" and "responses," and you get the behaviorism of ws "dog" in the presence of a dog. Replace Locke and Hume's "ideas" or "senplance to known ones. Just as the rationalists were obsessed by combinatorial David Rumelhart and James McClelland. ons" and the associations with "connections," and you get the connectionism Nun Pavlov, John B. Watson, and B. F. Skinner. Replace the ideas with "neuthe mind forms associations by contiguity in time: We learn dog when Mother In this passage from his 1748 Enquiry Concerning Human Understanding,

the English past tense provide us with an unusual opportunity. Particular, whether intelligence arises from the manipulation of symbols But the issue that concerns us here is the nature of our mental machinfrom making deductions using theories or gathering data from observablank slate on which the environment writes, and whether knowledge unbraces such issues as whether the mind is packed with innate structure or who has taken a course in philosophy, psychology, or the history of ideas. It associations between sensory qualities. And the competing theories of The great debate between rationalism and empiricism is familiar to everyone

ciated with Leibniz and Descartes. When the symbols stand for words and

rules arrange them into phrases and sentences, we have grammar, the subject

of modern science, but these are pretty squishy criteria, and the debate rages on. ence, intuitive plausibility, political ramifications, and harmony with the morals debating rationalism and empiricism. Both sides appeal to theoretical coher-We need a concrete, richly studied instance of human psychology in which the It's been three hundred and fifty years since Leviathan, and scholars are still

two grand theories can go head-to-head in explaining the same facts. biblical story of David and Goliath, and in The Right Stuff Tom Wolfe sugit altogether, sparing unnecessary bloodshed. The most familiar example is the would embolden one side in the actual battle that followed, or might pre-empt face his counterpart from the opposing army in single combat. The outcome gested that a contemporary example may be found in the space race of the riors against the cosmonauts of the Soviet Union. Scientific debates someparticularly apt or appealing, but because it is easier to compare two great big times work like single combat, not because the combat metaphor is 1960s, in which the Mercury astronauts were treated like single combat war-In ancient warfare, an army sometimes would send its mightiest warrior to

theories when each is vested in a highly specific hypothesis and the hypotheuse have been abundantly documented. It has obvious rulelike and memory scribed and therefore tractable to study. Its history, acquisition, and patterns of ses compete on the same ground. side devising a clever, elegant, detailed, and surprising model. The past tense brought out the best in the ingenuity of contemporary theoreticians, with each is the only case I know in which two great systems of Western thought may be like features that serve as hurdles that any theory must clear. And it has tested and compared on a single rich set of data, just like ordinary scientific The English past tense is the perfect site. The phenomenon is circum-

they are memorized by rote because they show three kinds of patterning. What are the facts to be explained? Irregular verbs defy the suggestion that First, irregular past-tense forms are similar in sound to their base forms.

swore, sleep and slept, freeze and froze. In fact, all the irregulars except go drank has the vowel a where drink has the vowel i. Similarly similar are sugar and example, drink and drank share d, r, a vowel, n, and k; the only difference is the and be-was share material with their stems. It didn't have to be that way one important in the stems. can imagine a hypothetical language in which most of the verbs are like go-

not look like that. Let's call this pattern stem-past similarity. stuffed into its own memory slot. We need an explanation of why English does with nothing in common between stem and past, each stem and each past

gun, shrink-shrank-shrunk, and twenty other verbs. Similarly, we have ample, is found, with variations, in sing-sang-sung, sit-sat-sat, begin-began-beamong the thousands that are logically possible. But generations of learners which every verb picked its own substitution of vowels and consonants from teach-taught, fight-fought, and bring-brought. One can imagine a language in freeze-froze, speak-spoke, and steal-stole; bleed-bled, breed-bred, and feed-fed; among the 164 irregular verbs. The ĭ-ă-ŭ pattern in drink-drank-drunk, for exilar to the change from stem to past in another verb, change-change similarity. Let's call this pattern, in which the change from stem to past in one verb is simhave passed down an English language that is very different from that possibility. Second, a few kinds of change from a stem to its past are seen over and over

all you really need is an ĭ. But the verbs that do follow the pattern (drink, change together, and not just in sightings by word watchers. People extend old spring, shrink, and so on) have much more in common; most begin with a conthan they have to be. If you are a verb and want to undergo the ĭ-ŭ-ŭ pattern, his pattern stem-stem similarity. nation of why the human mind is so impressed by similarity in sound; let's call when the new verb is highly similar to old ones in memory. We need an explapatterns to new verbs, as in bring-brang, fight-fit, and spling-splung, only begin with a consonant cluster and end with a vowel. Verbs of a feather the verbs whose pasts end in -ew (blow, grow, throw, slay, draw, and fly) tend to sonant cluster like st-, str-, dr-, sl-, or cl-, and most end in -ng or -nk. Similarly, Third, the verbs undergoing a given irregular change are far more similar

whe input—the consonants before and after the vowel—come through in the past-tense form letter by letter; it just says, "Change the vowel." The rest omant-consonant-t-ng, change t to ŭ." Notice that the rule doesn't spell out In three kinds of patterning. Imagine a rule that said, "If a verb has the sound the output untouched. We have an explanation for stem-past similarity. A theory with rules for irregular verbs, as well as regular ones, could explain

change-change similarity. will have to share a rule, such as "Change i to i." We have an explanawho lex grammars, with many rules. If there are fewer rules than verbs, many Now suppose that the mind prefers simple grammars, with a few rules, to

wo consonants before the vowel and an ng sound after it. The condition is a mally notice that the rule has a condition on it: apply only to verbs that have

gatekeeper that allows in verbs that are similar to the cling-clung family and fil-

chapter and write down a set of tedious rules for them: "If a verb begins in s ters out those that merely contain ĭ. This could explain stem-stem similarity. and ends in ee, change the ee to aw," and so on. But that would be no improvea summary of the patterns among the verbs. It should be a psychological thement over the original list of verbs. A theory invoking rules must be more than ory: a hypothesis of the format in which children acquire words, and an explacompact set of rules that captures the generalizations the mind likes to make. nation of why verbs have the kinds of patterns they do. The trick is to find a Now, any drudge can go over the list of irregular verbs in the preceding

and Morris Halle's 1968 magnum opus The Sound Pattern of English, later recent). Clearly the speakers of a language know more than the list of words that part of a larger set of rules that capture the sound pattern of a language (its acfined by Halle and the linguist K. P. Mohanan. 17 Their rules for irregulars are ftip, rtut, and nganga are not English words and could not be (though speakers ers intuit that blicket, dax, and fep are not English words but could be, whereas happen to be in the language at a given moment. For example, English speakof other languages might recognize them as possible words in their languages) the i vowel in -in- changes from $\bar{\imath}$ to $\check{\imath}$, and that when Canada is joined to -ian English speakers also know that when divine is joined to -ity to create divinity, to become Canadian, the final -a vanishes, the stress shifts from the first sylla-By far the most ambitious theory of this kind comes from Noam Chomsky ble Ca to the second syllable na, and the vowel in that syllable changes to aglish words with just a few dozen phonological rules, each assigned to one or Chomsky, Halle, and Mohanan accounted for the patterns of thousands of Enmore of the boxes in the diagram on page 23: lexicon, morphology, syntax Their theory comes from a field called generative phonology, a division of gen

erative linguistics, the approach to language founded by Chomsky. counting for patterns among verbs and changes, and for speakers' ability in regular verbs, Chomsky and Halle enjoy the advantage of rules in general: ac generalize them. Amazingly, Chomsky, Halle, and Mohanan handled most of the dizzying patterns among the 165-odd irregular verbs with only three rules Virtually all their other rules are needed to explain the sound pattern of the By positing rules that replace consonants and vowels (phonemes) in the

glish in general. Verbs sit on "a continuum of productivity and generality that extends from affirm tion of the -ed suffix in decide-decided to total suppletion in go-went," with time Chomsky, Halle, and Mohanan roundly reject the words-and-rules dichorome

