Finiteness for Hecke algebras of p-adic groups.

A theorem by Jean-Francois Dat, David Helm, Robert Kurinczuk, and Gilbert Moss

Required Background:

basic representation theory of p-adic groups -

- Definitions (smooth, admissible)
- the parabolic induction/Jacquet functor construction
- Cuspidal representations

Required Background:

basic representation theory of p-adic groups -

- Definitions (smooth, admissible)
- the parabolic induction/Jacquet functor construction
- Cuspidal representations

Required Background:

basic representation theory of p-adic groups -

- Definitions (smooth, admissible)
- the parabolic induction/Jacquet functor construction
- Cuspidal representations

Goals:

Formulation of the finiteness result

Required Background:

basic representation theory of p-adic groups -

- Definitions (smooth, admissible)
- the parabolic induction/Jacquet functor construction
- Cuspidal representations

- Formulation of the finiteness result
- Recollection of Bernstein center theory

Required Background:

basic representation theory of p-adic groups -

- Definitions (smooth, admissible)
- the parabolic induction/Jacquet functor construction
- Cuspidal representations

- Formulation of the finiteness result
- Recollection of Bernstein center theory
- Formulation of Fargues-Sholze Theory

Required Background:

basic representation theory of p-adic groups -

- Definitions (smooth, admissible)
- the parabolic induction/Jacquet functor construction
- Cuspidal representations

- Formulation of the finiteness result
- Recollection of Bernstein center theory
- Formulation of Fargues-Sholze Theory
- Proof of the finiteness result modulo Fargues-Sholze Theory

Let *G* be a reductive group over a local field *F*.

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

$$\bullet \ \mathcal{M}^{f.g.}(G) = \bigoplus_{\beta \in \mathcal{B}} \mathcal{M}(G)_{\beta}^{f.g.} = \bigcup_{K} \mathcal{M}(G)_{K}$$

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

- $\mathcal{M}^{f.g.}(G) = \bigoplus_{\beta \in \mathcal{B}} \mathcal{M}(G)^{f.g.}_{\beta} = \bigcup_{K} \mathcal{M}(G)_{K}$
- $\mathcal{M}(G)_{\beta} \cong \mathcal{M}(End(P_{\beta}))$

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

- $\mathcal{M}^{f.g.}(G) = \bigoplus_{\beta \in \mathcal{B}} \mathcal{M}(G)^{f.g.}_{\beta} = \bigcup_{K} \mathcal{M}(G)_{K}$
- $\mathcal{M}(G)_{\beta} \cong \mathcal{M}(End(P_{\beta}))$
- $\bullet \ \mathcal{M}(G)_K \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G,K))$

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Theorem (Bernstein)

- $\mathcal{M}^{f.g.}(G) = \bigoplus_{\beta \in \mathcal{B}} \mathcal{M}(G)^{f.g.}_{\beta} = \bigcup_{K} \mathcal{M}(G)_{K}$
- $\mathcal{M}(G)_{\beta} \cong \mathcal{M}(End(P_{\beta}))$
- $\bullet \ \mathcal{M}(G)_K \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G,K))$

Definition

$$\mathfrak{Z}(G) := \mathfrak{Z}(\mathcal{M}(G)) = End(Id_{\mathcal{M}}(G))$$

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Theorem (Bernstein)

- $\mathcal{M}^{f.g.}(G) = \bigoplus_{\beta \in \mathcal{B}} \mathcal{M}(G)_{\beta}^{f.g.} = \bigcup_{K} \mathcal{M}(G)_{K}$
- $\bullet \ \mathcal{M}(G)_{\beta} \cong \mathcal{M}(End(P_{\beta}))$
- $\bullet \ \mathcal{M}(G)_K \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G,K))$

Definition

$$\mathfrak{Z}(G) := \mathfrak{Z}(\mathcal{M}(G)) = End(Id_{\mathcal{M}}(G))$$

Theorem (Bernstein)

 $\mathcal{M}(G)$ is locally finite over $\mathfrak{Z}(G)$ which is locally finitely generated.

