The case for UG

Evidence from phonology

1

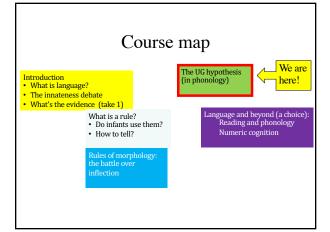
Last lectures

- Two mechanisms for productivity: rules and statistical learning
- Rules play a role in natural language
 - Demonstrably distinct from both
 - Statistical learning
 - Sensorimotor constraints

2

2

Chomsky's big idea (1): Rules


What is it that a child learns about their language?

- ✓ Answer (so far): Rules
 - Plural: Noun+S
 - Sentence: NP+VP

Today's question: How are linguistic rules acquired?

- Entirely learned from experience
- Partly innate?

4

5

Chomsky's big idea (2): UG

- Children have language (knowledge) for the same reason they have two hands
 Language: a mental organ
- Both are biological capacities that are *innately* constrained
 - The innate aspect of language is called universal grammar (UG)

Is language a specialized, modular, domain-specific system?

Case study: Phonology

- Onset clusters
 - *− blog*
 - <mark>lb</mark>og

7

Phonology--an unusual place to look for UG

• Chomsky's own work on UG mostly concerns syntax

8

Q

Phonology ≠ specialized

理解	d	COGNITION
HARVER	Cognition 97 (2009) 179-218	hele omboaeCOGNI
	Discussion	
	evolution of the language f Clarifications and implication	ons
W. Tecu	mseh Fitch ^{a.o} , Marc D. Hauser ^b , Noa	m Chomsky ^c
Canada	y of St. Andrews, School of Psychology, St. Andrews, \$730 K. "Marward University, Cambridge, MA, USA "Manushusets dominate of Embredge, Cambridge, MA,	
	Received 5 November 2004, accepted 15 February 200	5
sology		

to the receivation only hypothesis: but is interest to the receivation only hypothesis designed that the comprised relievance of mixture suggested that the comprised relievance of mixture suggested that the comprised relievance of mixture suggested that the comprised relievance of the comprised that the comprised relievance of the compr

Phonology--an unusual place to look for UG

- Chomsky's own work on UG mostly concerns syntax
- Laypeople think phonological knowledge doesn't concern rules to start with
 - So do many phonologists...
- No innate rules either...

10

Naïve theory of phonology:

- - UG in phonology makes no sense—languages are so different from each other...
 - English : blog
 - Russian: lbog
- Objection 2:sensorimotor corelates
 - To the extent some phonological preferences are gener they are nonlinguistic:
 - Audition
 - Articulation
 - Note: Per naïve phonology, there are no rules and no UG:
 - Phonological preferences are universal, but they are only due to domain general pressures (e.g., audition) - not due to UG!

11

- Our goal
 Face your biases: naïve phonology is not necessarily right
- Does UG constrain phonology: that's an empirical question
 - Let's find out!

Disclaimer: as usual, our goal is to show how to "fight the fight"

The victor is yet unknown...

Phonology *is* the right place to look

- Last time: phonology is governed by algebraic operations
 - Contrary to the received wisdom
- Finding evidence for UG in phonology would offer particularly strong case for UG, generally!

13

13

The OT approach to UG

14

14

What's wrong with *lbog*? Two questions....

- Why is *lbog* banned?
 - Linguistic constraint
 - Nonlinguistic (i.e., domain-general) constraints
- How generally?
 - Universally
 - Not-universally

	Universality	Diversity
Linguistic constraints		
Domain- general (audition, articulation)		

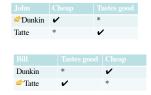
What needs to be explained

- Why languages differ from each other
 - English: *ptil
 - Hebrew: OK (ptil 'wick')
- Why they are similar
 - Across languages, ptil is still less frequent than play