> brought, and blink has the regular past tense blinked. the past tense shrank, shing has the past tense slung, bring has the past tense rules to single out verbs by their sounds—no small matter, given that shrink has touched by which rule, the theorists circumvented the problem of crafting the rules, each tagged to apply to certain verbs. By stipulating which verb may be pairs. In between are the other irregulars, which are handled by a smaller set of continuum are suppletive verbs such as go and went, which are simply listed as rule that says nothing about the words it can apply to. At the other end of the one end of the continuum are the regular verbs, which are handled by a general ilies like sing–sang, ring–rang, and bind–bound, wind–wound in between.¹8 At

where the shortening rule is confined. This may seem like cheating, but there the -t or -d in the irregular verbs is attached in the lexicon box, which is also tions. Whereas the regular -ed is attached in the morphology box on page 23, the same as the -ed found in regular verbs, despite their similar pronunciait would turn seeped into sept, wiped into wipped, and so on. So Halle and Mocluster, such as pt. But that rule cannot be allowed to apply across the board or shortens a long vowel (changing \tilde{e} to \check{e}) when it occurs before a consonant cano-volcanic, need the shortening rule too. That supports the idea that ing to do with the past tense, like the ones creating serene-serenity and volare independent grounds for it. Other semiregular sort-of-rules that have nothhanan proposed that the -t and -d found in weak irregular verbs like kept is not keep-kept, for example, Chomsky, Halle, and Mohanan invoked a rule that ponent) so that it does not run wild and apply where it shouldn't. To generate everal rules are sequestered together in their own little community. Another rein on rules keeps each one in a stratum (a component or subcom-

we see that sharing minirules that add ts and ds, that delete extra ones, sulso put to work in swear-swore, and the rule that adds -d is also put to work hanges the vowel, the other that adds the -d. The rule that changes the vowel and allowing the simple ones to be assigned in different combinations to difwe rules was factoring apart each complex change into several simple ones or each family of rhyming verbs. hat fiddle with vowels is far more economical than building a special rule hed, bend-bent, burn-burnt, deal-dealt, breed-bred, and hit-hit, one can Mee-fled. Looking at the crisscrossing patterns in tell-told, swear-swore, ent verbs. For example, tell-told is produced by at least two rules, one that One move that allowed Chomsky, Halle, and Mohanan to get away with so

meetinely so that they apply not to vowels and consonants but to the compomonumental contribution of generative phonology was to slice rules even

id if the verb ends in t or dd if the verb ends in a vowel or in l, r, m, n, b, g, v, z, j, zh or voiced tht if the verb ends in p, k, f, s, sh, ch, or unvoiced th

the first line, t and d, are pronounced with the same parts of the mouth Each list is not just any old collection of consonants. The two consonants in stopping"—are also found in the -ed suffix. A similar pattern of sharing also is and then releasing it). These features—"place = tongue-tip," and "manner = (tongue tip against gum ridge) and in the same way (stopping the flow of air found among s, z, and the plural suffix, all of which are sibilants. What we never see is a rule such as "Add -og if the word ends in z, r, or k," and other rag-

tag assemblies of phonemes. cent consonants that have similar features for place and manner of articular phonemes. One rule can state, "At the end of a word, insert i to separate adjaa rule that puts a t after consonants in the list p, k, f, s, sh, ch, and th—all these tion"—no listing of t, d, s, z, -ed, or -s is necessary. Similarly, it's obtuse to have consonants obstruct the air stream (they are obstruent) and all are unvoiced one obstruent consonant to the next." All the unvoiced consonants like p and h The rule can simply say, "At the end of a syllable, copy the voicing feature from ically get a d. Moreover, this rule also generates the s and z variants of the All this can be captured if we have rules apply to features rather than to

away at arbitrary lists of consonants and vowels, but also allow speakers to world's languages. They not only are more economical than rules that have generalize. The sound ch is not normally found in English words, but any glish speaker who labors to pronounce the celebrated composer's name Bach knows that if there were a verb to out-Bach, as in Handel out-Buch. Bach, the past tense would be pronounced Bacht, not Bachd or Bachid. that specifies t after "unvoiced consonants" automatically embraces the un voiced ch and tells a speaker what to do, even if the speaker had never leaning Simple rules that inspect, flip, or excise features are ubiquitous in

that ch belongs on the list.

In Single Combat | 95

vowels are dissolved into features such as these: This economy and power also accrues to rules that fiddle with vowels if the

Is the vowel long or short? Are the lips rounded or not? Is the tongue hump high or low in the mouth? Is the tongue hump at the front or the back of the mouth? Is the vowel tense (tongue root scrunched forward) or lax?

would explain why i was replaced by a similar vowel, not just any old vowel; verbs, lower the vowel" would have to tinker with only one feature, not five; it round, short, lax, and low. A rule that simply said, "For the following irregular cept for tongue height: ĭ is front, unround, short, lax, and high; ŭ is front, unas the one in say or boat or shoe; it is replaced by a, which is identical to i exand it would work right out of the box to yield eat-ate and choose-chose, which Take sing-sang and sit-sat. The i is not replaced by some random vowel, such and Shortening Ablaut, which replaces the long vowels in flee and shoot with their short counterparts in fled and shot. Backing Ablaut, which replaces mid front e in bear with mid back o in bore ular rules that Halle and Mohanan's theory gets away with. The other two are also lower a vowel. This simple rule, Lowering Ablaut, is one of the three irreg-

with century, when people scrambled the pronunciations of vowels. The winking: Now wait a minute!! As we saw in the last chapter, "long" and "short" with your mind's ear, or better yet, pronouncing them out loud, you should be have been pantomiming the sounds with your mouth and listening to them ong and short versions of the same thing: ee versus e, oo versus o. But if you took shipshape—the vowels in flee-fled and shoot-shot are literally spelled as **numering** \check{e} and more tensed up, and the vowel glides up to a little γ at the end, withy shot. In pronouncing ee (\bar{e}) the tongue is higher than it is when prowand in flee is not a drawn-out version of the sound in fled, nor is shoot just a have been misnomers in English at least since the Great Vowel Shift in the fifthe Vowel rule simplifies the hairy irregular verbs sounds like a hoax. I hose vowels are not particularly similar, and a rule capable of replacing bein pronouncing ŏ, the lips are rounded, and there is a little w sound at the Likewise, in pronouncing oo (\tilde{u}) , the tongue is tenser and higher than ming it a diphthong (a succession of two vowels pronounced as if they were with another is capable of doing almost anything. To say that a Shorten-If you have been skimming this last paragraph silently, everything should

ical claim of the theory. When it comes to syntax, Chomsky is famous for proposing that beneath every sentence in the mind of a speaker is an invisible, more closely to what is pronounced and heard. The rationale is that certain conis converted by transformational rules into a "surface structure" that corresponds inaudible deep structure, the interface to the mental lexicon. The deep structure structions, if they were listed in the mind as surface structures, would have to be multiplied out in thousands of redundant variations that would have to have tures, they would be simple, few in number, and economically learned (see The been learned one by one, whereas if the constructions were listed as deep struc-Chomsky and Halle realized this of course, and their solution is the most rad-Halle made a similar proposal for the sounds of words. Each word has a deep Language Instinct, chapter 4, 120–124). Less well known is that Chomsky and pronounced; indeed, it may be unpronounceable. Phonological rules then constructure—in jargon, an underlying form—that may not sound like the way it is

vert it to the surface form that is articulated and heard. posed that the underlying forms really are long versions of the short vowels. every respect except how long it would take to pronounce them, with the long That is, in the mental lexicon the vowels in the following pairs are identical in In the case of the so-called long vowels in English, Chomsky and Halle pro-

vowels taking about twice as long:

shot	fund	pat	den	din	Short vowers	Tomole .	VILLE .
$c\underline{oo}n$ (cone)	shoot (shoot)	prof <u>uu</u> nd (profound)	s <u>aa</u> n (sane)	ser <u>ee</u> n (serene)	diviin (divine)	Their Long Counterparts	

say the vowel, but they differ in many other ways besides, so why assume that sky and Halle, is that the other differences are redundant and predictable the mind lists only the difference in length? The reason, according to Chom hence unnecessary to list. No pair of English words differs only by vowe length. Long vowels are also tense and diphthongs (they glide to a different the mind the ability to store every nuance of an English vowel—length, tense vowel at the end); short vowels are lax and not diphthongs. A theory that government of the end of In their actual pronunciations these pairs do differ in how long it takes to ness, tongue position, lip rounding, diphthongs, and so on—would falsely pre