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Theorem (Bernstein)

- $\mathcal{M}^{f.g.}(G) = \bigoplus_{\beta \in \mathcal{B}} \mathcal{M}(G)_{\beta}^{f.g.} = \bigcup_{K} \mathcal{M}(G)_{K}$
- $\mathcal{M}(G)_{\beta} \cong \mathcal{M}(End(P_{\beta}))$
- $\mathcal{M}(G)_K \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G,K))$

Definition

$$\mathfrak{Z}(G) \coloneqq \mathfrak{Z}(\mathcal{M}(G)) = End(Id_{\mathcal{M}}(G))$$

Theorem (Bernstein)

 $\mathcal{M}(G)$ is locally finite over $\mathfrak{Z}(G)$ which is locally finitely generated.

• $End(P_{\beta})$ is finite over its center which is f.g.

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Theorem (Bernstein)

- $\mathcal{M}^{f.g.}(G) = \bigoplus_{\beta \in \mathcal{B}} \mathcal{M}(G)_{\beta}^{f.g.} = \bigcup_{K} \mathcal{M}(G)_{K}$
- $\mathcal{M}(G)_{\beta} \cong \mathcal{M}(End(P_{\beta}))$
- $\bullet \ \mathcal{M}(G)_K \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G,K))$

Definition

$$\mathfrak{Z}(G) := \mathfrak{Z}(\mathcal{M}(G)) = End(Id_{\mathcal{M}}(G))$$

Theorem (Bernstein)

 $\mathcal{M}(G)$ is locally finite over $\mathfrak{Z}(G)$ which is locally finitely generated.

• $End(P_{\beta})$ is finite over its center which is f.g. Equivalently:

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) := \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Theorem (Bernstein)

- $\mathcal{M}^{f.g.}(G) = \bigoplus_{\beta \in \mathcal{B}} \mathcal{M}(G)_{\beta}^{f.g.} = \bigcup_{K} \mathcal{M}(G)_{K}$
- $\mathcal{M}(G)_{\beta} \cong \mathcal{M}(End(P_{\beta}))$
- $\mathcal{M}(G)_K \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G,K))$

Definition

$$\mathfrak{Z}(G) := \mathfrak{Z}(\mathcal{M}(G)) = End(Id_{\mathcal{M}}(G))$$

Theorem (Bernstein)

 $\mathcal{M}(G)$ is locally finite over $\mathfrak{Z}(G)$ which is locally finitely generated.

- End(P_{β}) is finite over its center which is f.g. Equivalently:
- $\mathcal{H}_{\mathbb{C}}(G,K)$ is finite over its center which is fig.

Question

What changes when we replace \mathbb{C} with other rings?

Question

What changes when we replace \mathbb{C} with other rings?

Definition

$$\mathcal{H}_R(G,K) = End(R[G/K]) \cong R[K \backslash G/K]$$

Question

What changes when we replace \mathbb{C} with other rings?

Definition

$$\mathcal{H}_R(G,K) = End(R[G/K]) \cong R[K \backslash G/K]$$

Warning

In general - there are no R-valued Haar measures. but:

Question

What changes when we replace \mathbb{C} with other rings?

Definition

$$\mathcal{H}_R(G,K) = End(R[G/K]) \cong R[K\backslash G/K]$$

Warning

In general - there are no R-valued Haar measures. but:

 if p⁻¹ ∈ R then, for small K, there is an R-valued Haar measure m with m(K) = 1.

Question

What changes when we replace \mathbb{C} with other rings?

Definition

$$\mathcal{H}_R(G,K) = End(R[G/K]) \cong R[K\backslash G/K]$$

Warning

In general - there are no R-valued Haar measures. but:

- if p⁻¹ ∈ R then, for small K, there is an R-valued Haar measure m with m(K) = 1.
- if $N^{-1} \in R$ for certain N then, for all K, there is an R-valued Haar measure m with m(K) = 1.

Question

What changes when we replace \mathbb{C} with other rings?

Definition

$$\mathcal{H}_R(G,K) = End(R[G/K]) \cong R[K\backslash G/K]$$

Warning

In general - there are no R-valued Haar measures. but:

- if p⁻¹ ∈ R then, for small K, there is an R-valued Haar measure m with m(K) = 1.
- if $N^{-1} \in R$ for certain N then, for all K, there is an R-valued Haar measure m with m(K) = 1. banal case

Formulation of the main result

Definition

 $\mathcal{H}_R(G,K) = End(R[G/K]) \cong R[K\backslash G/K]$

Conjecture

If $p^{-1} \in R$ then $\mathcal{H}_R(G, K)$ is finite over its center which is f.g.