16

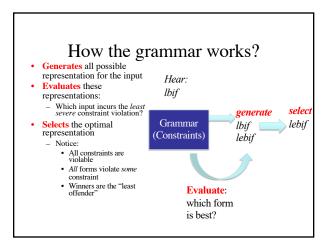
16

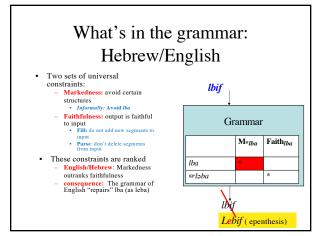
question

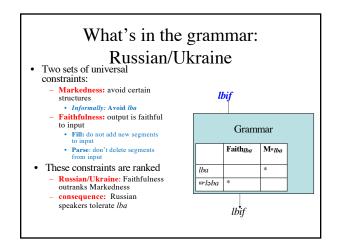

- Does language diversity mean there are no universals (and no UG)?
- Not necessarily
 - It depends on your theory of UG!
 - Optimality theory (Prince & Smolensky, 1993):
 a theory of violable UG constraints

17

17


How can a single theory capture both universality and diversity?


It's all in the ranking!



- · All constraints are universal
- Differences in ranking
- A UG theory of coffee explains both things!

22

Optimality theory: the big ideas

- Universal grammar: all grammars share the same universal constraints
- These constraints are active universally
 - Regardless of linguistic experience

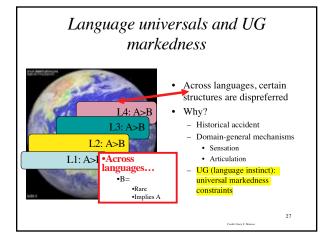
23

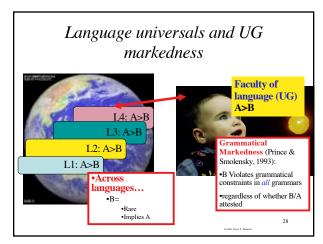
Our question: Universals in phonology?

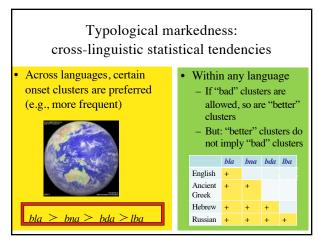
- Do languages share aspects of phonological organization: are certain syllables systematically preferred to others?
 - E.g., blog>lbog
- Do speakers exhibit these preferences *even* when they are not attested in their language?
- What is the source of these universals?
 - UG (domain-specific)
 - Other factors (domain general)

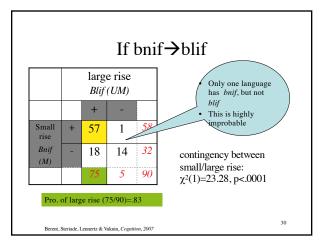
Outline: Does UG prefer blog>lbog?

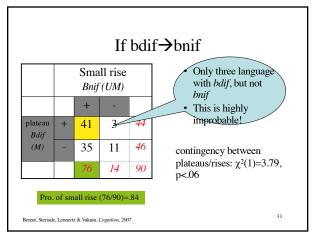
- Test 1: Cross-linguistic tendencies...
- Test 2: Can we explain them in OT?
- Test 3: What about individual speakers
 - Do speakers prefer blog>lbog
 - Even when their language allows neither
 - Is the preference due to UG?

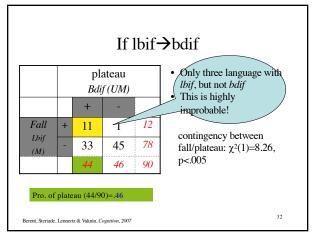

25


25


Test 1: cross-linguistic tendencies


26


26



32

summary

- We can confirm that if a language has the "worse" onset, it tends to have the better one as well. Counter-examples exist, but they are rare.
 - Lbif →bdif
 - Bdif >bnif
 - $-\operatorname{Bnif} {\color{red} {\rightarrow}} blif$

Outline: Does UG prefer blog>lbog?