> flesh out the rest of their pronunciation. ing long or short, and to have the long versions trigger obligatory rules that The best way to do this is to list certain pairs of vowels as differing only by betinguish words (for example, to distinguish bit from bet), and other rules would the vowel inventory would contain only the number of vowels necessary to disvowels, and so on; and it would allow the language to contain short and long dict that English could contain long lax vowels, lax diphthongs, short tense fill the vowel out into a full set of stage directions for the mouth and throat versions of otherwise identical vowels—all counter to fact. In a better theory,

adds the little ys and ws that give us the two-part vowels in lake (leh-eek), glide tails of pronunciation need not be stored in individual lexical entries. lation among length, tenseness, and being a diphthong, and the predictable deunexceptionable—something in the mind of an English speaker enforces a corre (gla-eed), need (nee-y'd), loud (la-ood), and road (ro-ood). All this is more or less Tensing, which tenses all long vowels, and a rule of Diphthongization, which Chomsky and Halle therefore proposed that English has a rule of Long Vowe

and the psychologist William Marslen-Wilson. 19 Consider the seemingly simdeep structure has another advantage, pointed out by the linguist Aditi Lahiri as nj in hand you, as m in hand me, and as the ng sound in hand care. (That is is: which actual pronunciation of the word? The word hand, for example, "masal" and "dental" rather than as n and d, and they are fleshed out into full mes for words are schematic—so that the last segments of hand are listed, say, connected speech.) But if, as Chomsky and Halle proposed, the dictionary enwood at recognizing words in isolation, are still poor at recognizing words in one of the reasons why computer speech recognition systems, though pretty but in natural conversation it comes out quite different. The nd is pronounced might be pronounced h-a-n-d when we enunciate it carefully and distinctly pler idea that memory holds the actual pronunciation of a word. The problem the representation could embrace the hand that appears in hand, hand me ousonants by rules that work in different ways in different contexts—then a The theory that a word is stored as an abstract, not-directly-pronounceable

lowers the long vowels, reenacting in the minds of modern English that the underlying form of a word can be wildly different from its proa form in memory that is not identical to their pronunciations. They prowakers the Great Vowel Shift of the fifteenth century. In other words, they in particular, they proposed a complicated rule of Vowel Shift that But Chomsky and Halle went much further than merely claiming that words

claim that ontogeny recapitulates phylogeny, and that the deep structures of words in our mental dictionaries correspond to the way Chaucer would have pronounced them (even though Chaucer, if he traveled through time to our century, would sound like a German to our ears). According to the Chomsky-Halle theory, the mental representations of words in different centuries over the past millennium, and in all the modern dialects of English, are the same; Enpast millennium, and in all the modern dialects of English are the same; Enpast has changed primarily by adding phonological rules. And English spelling, glish has changed primarily by adding phonological rules are those which did not track the Great Vowel Shift or other changes in pronunciation as which dialects evolved, captures our underlying mental representations of words.

spelling system ought to be stable across time and space. We should be able to read the writings of our great-great-grandparents, and of people on the other do. Also, a spelling system ought to encode only the information necessary to side of the Atlantic, even if they pronounce words differently from the way we flicking that can be predicted from the content and that people automatically identify the content of a word, not the trajectories of lip pursing and tongue execute as they talk. By these criteria, Chomsky and Halle concluded, English spelling is not only exonerated of the charge that it is an illogical, sadistic mess, but "comes remarkably close to being an optimal orthographic sysfor all the recorded dialects of the past several centuries!21 Hear that, all tem."20 Optimal for us, optimal for other modern English dialects, and optimal orthographically challenged, spell-checker-dependent, solecism-prone stespelling fish, and George Bernard Shaw's campaign to reform English spelling dents and writers? Forget cough and rough and dough and plough, and gloud Chomsky and Halle pursue the implications. Everyone agrees that a good and all the other complaints about crazy English:

A moth is not a moth in mother,
Nor both in bother, broth in brother,
And here is not a match for there,
Nor dear and fear for bear and pear.
Nor dear and fear for bear and rose and lose
And then there's dose and rose and choose,
Just look them up—and goose and choose,
And cork and work and card and ward,
And font and front and word and sword,
And do and go and thwart and cart—
Come, come, I've hardly made a start!

A dreadful language? Man alive!

I'd mastered it when I was five.
And yet to write it, the more I tried,
I hadn't learned at fifty-five.²²

What led Chomsky and Halle to this shocking conclusion? It was the drive to extirpate any trace of needless redundancy and complexity in their grammar for English sound patterns. Now we really do have a clean Shortening Ablaut rule for breed—bred, flee—fled, shoot—shot, and lose—lost. The underlying form of breed has a double-length version of the e in bred, so the shortening rule creates bred in a single step. (The formerly inconvenient fact that breed itself is not double-length bred is now handled by Vowel Shift, which makes it briid, followed by Tensing, which makes it breed, followed by Diphthongization.)

Now if it was only a handful of irregular verbs that benefited from the Vowel Shift rule, the savings would be paltry compared to simply stipulating that "ē changes to ĕ," and so on. The savings begin to mount, however, when we look at other rules that can be simplified in exactly the same way, that is, by applying to the deep, pre-Shifted versions of vowels. With Vowel Shift available to handle the details of the long vowel, each of the following processes can be captured as a simple change-the-length rule:

risyllabic

CN Lengthening:	ic Shortening:	ning:	Shortening:
st <u>u</u> dy-st <u>u</u> dious	sat <u>i</u> re-sat <u>i</u> ric	rucify-crucifixion	divine-divinity
manag <u>e</u> r–manag <u>e</u> rial	kin <u>e</u> sis-kin <u>e</u> tic	intervene-intervention	serene—serenity
volc <u>a</u> no-volc <u>a</u> nic Can <u>a</u> da-Can <u>a</u> dian			s <u>a</u> ne—s <u>a</u> nity

Once you have the freedom to equip people with abstract underlying forms or their words, the irregulars get simpler and simpler. Run-ran-run can be undled by the rules for sing-sang-sung, drink-drank-drunk, and so on—if suppose that the underlying form of to run is really to rin, and that Backing aut and other rules apply to the stem, not just the participle, to make it suras run. Likewise, the past-tense forms of come, give, slay, and catch are behaved if their underlying stems are kēm, gēv, slē, and kěch.

Most creatively of all, Chomsky, Halle, and Mohanan proposed that the *chech* is a covert English phoneme that lives underground in the lexical enfor *buy* and *fight*—namely, *bēch* and *fēcht*—and in the half-baked pastforms for *seek* and *teach*. Of course the *ch*s must be assassinated before the light of day, but not until they have triggered a rule that makes the

past-tense form come out right. Bēch gets a -t, changes to bācht by the Lowering and Backing Ablaut rules, at which point the cht triggers Cluster Shortening to yield bācht before ch makes the ultimate sacrifice, resulting in the form we spell bought.