Formulation of the main result

Definition

 $\mathcal{H}_R(G,K) = End(R[G/K]) \cong R[K\backslash G/K]$

Conjecture

If $p^{-1} \in R$ then $\mathcal{H}_R(G, K)$ is finite over its center which is f.g.

Theorem ([DHKM])

If $\ell \neq p$ and $\mathbb{Z}_{\ell} \to R$ then $\mathcal{H}_R(G,K)$ is finite over its center which is f.g.

Formulation of the main result

Definition

 $\mathcal{H}_R(G,K) = End(R[G/K]) \cong R[K\backslash G/K]$

Conjecture

If $p^{-1} \in R$ then $\mathcal{H}_R(G, K)$ is finite over its center which is f.g.

Theorem ([DHKM])

If $\ell \neq p$ and $\mathbb{Z}_{\ell} \to R$ then $\mathcal{H}_R(G,K)$ is finite over its center which is f.g.

Question (to the audience)

What happens in general?

• Reduction to the case $R = \mathbb{Z}_{\ell} \langle \sqrt{p} \rangle$

• Reduction to the case $R = \mathbb{Z}_{\ell}(\sqrt{p})$ – fathfully flat desent

- Reduction to the case $R = \mathbb{Z}_{\ell}(\sqrt{p})$ fathfully flat desent
- Localizing the problem

- Reduction to the case $R = \mathbb{Z}_{\ell}(\sqrt{p})$ fathfully flat desent
- Localizing the problem A-finit objects

- Reduction to the case $R = \mathbb{Z}_{\ell}(\sqrt{p})$ fathfully flat desent
- Localizing the problem A-finit objects
- Reduction to "parabolic induction of cuspidal representations preseres finitness"

- Reduction to the case $R = \mathbb{Z}_{\ell}(\sqrt{p})$ fathfully flat desent
- Localizing the problem A-finit objects
- Reduction to "parabolic induction of cuspidal representations preseres finitness" – Bernstein decomposition.

Faithfully flat descent

We will say that an R-ring is of finite type over R if it is finite over its center which is finitely generated over R.

Faithfully flat descent

We will say that an *R*-ring is of finite type over *R* if it is finite over its center which is finitely generated over *R*.

Lemma

Let $R \rightarrow S$ be a ring homomorphism.

We will say that an *R*-ring is of finite type over *R* if it is finite over its center which is finitely generated over *R*.

Lemma

Let $R \rightarrow S$ be a ring homomorphism.

• If A is R-finite type then $A \otimes_R S$ is S-finite type

We will say that an *R*-ring is of finite type over *R* if it is finite over its center which is finitely generated over *R*.

Lemma

Let $R \rightarrow S$ be a ring homomorphism.

- If A is R-finite type then $A \otimes_R S$ is S-finite type
- If A⊗_R S is S-finite type and S is faithfully flat over R then A is R-finite type

We will say that an R-ring is of finite type over R if it is finite over its center which is finitely generated over R.

Lemma

Let $R \rightarrow S$ be a ring homomorphism.

- If A is R-finite type then $A \otimes_R S$ is S-finite type
- If A⊗_R S is S-finite type and S is faithfully flat over R then A is R-finite type

Corollary

We will say that an R-ring is of finite type over R if it is finite over its center which is finitely generated over R.

Lemma

Let $R \rightarrow S$ be a ring homomorphism.

- If A is R-finite type then $A \otimes_R S$ is S-finite type
- If A⊗_R S is S-finite type and S is faithfully flat over R then A is R-finite type

Corollary

• The main theorem holds for $R = \mathbb{Q}_{\ell}$.

We will say that an R-ring is of finite type over R if it is finite over its center which is finitely generated over R.

Lemma

Let $R \rightarrow S$ be a ring homomorphism.

- If A is R-finite type then $A \otimes_R S$ is S-finite type
- If A⊗_R S is S-finite type and S is faithfully flat over R then A is R-finite type

Corollary

- The main theorem holds for $R = \mathbb{Q}_{\ell}$.
- It is enough to prove the main theorem for $R = \mathbb{Z}_{\ell}(\sqrt{p})$.

We will say that an R-ring is of finite type over R if it is finite over its center which is finitely generated over R.

Lemma

Let $R \rightarrow S$ be a ring homomorphism.