- Test 1: Cross-linguistic tendencies...
- Test 2: Can we explain them in OT?
 - The role of sonority
 - Sonority leads to repair
- Test 3: What about individual speakers
 - Do speakers prefer blog>lbo
 - Even when their language allows neithe
 - Is the preference due to UG'

34

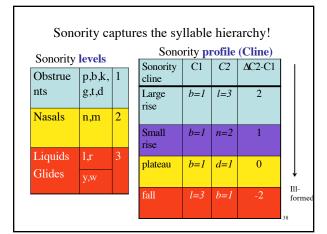
34

Test 2: can we capture these typological tendencies by UG?

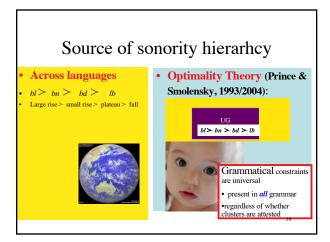
35

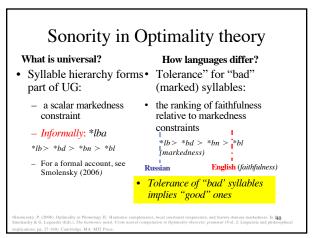
35

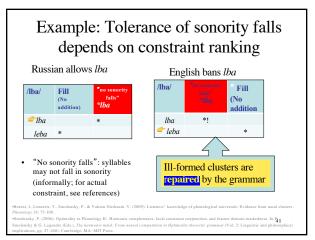
Sonority levels Obstruents p,b,k, 1 g,t,d Nasals n,m 2 Liquids l,r 3 Glides y,w


Linguistic account: *sonority*• Sonority: an abstract **formal phonological** property of

segments


Defined primarily by the manner of articulation feature
(phonology)


- Remember:
 - Features are related to articulation (high sonority ~ loud)
 - But features are **abstract**:
 - Reflect how your brain categorizes the sound
 - Not the physical sound itself₃₇


37

38

Our questions: • Are English speakers sensitive to the structure of syllable they have never heard before? (poverty of a stimulus argument) • bt > bn > bd > tb • Is this due to a UG constraint?

Test 3: individual speakers

What we know about what we have never heard before...

43

43

Rationale: repair *lba

- Prediction: ill-formed syllables are repaired
- E.g., lba →leba

44

Rationale: repair

- •The likelihood of repair depends on wellformedness
 - -The worst form the onset, the more likely its repair

bena> beda> leba

- •Repair → misidentification
- •Repair is a "litmus

test" of wellformedness

	*lba		
	*lba	D	
10	↓ ba		

Outline: Does UG prefer blog>lbog?

- VTest 1: Cross-linguistic tendencies...
- VTest 2: Can we explain them in OT?
 - The role of sonority
 - Sonority leads to repair
- Test 3: What about individual speakers
 - Do speakers prefer blog>lbog
 - Even when their language allows neither
 - Is the preference due to UG?

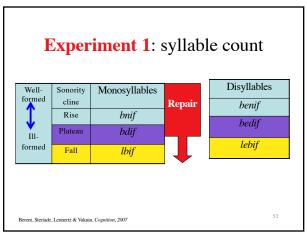
49

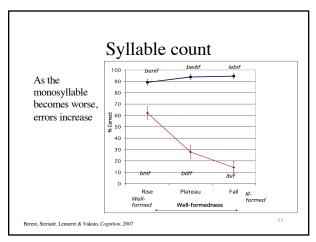
49

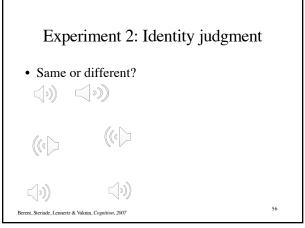
Experiment 1: Syllable count

50

50


Experiment 1: Syllable count



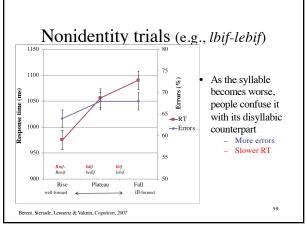


Experiment 1: syllable count Logic • Manipulate well-formedness of monosyllables • Prediction: ill-formed monosyllables will be repaired (as disyllables)→misidentified as "disyllables" - Incorrect disyllabic responses could indicate repair • Question: does repair depend on well-formedness? E.g., bena> beda> 1€ba