What are we to make of this bold theory? As I mentioned at the start, a theory that posits rules for irregulars can account for the similarities between stams and their past-tense forms, such as why swing and swwng are 80 percent the same: The rule targets a vowel for change, and leaves the rest of the vert salone. The Chomsky-Halle-Mohanan theory pushes the performance of rules to new heights, because their rules target only certain features of a vowel for new heights, because their rules target only certain features of a vowel for the salone, too. Similarly, a theory positing irregular rules can account for the similarities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone by different verbs, for example, why the taput larities in changes undergone larities

with a vengeance, forcing almost 100 verus to state Any theory that can tame the quintessentially unruly English irregular tense system with only three rules, each delicately adjusting a single feature tense system with only three rules, each delicately adjusting a single feature with a system with only three rules. Not necessarily. One problem comes the assumption that every scintilla of patterning in the verb system needs the assumption in terms of the psychology of speakers, in particular that the planation in terms of the psychology of speakers, in particular that the rule are distilled out into rules in the mind. Chomsky, Halle, and Mohanans are distilled out into rules in the mind. Chomsky, Halle, and Mohanans are for the centuries—deliberately—and that brings to mind an alternative over the centuries—deliberately—and that brings to mind an alternative nation used throughout chapter 3: that the patterns are fossils of rules long ago. The surviving past-tense forms, semilawful though they are long ago. The surviving past-tense forms, semilawful though they are long ago. The surviving past-tense forms, semilawful though they are long ago. The surviving past-tense forms, semilawful though the rules long ago. The surviving past-tense forms, semilawful though the rules long ago. The surviving past-tense forms, semilawful though the rules long ago. The surviving past-tense forms, semilawful though the rules long ago. The surviving past-tense forms, semilawful though the rules long ago. The surviving past-tense forms, semilawful though the rules long ago. The surviving past-tense forms, semilawful though the rules long ago. The surviving past-tense forms, semilawful though the rules long ago. The surviving past-tense forms, semilawful though the rules long ago.

The defunct-rule explanation has an advantage over the Mohanan theory. Children don't hear underlying forms, and they wided with lessons about the rules that turn them into audible surface hear only the surface forms. If the rules and underlying forms some role in mental life, children must infer the cascade of rule ated the surface form, run it in reverse, and extract the underlying the suggestion that English-speaking children hear run and infight and infer the German-sounding fecht is, frankly, beyond be

sentences, where the child needs rules to generate an infinite number of new surface form, and the child already has the surface form? (It's different with ones; with word roots, there are only a finite number to learn.) And even if the cover the rules—are found in pairs of words the children will learn only in child wanted to ferret out rules and underlying forms, how could they ever find they could hear the entire vocabulary in one sitting before figuring out the and kinetic? At one point Chomsky and Halle concede the problem and say adulthood if ever, such as serene and serenity, manager and managerial, kinesis the right ones if the crucial clues—the ones linguists themselves use to dischildren acquire words or how real adults represent them. It may be interesttheir theory is a theory of—it is not, by their concession, a theory of how real rules, rather than learning the everyday words first. But then it's not clear what that their grammar is only what children would construct if, hypothetically, wextract intricate chains of rules and arcane word entries if they could never and that is far from clear. Why would real children be equipped with an ability ing to indulge in a thought experiment of what an optimal child ought to do if put that ability to use in the real world, and if the net result is the same lanwe useful only if the hypothetical child were a good idealization of a real child, he or she had the entire language to mull over at once. But that exercise would uen store words in the mental dictionary in a form that is not radically uage as the one they do acquire in the real world? It is more likely that chil-Interest in content from what they hear (though it may be more schematic). First, why would the child bother if the rules are there only to generate the

worse, it's not so clear that the thought experiment would come out the way the way and Halle suppose it would. The word pairs that motivate the underlying entries, such as kinesis-kinetic and intervene-intervention, whhorn words encountered in writing or in the conversations of literate sionals. Anyone who needs to use these vowel patterns in a new word advantage of having seen similar words in print. People who are literate to associate the sounds \tilde{a} and \tilde{a} with the letter a, the sounds \tilde{e} and \tilde{e} letter e, and so on, when they learned the alphabet. That means that neakers have to make a choice from among the short vowels in proper under the determinant of the phonology.

Perhaps the biggest problem is that the Chomsky-Halle-Mohanan the-

the similarities among stems, as in sting, string, sling, stink, sink, swing, and spring. In their theory the rule of Lowering Ablaut for the participle is conare so alike. The list of verbs assigned to the rule could just as easily have Ablaut to Me." But then it is an unexplained coincidence that all the verbs nected to these verbs by fiat-the entry for each verb says, "Apply Lowering been till-tull, wish-wush, fib-fub, and pith-puth. How can a theory that reother stem, be so oblivious to the massive redundancy among all the stems between the changes applying to one stem and the changes applying to anlentlessly soaks up every droplet of redundancy between stems and pasts, and undergoing a change? Also, how is the speaker supposed to generalize the rules to new verbs if they are constrained to apply only to the currently stipu-

vowel tends to be preceded by a consonant cluster and followed by ng. The nominator and attach it as a condition to the rule. In the i-ŭ family the i consonant ng can be further analyzed into the features nasal (pronounced palate or velum). Perhaps, then, the rule should be "Lower the vowel from I through the nose) and velar (pronounced with the tongue against the soft to ŭ if the stem has the pattern consonant-consonant-I-velar nasal consonant change their vowels to u, and it would falsely exclude stick-stuck and It would falsely include bring-brought and spring-sprang, which do not Unfortunately, this rule would make errors both of commission and omission spin-spun, which do. These verbs obviously belong in the class, but each one violates the condition by an eyelash. The k of stick is not a nasal velar like The obvious way to handle these families is to distill out their common despin also is not a nasal velar, but it is a nasal, pronounced through the nosc ng, but it is a velar, pronounced at the same place in the mouth. The world

gories.24 They don't have strict, all-or-none definitions that specify which gist Dan Slobin, is that the irregular clusters are family resemblance cum verbs are in and which verbs are out. Instead they have fuzzy boundaries and erties they share with one another. String and sling are prototypical members members that are in or out to various degrees depending on how many power of the ĭ-ŭ class, packing into one word all the consonants that are prevalent the family. Spin and stick each misses by a different feature; dig-due man skin-skun, and climb-clumb are in a muzzy zone at the edge where speakers win-won are farther toward the periphery; and sneak-snuck, drug drug The problem, first pointed out by the linguist Joan Bybee and the psychology differ as to their acceptability. No rule can cleanly pick out the