- If A is R-finite type then $A \otimes_R S$ is S-finite type
- If A⊗_R S is S-finite type and S is faithfully flat over R then A is R-finite type

Corollary

- The main theorem holds for $R = \mathbb{Q}_{\ell}$.
- It is enough to prove the main theorem for $R = \mathbb{Z}_{\ell}(\sqrt{p})$.

From now we will fix $R = \mathbb{Z}_{\ell} \langle \sqrt{p} \rangle$.

Definition

Let a (com. unital) ring A act on an object $V \in \mathcal{M}_R(G)$. We say that V is A-finite if

Definition

Let a (com. unital) ring A act on an object $V \in \mathcal{M}_R(G)$. We say that V is A-finite if

• the image of A in End(V) is finitely generated over R.

Definition

Let a (com. unital) ring A act on an object $V \in \mathcal{M}_R(G)$. We say that V is A-finite if

- the image of A in End(V) is finitely generated over R.
- For any compact open K < G, the module V^K is f.g over A.

Definition

Let a (com. unital) ring A act on an object $V \in \mathcal{M}_R(G)$. We say that V is A-finite if

- the image of A in End(V) is finitely generated over R.
- For any compact open K < G, the module V^K is f.g over A.

The main Theorem is equivalent to the following one:

Theorem ([DHKM])

Any f.g. module $V \in \mathcal{M}_R(G)$ is $\mathfrak{Z}_R(G) := \mathfrak{Z}(\mathcal{M}_R(G))$ -finite.

Definition

Let a (com. unital) ring A act on an object $V \in \mathcal{M}_R(G)$. We say that V is A-finite if

- the image of A in End(V) is finitely generated over R.
- For any compact open K < G, the module V^K is f.g over A.

The main Theorem is equivalent to the following one:

Theorem ([DHKM])

Any f.g. module $V \in \mathcal{M}_R(G)$ is $\mathfrak{Z}_R(G) := \mathfrak{Z}(\mathcal{M}_R(G))$ -finite.

Proof of the reduction.

Take

$$V = R[G/K]$$

Definition

V is A-finite if

- the image of A in End(V) is f.g. over R.
- For any compact open K < G, the module V^K is f.g. over A.

Definition

V is A-finite if

- the image of A in End(V) is f.g. over R.
- For any compact open K < G, the module V^K is f.g. over A.

Lemma

if M is A-finite then End(M) is finite over A.

Definition

V is A-finite if

- the image of A in End(V) is f.g. over R.
- For any compact open K < G, the module V^K is f.g. over A.

Lemma

if M is A-finite then End(M) is finite over A.

Proof.

Definition

V is A-finite if

- the image of A in End(V) is f.g. over R.
- For any compact open K < G, the module V^K is f.g. over A.

Lemma

if M is A-finite then End(M) is finite over A.

Proof.

 $\exists R[G/K]^n \twoheadrightarrow M.$

Definition

V is A-finite if

- the image of A in End(V) is f.g. over R.
- For any compact open K < G, the module V^K is f.g. over A.

Lemma

if M is A-finite then End(M) is finite over A.

Proof.

 $\exists R[G/K]^n \twoheadrightarrow M$. So End $(M) \subset \text{Hom}(R[G/K]^n, M) \cong (M^K)^n$ is f.g. \square

Definition

V is A-finite if

- the image of A in End(V) is f.g. over R.
- For any compact open K < G, the module V^K is f.g. over A.

Lemma

if M is A-finite then End(M) is finite over A.

Proof.

 $\exists R[G/K]^n \twoheadrightarrow M$. So $\operatorname{End}(M) \subset \operatorname{Hom}(R[G/K]^n, M) \cong (M^K)^n$ is f.g. \square

Corollary

Let A act on an objects $N \subset M \in \mathcal{M}_R(G)$, and let $B \to A$.

Definition

V is A-finite if

- the image of A in End(V) is f.g. over R.
- For any compact open K < G, the module V^K is f.g. over A.

Lemma

if M is A-finite then End(M) is finite over A.

Proof.

 $\exists R[G/K]^n \twoheadrightarrow M$. So $\operatorname{End}(M) \subset \operatorname{Hom}(R[G/K]^n, M) \cong (M^K)^n$ is f.g. \square

Corollary

Let A act on an objects $N \subset M \in \mathcal{M}_R(G)$, and let $B \to A$.