Method • Materials: - 30 monosyllabic triplets (bnif,bdif, lbif) - 30 disyllabic triplets (benif,bedif, lebif) • Materials are recorded by a native Russian speaker • Participants (N=16 English speakers)

Identic	cal trials	Non-ia	lentical-tr	rials	
Bnif	bnif	Small rise	bnif	benif	Repair
bdif	bdif	Plateau	bdif	bedif	
lbif	lbif	Fall	lbif	lebif	
benif	benif				-
bedif	bedif				•
bedif	bedif				

Experiment 2: Identity judgment


prediction

- As monosyllable becomes worse formed, repair increase
- People will incorrectly misidentify non-identical trials as identical
- The worse formed the onset, the more likely the error

Non-identical-trials		
Small rise	bnif	benif
Plateau	bdif	bedif
Fall	lbif	lebif

Berent, Steriade, Lennertz & Vaknin, Cognition, 2007

58

59

Conclusions so far

- People are sensitive to the structure of syllables that *they have never heard before*
- Evidence: repair
 - Syllables that are rare across languages (onsets with small sonority distances) are harder to identify
 - · Misidentified as disyllables
 - Confused with their disyllabic count
 - erparts
- Conclusion: sensitivity to syllable structure

Small sonority distances ar	e
misidentified	
bd>lb	

bl>bn>bd>lb

- Berent, I., Steriade, D., Lennertz, T., & Vaknin, V. (2007). What we know about what we have never heard: Evidence from perceptual illusions. Cognition. 104, 591-630.
- Berent, I. (2008). Are phonological representations of printed and spoken language isomorphic? Evidence from the
 restrictions on unattested onsets. Journal of Experimental Psychology: Human Perception & Performance, 34, 128
 1304.
- Berent, I., Lennertz, T., Jun, J., Moreno, M. A., & Smolensky, P. (2008). Language universals in human brain Proceedings of the National Academy of Sciences, 105, 5321-5325.
- Berent, I., Harder, K., & Lenertz, T. (2011). Phonological universals in early childhood: Evidence from sonori

ml\md

- Berent, I., Lennertz, T., Smolensky, P., & Vaknin-Nusbaum, V. (2009). Listeners' knowledge of phonological universals: Evidence from nasal clusters. *Phonology* 26, 75-108.
- Berent, I., Balaban, E., Lennertz, T., & Vaknin-Nusbaum, V. (2010). Phonological universals constrain the processing of nonspeec Journal of Experimental Psychology: General, 139, 418-435.

pn>fn

- Lennertz, T., & Berent, I. (2012). People's knowledge of phonological universals: Evidence from fricatives and stops. manuscri, submitted for publication.
- submitted for publication.

 b≥bd
 - D2>02
 Tamasi, K., & Berent, I. (2014). Sensitivity to phonological universals: The case of fricatives and stops. Journal of Psycholinguistic Research.

6

61

Phonological universals: UG or domain-general pressures?

Part 2

6

62

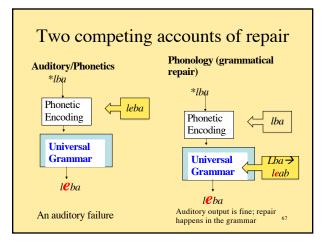
Next question: Why are ill-formed syllables misidentified?

- Functional constraints (domain-general)
 - Audition
 - Articulation
- Linguistic experience
- Universal grammar


63

How we go about it?