In Single Combat | 103

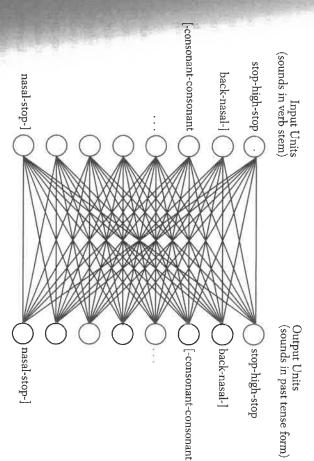
the conditions that triggered each rule but resorted to listing the verbs indiwhich is why Chomsky, Halle, and Mohanan didn't bother looking for

nant, draw-drew and fly-flew miss by a vowel, and slay-slew and crow-crew are consonant-o. Know-knew is in the family but misses the rule by one consogrow-grew, and throw-threw are stereotypical ow-ew verbs, but the rule for neither clearly in nor clearly out, but muzzy. the class cannot demand that a word conform to the condition consonant-The other irregular families work in the same way. For example, blow-blew,

write-writ is close to bite-bit and light-lit. Fei Xu and I found that children's senting their adult volunteers with nonsense words that varied in similarity to meet-met, and so on. 25 Bybee and Moder even quantified the effect by preclose to sing-sang and all the rest; sleep-slep is close to feed-fed, bleed-bled, creative irregulars work the same way. The childhood error swing-swang is to sing-sang, ring-rang, spring-sprang, drink-drank, and shrink-shrank, and close in sound to many members of a family. For example, bring-brang is close people generalizing a pattern to new verbs. Dialectal irregular forms tend to be the typical members of the ing-ung family. Spling and skring fall smack in the similar, and only about 50 percent of the people suggested krunk, trug, or middle of the family, and about 80 percent of the participants came up with about 20 percent of the people provided forms like vun, sud, or kub.26 lang. Vin, sid, and kib share only a vowel with the verbs in the family, and only forms like splang, splung, skrang, and skrung. Krink, trig, and pling are less Membership in an irregular family is also probabilistic when it comes to

ustical—but psychologically active—patterns of similarity among the verbs mental entries of words, and their theory cannot handle the fuzzy and stamance, but at a steep price. They were forced to make incredible claims about w something very different. undergoing a rule. The irregular patterns are just not very rulelike, and call out Chomsky, Halle, and Mohanan have tweaked rules for maximum perfor-

men artificial neural network model of the past tense in 1986, the reaction and megular past-tense forms, generalized their patterns to new verbs, and no words, no rules, no modules—but it acquired several hundred regular ensational.27 Here was a model with none of the paraphernalia of linguis-Men the psychologists David Rumelhart and James McClelland announced


made errors such as breaked and comed, just like children. COMPUTERS MIMIC BRAIN IN TEST, said a headline in the Chicago Tribune. A TURNING POINT IN LINplications were "awesome," said the reviewer, because "to continue teaching GUISTICS, ran the title of a review in the Times Literary Supplement.28 The imtive science known as connectionism or parallel distributed processing, which Rumelhart and McClelland's model helped to launch a new school of cogni-[linguistics] in_the orthodox style would be like keeping alchemy alive." explains mental processes in terms of networks of interconnected simple units that vaguely resemble neurons (brain cells).29 Many researchers saw connectionism as a paradigm shift or scientific revolution in the study of the mind. 30 Neural networks also became a fad in artificial intelligence and soon were put to use in picking stocks for mutual funds and controlling expensive Japanese

appliances like rice cookers and washing machines. intended as high-level descriptions of processes or structures that are implebrain. Rules—even the pristine, logic-like rules of Chomsky and Halle—are mented in some way in neural circuitry. The difference between connectionism and generative grammar lies in the kinds of mental operations that are thought to be implemented in neural networks. In particular, connectionism symbol manipulation. It lacks combinatorial rules organized into modules, and differs from generative grammar in the way that associationism differs from appears with B, associate them) and his law of resemblance (if C looks like A instead tries to accomplish intelligence using Hume's law of contiguity (if A No one doubts that language is computed by networks of neurons in the let it share A's associations). A neural network that works this way is called

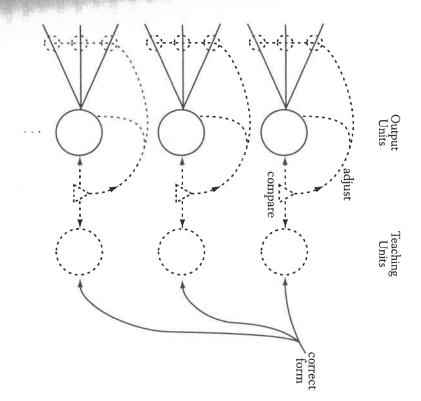
pattern associator memory or a perceptron. portant design features with the Chomsky-Halle theory. The input to the model is the sound of a verb stem, and the past tense is computed from it Despite my clash-of-the-Titans buildup, the model actually shares some imthe meaning of the verb and the concept of pastness. So Rumelhart and Mo That is different from a model that computes a past-tense form directly from Clelland are committed to at least one module—a morphology box—situme chinery is charged with computing the past-tense forms of all verbs, regular, in between meaning and sound. As with Chomsky and Halle, a single kind of mo regular, and suppletive (go-went); the verbs sit on a continuum of regular. Here is how Rumelhart and McClelland's model of the past tense works from completely predictable to completely arbitrary. Past-tense forms are composed piecemeal out of miniregularities that are shared among verbs, so that sleep-slept combines the vowel change in feed-fed and the suffication in

> assumption that speech sounds are represented in the mind not as phonemes but as bundles of features such as "voiced" and "nasal." burn-burnt. Rumelhart and McClelland also import the standard Chomskyan

associator memory: But everything else is different. Here is the heart of the model, the pattern

wth, such as a high vowel between two stop consonants, or a back vowel foleach unit represents a tiny stretch of sound that might appear in an English untains 460 vaguely neuronlike units, each of which can be either on or off In the units for individual verbs; a verb is entered by turning on the units for the are symbolized by open and close brackets ("[" and "]"). There are no wed by nasal consonant at the end of the word. The beginning and end of a estate. Most of the units that are turned on when shrink is fed in are also ds it contains. As a result, similar-sounding verbs share representational umod on when drink is fed in (consonant cluster at the beginning of the no idea which word they are currently representing. high vowel between two sonorant consonants, and so on). These units The left-hand column is the input layer, where the verb stem is entered. It

recent to every output by a synapselike connection that can vary in strength output of the model: the sound of the past-tense form. Every input is conright-hand column has an identical bank of units, and they represent


from strongly excitatory (an input signal tends to turn the unit on), to neutral turn the unit off). In effect each connection is a probabilistic microrule that (an input signal has no effect), to strongly inhibitory (an input signal tends to states something like, "If the stem contains a stop consonant followed by a high vowel, the past-tense form is likely to contain a nasal consonant at the end." With 460 input units connected to 460 output units, we have 460 \times 460 = 211,600 microrules in all. When an input unit is turned on, it sends a signal strength of each connection and fed to that output unit. Whether a given outdown all its lines to the output layer, where the signal is multiplied by the put unit turns on depends, in a probabilistic way, on the sum of the signals that feed into it and on its own level of triggerhappiness or threshold. The turn on; the lower the summed signal is below the threshold, the more likely higher the summed signal is above the threshold, the more likely the unit is to

the unit is to turn off. put layer is completely off, regardless of the input. The connections then are changed in a learning procedure, in which the model is "taught" with a set of verbs and their correct past-tense forms. Of course, Rumelhart and McClelconjugations. They assume that children, when hearing a past-tense form in land do not actually believe that a schoolmarm has to drill children with verb dredge the verb stem out of memory, feed it into their past tense network, and their parents' speech, recognize that it is the past-tense form of a familiar verb silently compare their network's output with what they just heard. Skeptics might wonder how a child is supposed to do all this without the benefit of the lexical and grammatical machinery that Rumelhart and McClelland claim to In the neonate network the connections have strengths of zero, so the out-

have made obsolete, but let's put that aside for now.