M is B-finite then M is A-finite

Definition

V is A-finite if

- the image of A in End(V) is f.g. over R.
- For any compact open K < G, the module V^K is f.g. over A.

Lemma

if M is A-finite then End(M) is finite over A.

Proof.

 $\exists R[G/K]^n \twoheadrightarrow M$. So End $(M) \subset \operatorname{Hom}(R[G/K]^n, M) \cong (M^K)^n$ is f.g.

Corollary

Let A act on an objects $N \subset M \in \mathcal{M}_R(G)$, and let $B \to A$.

- M is B-finite then M is A-finite
- 2 If $B \rightarrow A$ is finite and M is A-finite then M is B-finite

Definition

V is A-finite if

- the image of A in End(V) is f.g. over R.
- For any compact open K < G, the module V^K is f.g. over A.

Lemma

if M is A-finite then End(M) is finite over A.

Proof.

 $\exists R[G/K]^n \twoheadrightarrow M$. So End $(M) \subset \text{Hom}(R[G/K]^n, M) \cong (M^K)^n$ is f.g.

Corollary

Let A act on an objects $N \subset M \in \mathcal{M}_R(G)$, and let $B \to A$.

- M is B-finite then M is A-finite
- 2 If $B \rightarrow A$ is finite and M is A-finite then M is B-finite
- M is B-finite then so is N.

Reduction to representations induced from cuspidal

Proposition

any $V \in \mathcal{M}_{R}^{f.g.}(G)$ can be embedded

$$\pi \subset \bigoplus i_{M_i}^G(W_i),$$

for some Levis M_i < G and cuspidal representations $W_i \in \mathcal{M}_R^{f,g.}(M_i)$

Reduction to representations induced from cuspidal

Proposition

any $V \in \mathcal{M}_{R}^{f.g.}(G)$ can be embedded

$$\pi \subset \bigoplus i_{M_i}^G(W_i),$$

for some Levis M_i < G and cuspidal representations $W_i \in \mathcal{M}_R^{f,g.}(M_i)$

Theorem (Dat)

The main theorem holds for cuspidal representations

Reduction to representations induced from cuspidal

Proposition

any $V \in \mathcal{M}_{R}^{f.g.}(G)$ can be embedded

$$\pi \subset \bigoplus i_{M_i}^G(W_i),$$

for some Levis M_i < G and cuspidal representations $W_i \in \mathcal{M}_B^{f,g.}(M_i)$

Theorem (Dat)

The main theorem holds for cuspidal representations

So, it is enough to show

Theorem ([DHKM])

Parabolic induction of a cuspidal 3-finite representation is 3-finite.

200

For any G one can define a \mathbb{Z} -group scheme, equipped with an action of Gal_F , denoted by $\widehat{G}_{\mathbb{Z}}$.

For any G one can define a \mathbb{Z} -group scheme, equipped with an action of Gal_F , denoted by $\widehat{G}_{\mathbb{Z}}$. Denote $\widehat{G} := \widehat{G}_R := \widehat{G}_{\mathbb{Z}} \times \operatorname{Spec}(R)$

For any G one can define a \mathbb{Z} -group scheme, equipped with an action of Gal_F , denoted by $\widehat{G}_{\mathbb{Z}}$. Denote $\widehat{G}:=\widehat{G}_R:=\widehat{G}_{\mathbb{Z}}\times\operatorname{Spec}(R)$

For any G one can define a \mathbb{Z} -group scheme, equipped with an action of Gal_F , denoted by $\widehat{G}_{\mathbb{Z}}$. Denote $\widehat{G}:=\widehat{G}_R:=\widehat{G}_{\mathbb{Z}}\times\operatorname{Spec}(R)$

$$\widehat{\widehat{G}}_F = G$$

For any G one can define a \mathbb{Z} -group scheme, equipped with an action of Gal_F , denoted by $\widehat{G}_{\mathbb{Z}}$. Denote $\widehat{G}:=\widehat{G}_R:=\widehat{G}_{\mathbb{Z}}\times\operatorname{Spec}(R)$

- $\widehat{\widehat{G}}_F = G$
- $\widehat{GL}_n = GL_n$

For any G one can define a \mathbb{Z} -group scheme, equipped with an action of Gal_F , denoted by $\widehat{G}_{\mathbb{Z}}$. Denote $\widehat{G} := \widehat{G}_R := \widehat{G}_{\mathbb{Z}} \times \operatorname{Spec}(R)$