- Strategy: if we can reject the non-UG explanations, then *by elimination*, we can support UG
- Our plan:
 - test each of the alternative explanations (color coded)
 - See if UG "remains standing"


64

64

65

An auditory/phonetic account *lb Phonetic Encoding People cannot extract the correct phonetic form to lbif Not due to abstract grammatical constraints in phonology

Two challenges to the auditory account

- Russian speakers encode these clusters correctly
 - Ill-formed syllables can be identified by some speakers
- English speakers obey the sonority hierarchy with *printed* materials

68

68

Challenge 1: Russian speakers Syllable count: monosyllables • Russian speakers can identify all monosyllables accurately (>90%) Berent, Steriade, Lennertz & Vakinin, Cognition, 2007

Challenge 2: English speakers fail to identify *printed* words

- Why use printed words?
- Previous research shows that, when people read silently, they decode the phonology of printed words
 - E.g., flower?
 - People say "yes' to Rose, Roze, Rows
- Significance: reading can allow us to test for phonology while controlling for auditory demands (none)
- Question: are people sensitive to the syllable hierarchy in silent reading?

70

Testing the auditory account: Identity task with *printed* words Same Idifferent? LEBIF 2.5 S's

71

Predictions of competing accounts

- Auditory account: no difficulties with illformed syllables
- *Linguistic account*: Ill-formed syllables should be misidentified

Why are ill-formed onsets misidentified? Results As the cluster becomes worse, response is slower People are sensitive to the syllable hierarchy even when words are printed (no auditory demands) Conclusion: The difficulty with lbif is not only auditory Belif benif belif lebif Well-formed onsets misidentified? Response to non-identical items (e.g., is lbif=lebif?) Response time lbif=lebif?)

73

Summary: challenges to the auditory/phonetic account

- Russian speakers can encode these syllables
- English speakers *cannot*, even with *printed* materials

74

Why are ill-formed onsets misidentified? **Ib* Phonetic Encoding - Hypothesis: speech perception requires motor simulation Universal Grammar

Speech perception triggers articulatory

Speech production & perception (fMRI)

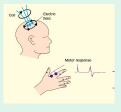
- Motor areas are activated in production and perception
 - p activates the lip motor area
 - t activates the tongue motor area

Pulvermiller, F., Huss, M., Kherif, F., Moscoso del Prado Martin, F., Hank, O., & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences, 103, 7865-7870. Why are motor areas active in perception?

- To perceive speech, you must simulate the process of producing it
- More generally: speech perception if *embodied*—requires action

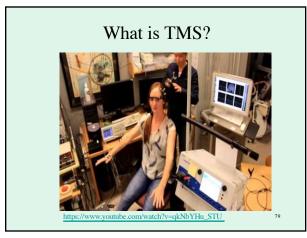
76

76

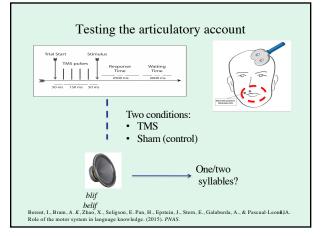

Speech perception triggers articulatory action

- Implication to syllable structure:
 - To perceive *lbif*, you must simulate its production
 - Could people misperceive *lbif* because they fail to simulate it?
- Test: TMS (transcranial magnetic stimulation)

7

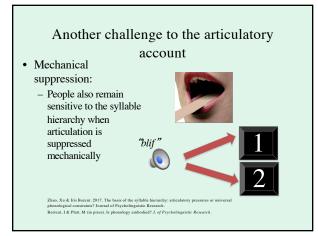

77

What is TMS?

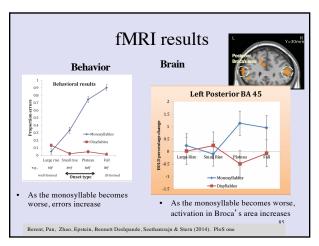


Kohayashi M. & Pascual Leone A (2003) Transcranial

- Transcranial Magnetic Stimulation (TMS) modulates activity in specific brain regions by means of electro-magnetic pulses. This can either
 - Interfere with processes
 - Facilitate them



TMS and the syllable hierarchy Logic: Use TMS to disrupt motor activity in articulatory motor areas (e.g., lip): If the difficulty with ill-formed syllables is due to difficulty with motor simulation, then disrupting motor activity should disrupt sensitivity to the syllable hierarchy