displayed in a special layer of "teacher" units. The model compares its output unit by unit, with the correct output (walked for walk, came for come, and so on). The model then adjusts the connection strengths a tiny amount up or down depending on the difference (see the figure on the opposite page). The learning procedure works like this. The correct form from the parents is

cause the correct past-tense form is rang), the model has to make the input word (ring) more likely to turn on that unit in the future. All of the connections and the ă unit's threshold is lowered an iota, making it more triggerhappy in tions from incoming lines that are currently active are strengthened an or contrast, if a unit is on (for example, the unit for I) and the teacher survival should be off (because the correct past-tense form is rang), the model has in If a unit is off (say, the unit for \check{a}), and the teacher says it should be on the

connections from incoming lines that are currently active are weakened an and the unit's threshold is raised an iota, making it less triggerhappy inta (possibly driving the connection down to a negative or inhibitory value) make the input word less likely to turn on that unit in the future. All of the

roducing correct past-tense forms. The network's knowledge of the various what does the best job, in combination with the other connections, of wer and over and over. A given connection will be buffeted up and down by and their past-tense forms is smeared across the 211,600 connection **Coessive verbs in a training run, but eventually it will settle on the strength munts a particular word, a particular irregular family, or a regular rule. the network that implethe model is trained on a list of verbs and their past-tense forms, presented

Rumelhart and McClelland trained their network on a list of 420 verbs presented 200 times, for a total of 84,000 trials. To everyone's surprise, the model did quite well, computing most of the correct sound stretches for all 420 to look to looked, seem to seemed, melt to melted, hit to hit, make to made, sing to look to looked, seem to seemed, melt to melted, hit to hit, make to made, sing to look with 86 new verbs, which it had not been trained on: a test of generalization or productivity like the wug-test, the sine qua non of rules. The model offered the correct past-tense form with -ed for about three quarters of the new regular verbs, and made reasonable overgeneralization errors such as

Even more impressively, the model mimicked some of the tendencies of Even more impressively, the model mimicked some of the tendencies of children as they acquire English. At one point in training it produced errors such as gived for verbs that it had previously produced correctly. It also analogized new irregular verbs to families of similar-sounding old irregular verbs; gized new irregular verbs to families of similar-sounding old irregular verbs; for example, it guessed cling-clung, sip-sept, slip-slept, bid-bid, and kid-kid. for example, it guessed cling-clung, sip-sept, slip-slept, bid-bid, and kid-kid. It produced blends such as gaved and stepted that also occasionally come out of the mouths of children. It was less tempted to tack -ed onto an irregular verb from a large family, such as feel, than onto an irregular verb from a small verb from a large family, such as bashful about sticking -ed onto verbs that already end in t or d, a common reluctance of human beings that we observed

in chapter 2.

Rumelhart and McClelland's pattern associator memory is not made of Rumelhart and McClelland's pattern associator memory is not made of some miraculous wonder tissue. It works by one trick: Rather than associating some miraculous wonder tissue. It works by one trick: Rather than associating fear a word with a word, it associates the properties of a word—its phonological fear tures—with the properties of another word, and thereby enjoys automatic generalization by similarity. That is, rather than associating drink with drank, in eralization by similarity. That is, rather than associating drink with ank, and so on associates dr with dr, dr with rang, ring with rang, ink with nked, and so on the same time, it negatively associates dr with nked, ink with nked, and so on the same time, it negatively associates dr with nked, ink with nked, and so on the same time, it negatively associates dr with nked, ink with nked, and so on the same time, it negatively associates dr with nked, ink with nked, and so on the same time, it negatively associates dr with nked, ink with nked, and so on the same time, it negatively associates dr with nked, ink with nked, and so on the same time.

inhibiting the incorrect regular form *drinked*.

Crucially, these associations are superimposed across the different words the training set. When the model trained on *drink* is then trained on *shrink* strengthens many of the same connections, such as *ring* with *rang* and with *ank*. That makes *shrink* easier to learn—most of its connections with ank. That makes *shrink* easier to learn—most of the connections been prestrengthened—and it makes subsequent family members, subsequent still. It's a short step to generalize to verbs that have not trained at all, such as *stink*—the *ing-ang* connections have already been weaken strengthened, and the *ing-inged* connections have already been weaken.

The same trick works for the regular verbs: When the model is trained on walk-walked, it strengthens connections between alk and alked, restrengthens them when trained on talk-talked, and automatically generalizes them to stalk-stalked. The only difference between regular and irregular verbs is that the regulars are more plentiful, more diverse, and more consistent in the patterning of their past-tense forms. With thousands of strong connections conspiring to turn on a t or d at the end of a word, the model's first tendency will be to output a regular form.

with features is inherent to the design of many associationist theories, and words-and-rules theory: generalizing irregular patterns to similar words. The ness, savoriness, and nutrition, then when we encounter cake, which is also in fact stored in the brain as a set of associations between beigeness, spongisimilarity for free. That is, if an association between bread and nourishment is shared properties, so associations among properties give you generalization-bylarity—could be pared down to one law, contiguity. Similarity is nothing but object individually, then Hume's two laws of association—contiguity and simigoes back to the eighteenth-century English physician and philosopher David key idea is not original to Rumelhart and McClelland. Associating features and features, and that duplicates the human habit that embarrassed the point of transferring associations from one to the other. the brain has to register the fact that bread and cake are similar and make a beige and spongy, "nutritious" pops into mind automatically; no extra device in Hartley.³¹ Hartley pointed out that if the brain represented the properties of an The mainspring of the model, then, is forming associations between features

chemy? Not yet. In 1988 the linguist Alan Prince and I published a paper in the journal Cognition that went after the pattern associator model hammer and tongs. We pointed out many facts about human language that the model, and the connectionist approach to language in general, ignored or mishanded. Other trenchant critiques appeared around that time or in the years line are recent book the mathematician and former Scientific American psychoanalysis as case studies of "bad science" in need of debunking. And its unfair, but connectionism has been overhyped and its problems as a

system in chapter 2. First, Rumelhart and McClelland's pattern associator arrows around and get the model to run backward and recognize past-tense memory is a device that only produces past-tense forms. You cannot turn the hear walked we know it means walk in the past. Children are not separately forms. Obviously people do both. Not only can we say walked, but when we trained to produce -ed and to understand -ed. The most straightforward explacessed equally well by a module that sends commands to the tongue and a nation is that they learn rules and lexical entries, a database that can be ac-

module that interprets sounds coming in from the ear. tense form. Yet we saw that many of these details, such as the choice among -t, -d, and id, are found in fifteen different parts of the language system. Surely they are computed by a single phonology module that is fed by the output of morphology and syntax, not duplicated by an amazing coincidence in fifteen Second, the model computes every detail of the pronunciation of the past-

different networks, one for the past tense, one for plurals, and so on. sound to compute its past-tense form, the model cannot tell the difference be tween two words that have the same sound. It must give them the same past tense form, and that won't work for soundalike verbs like ring-rang and input that represented the meanings of words, in addition to their sounds. For One might reply that the problem could be fixed by adding a few units to the wring-wrung, break-broke and brake-braked, or meet-met and mete-meted example, a unit for "striking" could turn on ang while a unit for "squeezing strike, and slap are similar in meaning but have different past-tense forms meanings of words don't systematically predict their past-tense forms. Him turned on ung, differentiating ring from wring. But as we saw in chapter 2, the is not the same as word 3 that triggers the different idiosyncratic past-tenser. past-tense forms. It's the raw fact that word 1 is not the same as word 2 which take, undertake, and take a leak are different in meaning but have the same forms, and that is the distinction captured by lexical entries. Soundalike words Third, by forgoing the use of lexical entries and relying entirely on a words many of the quirks that occupy letters to the language mavens—why a basel in with different plurals and pasts are widespread in English and give rise with different plurals and pasts are widespread in English and give rise with different plurals and pasts are widespread in English and give rise with different plurals and pasts are widespread in English and give rise with different plurals and pasts are widespread in English and give rise with different plurals and pasts are widespread in English and give rise with different plurals and pasts are widespread in English and give rise with different plurals and pasts are widespread in English and give rise with different plurals and pasts are widespread in English and give rise with the past of the ball player is said to have flied out to center field, why the hockey team mans. The answer involves a beautiful design feature of human language mans. Toronto is called The Maple Leafs, why the plural of Walkman is often Walkman we will explore in chapter 6 and that is quite unlike the knee-jerk associations