- $\widehat{\widehat{G}}_F = G$
- $\widehat{GL}_n = GL_n$
- $\widehat{SL}_n = PGL_n$

For any G one can define a \mathbb{Z} -group scheme, equipped with an action of Gal_F , denoted by $\widehat{G}_{\mathbb{Z}}$. Denote $\widehat{G} := \widehat{G}_R := \widehat{G}_{\mathbb{Z}} \times \operatorname{Spec}(R)$

- $\widehat{\widehat{G}}_F = G$
- $\widehat{GL}_n = GL_n$
- $\widehat{SL}_n = PGL_n$
- For s.s. G we have $Z(\widehat{G}_{\mathbb{C}}) = \pi_1(G_{\mathbb{C}})$

For any G one can define a \mathbb{Z} -group scheme, equipped with an action of Gal_F , denoted by $\widehat{G}_{\mathbb{Z}}$. Denote $\widehat{G}:=\widehat{G}_R:=\widehat{G}_{\mathbb{Z}}\times\operatorname{Spec}(R)$

$$\widehat{\widehat{G}}_F = G$$

$$\widehat{GL}_n = GL_n$$

$$\widehat{SL}_n = PGL_n$$

• For s.s.
$$G$$
 we have $Z(\widehat{G}_{\mathbb{C}}) = \pi_1(G_{\mathbb{C}})$

For any G one can define a \mathbb{Z} -group scheme, equipped with an action of Gal_F , denoted by $\widehat{G}_{\mathbb{Z}}$. Denote $\widehat{G} := \widehat{G}_R := \widehat{G}_{\mathbb{Z}} \times \operatorname{Spec}(R)$

$$\widehat{\widehat{G}}_F = G$$

$$\widehat{GL}_n = GL_n$$

$$\widehat{SL}_n = PGL_n$$

• For s.s.
$$G$$
 we have $Z(\widehat{G}_{\mathbb{C}}) = \pi_1(G_{\mathbb{C}})$

$$\widehat{SO}_{2n+1} = Sp_{2n}$$

$$\widehat{SO}_{2n} = SO_{2n}$$

For any G one can define a \mathbb{Z} -group scheme, equipped with an action of Gal_F , denoted by $\widehat{G}_{\mathbb{Z}}$. Denote $\widehat{G}:=\widehat{G}_R:=\widehat{G}_{\mathbb{Z}}\times\operatorname{Spec}(R)$

$$\widehat{\widehat{G}}_F = G$$

$$\widehat{GL}_n = GL_n$$

$$\widehat{SL}_n = PGL_n$$

4 For s.s.
$$G$$
 we have $Z(\widehat{G}_{\mathbb{C}}) = \pi_1(G_{\mathbb{C}})$

$$\widehat{SO}_{2n} = SO_{2n}$$

$$M < G$$
 is a Levi $\Rightarrow \widehat{M} < \widehat{G}$ is a Levi.

For any G one can define a \mathbb{Z} -group scheme, equipped with an action of Gal_F , denoted by $\widehat{G}_{\mathbb{Z}}$. Denote $\widehat{G}:=\widehat{G}_R:=\widehat{G}_{\mathbb{Z}}\times\operatorname{Spec}(R)$

$$\widehat{\widehat{G}}_F = G$$

$$\widehat{GL}_n = GL_n$$

$$\widehat{SL}_n = PGL_n$$

• For s.s.
$$G$$
 we have $Z(\widehat{G}_{\mathbb{C}}) = \pi_1(G_{\mathbb{C}})$

$$\widehat{SO}_{2n+1} = Sp_{2n}$$

$$\widehat{SO}_{2n} = SO_{2n}$$

$$M < G$$
 is a Levi $\Rightarrow \widehat{M} < \widehat{G}$ is a Levi.

3
$$G$$
 is a split $\Rightarrow Gal_F$ acts trivially on \widehat{G} .