Testing the articulatory account Results TMS disrupts responses only to the best formed-clusters (blif) People remain sensitive to the syllable hierarchy even when articulation is suppressed (by TMS) Conclusion: - People do rely on simulation as part of speech perception, generally (more on this later) - Simulation is not the cause of the the syllable hierarchy - Against the articulatory account

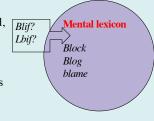
Berent, I., Bram, A. K., Zhao, X., Seligson, E. Pan, H., Epstein, J., Stern, E., Galaburda, A., & Pascual-Leon82A. Role of the motor system in language knowledge. (2015). PNAS.

Results

- The syllable hierarchy modulates activation in Broca's area (among other regions)
 - Locus—Broca's area is consistent with the linguistic account

86

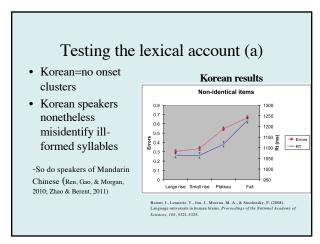
86

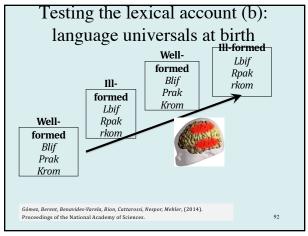

Why are ill-formed onsets misidentified? - Auditory failure - Articulatory failure - Lexical analogy "good" clusters are similar to familiar English words - Not due to Isational sandlegy - Korean=no onset clusters

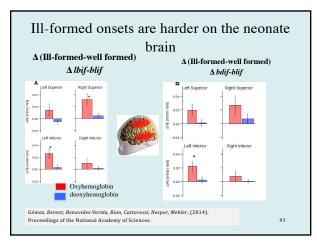
- Why?

 Audition: marked clusters are hard to hear
 - Russian speakers have no such problems
 - English speakers do, even for printed words
- Articulation: marked clusters are hard to articulate (and people engage in subvocal articulation)
 - people remain sensitive to the syllable hierarchy even when...
 - The lip motor area is stimulated by TMS
 - When motor simulation is blocked mechanically
- The syllable hierarchy activates Broca's area ss

Lexical analogy


- To determine whether a novel word is well-formed, Blif? match it against familiar words stored in memory (lexicon)
- Blif-similar to many words → preferred
 - Note: no role to grammar!
- Is this the *only* source of syllable preferences?



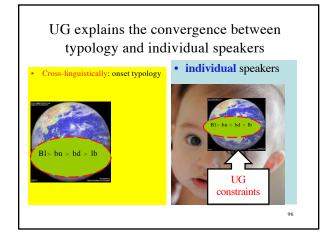

89

Two tests of lexical analogy

- Speakers of Korean/Mandarin
 - no syllables with onset clusters
- Newborns: No lexicon!

Challenges to lexical account: summary

- Korean and Mandarin speakers don't have experience with onset clusters (impoverished lexicon); still sensitive to the syllable hierarchy
- Neonate infants have no lexicon—still sensitive to the syllable hierarchy


94

94

Summary: why are ill-formed onsets misidentified? • Not due to *auditory* failure Russian speakers encode these clusters auditory - English speakers fail with printed materials analogy... Not due to articualtory simulation: Universal Sonority hierarchy maintained despite TMS and mechanical suppression The hierarchy engages Broca's area (possibly, in line with l**€**ba linguistic function) Not due to *lexical* analogy

95

Korean=no onset clustersSimilar results with neonates

General conclusions

- Two sources of phonotactic knowledge
 - Language-particular knowledge
 - E.g., no coda in Japanese
 - Consequences: repair → perceptual illusions
 - Universal:
 - Across languages: *lba* type syllables are dispreferred
 - People show similar preferences to novel syllables
 - These preferences are not solely due to experience or functional pressures pressures
- Phonology might be shaped by UG

	_