In Single Combat | 111

velopment. We will take a closer look at how children really do learn to use and misuse the past tense when we examine language acquisition in chapter jiggery-pokery to get the model to duplicate children's stages of language de-A fourth problem is that Rumelhart and McClelland had to use some

as in traditional linguistics but with the boxes fleshed out as neural netcomplex computational problem into a few simpler ones that can be farmed building separate networks for morphology, phonology, and the lexicon, much out to mental modules optimized for each. The problems could be solved by These troubles are all payback for the connectionists' distaste for carving a

ism. The problem could not be more basic: How do you represent an entity model, and diagnoses the main flaw in the centuries-old theory of associationcomputation into modules. It lies at the very core of the pattern associator off; you can't inscribe them with symbols as if they were pads of paper or bytes made of parts in a fixed arrangement, such as a word? Units can only be on or in a computer. The first solution that comes to mind is to make the units into a ud, and so on. Then simply turn on the units that spell out the word: phonetic alphabet. Assign one unit to \bar{a} , one unit to \bar{a} , one unit to b, one unit But there is one problem that cannot readily be solved by dividing up the

രു വ ക്കു 00000

be indistinguishable from tip, Spiro Agnew from grow a penis. If that's all were to words, you would be solving anagrams every time you opened but this is a nonstarter. Information about the order of phonemes is lost: pit

that a person would ever be called on to remember: me in a word, one for the second phoneme, and so on, up to the longest Motter solution is to have an array of phoneme units, one bank for the first

that drive the Rumelhart-McClelland model.³⁵

That solves the anagram problem, but it runs up against two new ones. First, how long is the longest word that the array should accommodate? Long how long is the longest word in standard diction enough for antidisestablishmentarianism, the longest word in the Oxford English naries? For floccinaucinihilipilification, the longest word in the Oxford English Dictionary? What about great-great-great-great-grandmother, great-great-great-great-great-grandmother, and so on? There is no longest word, so something is wrong great-grandmother, and so on? There is no longest word, so something is wrong with a representation that forces us to decide what it is a priori.

The other problem is that the representation has a bank of units for the first phoneme in a word, a bank of units for the second phoneme, and so on, aligning the words in memory by their first phoneme, that is, left-justifying them. But the human mind does not count off phonemes from left to right when perceives similarities among words and generalizes accordingly. The most talizing generalizations in the irregular past tense system are in the talizing generalizations in the irregular past tense system are in the forcing each other and inspiring fling-flang, bring-brang, and spling-splang forcing each other and inspiring fling-flang, bring-brang, and spling-splang that in a left-to-right array, the first three verbs do not overlap at all:

spring:			
S	d	7	_
р	7	۳.	2
4	<i>+</i> 2.	ng	ω
, 2.	ng		4
ng	R	_	5
			6

Nothing that has been learned for ring, such as that it has a past tensorm, will transfer to drink or spring; the two words are no more similar ang, will transfer to drink or spring; the two words are no more similar angles.

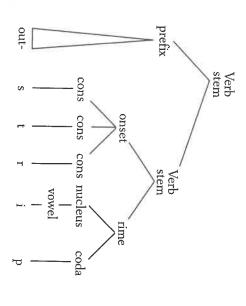
bird and clam. But people must find them similar, for the irregular system is rife with families of words that don't align properly at their left edges, such as dive, drive, strive, and most obviously, prefixed forms such as stand, withstand, and understand or come, become, and overcome. The same problem fouls up any generalization that depends on the ends of words, and we know there is a huge one: the choice of -t, -d, or id, which hinges on whether the last phoneme is voiced, unvoiced, or a t or d. The last phoneme in a left-to-right representation can be position 2 (for the verb add), position 3 (for ask), position 4 (for risk), and so on, all the way up to position 23 for floccinaucinihilipilify and beyond. A left-to-right representation would have to learn how to pronounce the suffix separately for every length of word.

stop-high-stop or voiced-unvoiced-voiced—a Wickelfeature.) than their phonemes, so a unit actually stood for three features in a row, such to represent words in terms of their Chomsky-Halle-esque features, rather the human mind perceives them. (Rumelhart and McClelland in fact wanted overlap the Wickelphones for strip, so their representations are similar, just as at the beginning, then str, then tri, and so on. And the Wickelphones for rip have to worry about their order, because they snap together in only one way: [st example, strip contains the Wickelphones ip], rip, str, tri, and [st. You don't one sidesteps both the anagram problem and the left-alignment problem. For elphones, each needing a unit. By representing a word by its Wickelphones, Wickelphones, named after the psychologist Wayne Wickelgren who first con-"I" for the beginning and end of a word, there are about 67,000 possible Wick-English has about forty phonemes, and if we add the special symbols "[" and ceived them. 38 A Wickelphone is a sequence of three phonemes, like ipt or str. they came up with a creative alternative: The units stand for things they called Rumelhart and McClelland must have recognized this problem, because

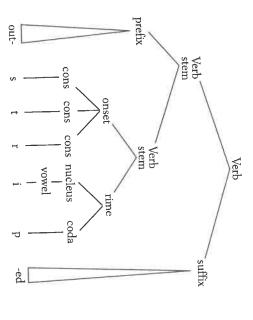
It may seem hard to believe that the simple act of registering a word in an instructured bank of units is a near-insoluble problem, but it is: Wickellones, though ingenious, don't work either. The human mind cares about sinphonemes and the features that compose them, and the Wickelphone has merged them into unbreakable chains of three-in-a-row. For example, silt have no Wickelphones in common. The first dissolves into [si, sil, ilt, the second into [sl, sli, lit, and it]. But people clearly hear them as simwe see in historical changes in English such as brid becoming bird and becoming third. Worse, in some languages the Wickelphone cannot rep-

and they are made up of identical Wickelphones: alg, al], gal, lga, and [al: word algal meaning "straight" and a word algalgal meaning "ramrod straight,"

	Words: Wickelphones:
al]	[algal] [al alg lga gal
alg (already used) lga (already used) gal (already used) al]	[algalgal] [al alg lga gal


gand speakers should not exist (nor the speakers of many other languages thing, and the Wickelphone theory therefore incorrectly predicts that Oykan-Since units are either on or off, they have no way of representing two of some-

simple operations on the representation, the hard tasks by lengthy sequences words like these are not uncommon).39 mind finds easy and what it finds hard. The easy tasks should be computed by a rule that flips a word to its mirror-image, say, forming the plural by converlinguists explain to their classes how human languages use some kinds of rules of operations. Here, too, the Wickelphone makes the wrong prediction. When network can do exactly that, and quite easily: strengthen every connection beand not others, they almost always use the same example: that no language has ing tip to pit, gum to mug, and dog to god. But a Wickelphone-to-Wickelphone tween a Wickelphone ABC in the input and its mirror-image Wickelphone Also, a theory of how the mind represents things should predict what the

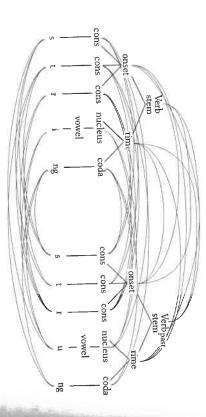

only difference between mirror-image reversal and verbatim copying is that which involves strengthening the connections between ABC and ABC. The conceivable relation between input and output: copying the stem verbaum ABC goes to CBA in one case and to ABC in the other. But the model cannot we, the theorists peering into the model, can read the unit labels and see that CBA in the output, and weaken all the other connections. output relations, and they are the same in both cases. Likewise, all kinds read its own node labels; all it cares about is the consistency of the input crazy rules, such as replacing all as with bs, all bs with cs, all cs with ds, and so on, are as easy to learn as copying the input to the output. Not only is mirror-reversal easy, but it is no harder to learn than the simplest

> loss, and will sit in silence or cough up a hairball of bits and pieces that are with certain combinations of sounds such as -ump or -ail, the model will be at a ciate sounds with sounds, and if the training set happens to be missing words before adding -ed. But a pattern associator memory has no placeholder called toureder, and mail into membled. The lapses are puzzling to us because intuvaguely associated with the sounds it has been trained on. 40 "stem" that can be copied, and no operation to do the copying. All it does is assoitively nothing could be simpler than copying a stem over to the past-tense form warm, and trail. And it garbled several others, turning squat into squakt, tour into past tenses of simple but somewhat unusual-sounding words, like jump, pump, of Rumelhart and McClelland's model. The model was mute when asked for the This is not just a quibble; it explains an embarrassing lapse in the performance

verb such as to outstrip might be represented something like this: mind manipulates symbols organized into hierarchical structures by rules. A All the problems go away if you bring back the rationalist theory that the

rip, and tip fall mechanically out of the fact that they have identical subultimately, features). The similarity to other words such as strip, restrip, wular past-tense form is nothing but attaching a suffix next to the symbol such as an identical "stem" or an identical "rime." And computing the wilt out of chunks like onsets, rimes, vowel nuclei, consonants and vowels, tixes, and suffixes) and the phonological structure of its parts (how they are modies the morphological structure of the word (how it is built out of stems, The phonemes are held in their correct order by a treelike scaffolding that em-

It doesn't matter whether the underbrush dangling beneath the "verb stem" symbol is walk, outstrip, jump, pump, or bftsplk—if you have a mental symbol "verb stem" and know how to put a suffix next to it, the entire vocabulary of verb stems lies waiting at your feet. Finally, since a tree structure is built out of recursive rules (for example, "a stem can combine with a prefix to form a new stem"), no length limit needs to be set beforehand, and words of any length such as re-outstrip or great-great-great-grandmother can be represented.


Symbolic trees require fancier neural hardware than the smooth purée of units that are popular among connectionists, but those models hardly do justice to the brain anyway. Recently, a few neural network modelers have shown how hierarchical trees can be implemented in more organized neural networks. 41 One conjecture is that the periodic rhythms of neural firing, how have that represent an abstract slot in a tree and the units that represent its contained the units for p fire in synchrony with them, also at twenty times a second and the units for p fire in synchrony with them, also at twenty times a second in synchrony thirty times a second, and the units for i can be firing thirty times a second, and the system knows that the nucleus in synchrony thirty times a second, and the system knows that the nucleus system doesn't get confused and think that i is in the coda, because the system doesn't get confused and to its slot. That theory may or may not be not specific to the system who have the sound to its slot. That theory may or may not be not specific to the system who have the sum of the system who have the sum of the system who have the sum of the system doesn't get confused and think that i is in the coda, because the system who have the sum of the system who have the system who have the sum of the system who have the sum of the system who have the system who h

but I mention it to show that abstract symbols and complex structure are not incompatible with plausible neural network models.

empirical prediction or accounted for several kinds of data in the way that an actual theory of how that part of the mind works. And no one has made an what programmers call a hack or a kluge—but none defends his brainchild as ent patch that narrowly fixes some problem that Prince and I pointed outtests find little or no improvement. 43 Each of the inventors has added a differunits hidden between the input and the output layers, but direct benchmark call a rule. Many modelers beef up the network with an intervening layer of actual past-tense form. That unmentioned mechanism, of course, is what we mechanism then has to apply the suffix or vowel change to the stem to get an stand for the five or six suffixes or vowel changes in the language. Some other Numelhart and McClelland did. walk and run. Others implicitly concede that words are composed of symbols monosyllabic words made of a consonant, a vowel, and a consonant, such as tense form. They merely select from an innate menu of five or six units that for stems and symbols for affixes and don't even bother computing a pastphone problem by using a Dick-and-Jane version of English that contains only them anywhere near as ambitious as the original. 42 Many sidestep the Wickelbeen devised in reply to our critique have been disappointments, not one of comparison, the twenty-five connectionist models of the past tense that have counts for not one but several aspects of children's language development. In after all, explain a major phenomenon that rule theories ignore, and it ac-So it is ironic that Prince and I are probably the model's biggest fans. It does, network modeling after all, and the connectionists dropped it like a hot potato. breathed a sigh of relief because they thought they didn't have to learn neural After Alan Prince and I took apart the pattern associator model, the linguists

ong, both too flawed to be completely right. Prince and I have proposed a bind in which Chomsky and Halle are basically right about regular inflection. Proposal is simply the traditional words-and-rules theory with a twist. When verbs are computed by a rule that combines a symbol for a verb stem a symbol for the suffix. Irregular verbs are pairs of words retrieved from menual dictionary, a part of memory. Here is the twist: Memory is not a list

of unrelated slots, like RAM in a computer, but is associative, a bit like the Rumelhart-McClelland pattern associator memory. Not only are words linked to words, but bits of words are linked to bits of words. The bits are not Wickelphones, of course, but substructures like stems, onsets, rimes, vowels, consonants, and features, perhaps something like this:

Furthermore, the nodes of one word (such as string) overlap the same nodes in other words (such as sling, stick, stink, and swim). As a result, irregular verbs show the kinds of associative effects found in a connectionist pattern associator. People find families of similar irregular verbs easier to store and recall because these verbs repeatedly strengthen their shared associations. And people occasionally generalize the irregular patterns to new, similar verbs, because the new verbs contain material that already had been associated with the pattern from the old verbs.

Prince and I were not the first to modify the words-and-rules theory in this Prince and I were not the first to modify the words-and-rules theory in this Prince and I were not the first to modify the words-and-rules theory. Many generative linguists have been uncomfortable with the Chomsky way. Many generative linguists in language. Mark Aronoff, Joan Bresnan, Ray Jackendoff, Rochelle systematic in language. Mark Aronoff, Joan Bresnan, Ray Jackendoff, Rochelle ideber, Andrew Spencer, and others have suggested that language uses withing of rules: true rules that speakers generalize freely, and lexical redundance wiles that merely capture patterns of similarity among words stored in memory. At A memory system in which patterns of similarity are registered and occurrence ory. At A memory system in which patterns of similarity are registered and occurrence ory. At A memory system in which patterns of similarity are registered and occurrence ory. At A memory system in which patterns of similarity are registered and occurrence ory. At A memory system in which patterns of similarity are registered and occurrence ory. At A memory system in which patterns of similarity are registered and occurrence ory.

patterns are disabled but the regular rule works fine that have nothing in common except a failure of access to memory, irregular form to a universal design. We will see how in dozens of cases of language use guage is organized in the brain, and whether the languages of the world conhow new words are created, how children learn their mother tongue, how lanthe book as we explore how words are used in conversation and in reading, instance of the symbol "verb." The evidence will be woven through the rest of memory, namely, a symbol-processing operation or rule, which applies to any puted by a mental operation that does not need access to the contents of trievable from memory. Regular inflection has that power because it is cominflection can apply to any word, regardless of whether the word is readily reinflection depends on memorized words or forms similar to them, but regular prediction is that regular and irregular inflection are psychologically, and ultieveryone to make nice and play together, but it makes a strong prediction. The both involve patterns that people can generalize? The answer is that irregular mately, neurologically distinguishable. But how could they be distinguished if The modified words-and-rules theory may sound like a sappy attempt to get

If the modified words-and-rules theory is correct, it would have a pleasing implication for the centuries-old debate between associationism and rationalism: Both theories are right, but they are right about different parts of the mind.