For any G one can define a \mathbb{Z} -group scheme, equipped with an action of Gal_F , denoted by $\widehat{G}_{\mathbb{Z}}$. Denote $\widehat{G} := \widehat{G}_R := \widehat{G}_{\mathbb{Z}} \times \operatorname{Spec}(R)$

$$\widehat{\widehat{G}}_F = G$$

$$\widehat{GL}_n = GL_n$$

$$\widehat{SL}_n = PGL_n$$

1 For s.s.
$$G$$
 we have $Z(\widehat{G}_{\mathbb{C}}) = \pi_1(G_{\mathbb{C}})$

$$\widehat{SO}_{2n+1} = Sp_{2n}$$

$$\widehat{SO}_{2n} = SO_{2n}$$

$$M < G$$
 is a Levi $\Rightarrow \widehat{M} < \widehat{G}$ is a Levi.

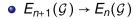
3 G is a split
$$\Rightarrow$$
 Gal_F acts trivially on \widehat{G} .

$$\widehat{G}_{ab} = \widehat{Z(G)^0}$$

Fargues-Scholze Theory as a black box

For a R-group scheme \mathcal{G} (with an action of Gal_F) one have R-algebras $E_n(\mathcal{G})$ (contravariantly depending on \mathcal{G}) with morphisms

For a R-group scheme \mathcal{G} (with an action of Gal_F) one have R-algebras $E_n(\mathcal{G})$ (contravariantly depending on \mathcal{G}) with morphisms



For a R-group scheme \mathcal{G} (with an action of Gal_F) one have R-algebras $E_n(\mathcal{G})$ (contravariantly depending on \mathcal{G}) with morphisms

•
$$E_{n+1}(\mathcal{G}) \to E_n(\mathcal{G})$$

•
$$E(\widehat{G}) := \lim_n (E_n(\widehat{G})) \stackrel{FS_G}{\to} \mathfrak{Z}_R(G)$$

s.t.

For a *R*-group scheme

 \mathcal{G} (with an action of Gal_F) one have R-algebras $E_n(\mathcal{G})$ (contravariantly depending on \mathcal{G}) with morphisms

•
$$E_{n+1}(\mathcal{G}) \to E_n(\mathcal{G})$$

•
$$E(\widehat{G}) := \lim_n (E_n(\widehat{G})) \stackrel{FS_G}{\to} \mathfrak{Z}_R(G)$$

s.t.

Compatibility with induction:

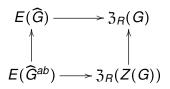
 \forall Levi M < G, and $V \in \mathcal{M}_R(M)$ the following diagram is commutative:

$$E(\widehat{G}) \longrightarrow End(i_{M}^{G}(V))$$

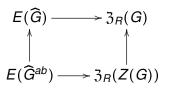
$$\downarrow \qquad \qquad \uparrow$$

$$E(\widehat{M}) \longrightarrow End(V)$$

Compatibility with abelianization: The following diagram is commutative:



Compatibility with abelianization: The following diagram is commutative:

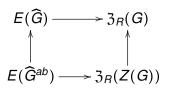


1 The toric case: If *G* is a torus then

$$FS_G: E(\widehat{G}) \stackrel{\sim}{\to} \mathfrak{Z}_R(G)$$

is an isomorphism

Compatibility with abelianization: The following diagram is commutative:



1 The toric case: If *G* is a torus then

$$FS_G: E(\widehat{G}) \stackrel{\sim}{\to} \mathfrak{Z}_R(G)$$

is an isomorphism

Ontinuity: If $V \in \mathcal{M}_R(G)$ is f.g. then $E(\widehat{G}) \to End(V)$ factors as

$$E(\widehat{G}) \to E_n(\widehat{G}) \to End(V)$$

for large enough *n*.

We have

We have

$$F \overset{\hat{\mathbb{Z}}}{\subset} F^{un} \overset{\prod_{\ell \neq \rho} \mathbb{Z}_{\ell}}{\subset} F^{tame} \overset{P_F}{\subset} \bar{F}$$

We have

•

$$F \overset{\hat{\mathbb{Z}}}{\subset} F^{un} \overset{\prod_{\ell \neq p} \mathbb{Z}_{\ell}}{\subset} F^{tame} \overset{P_F}{\subset} \bar{F}$$

•

$$Gal_F \overset{\hat{\mathbb{Z}}}{\triangleright} I_F \overset{\prod_{\ell \neq p} \mathbb{Z}_\ell}{\longmapsto} P_F = P_F^0 \, \triangleright P_F^1 \, \triangleright \cdots$$

We have

•

$$F \overset{\hat{\mathbb{Z}}}{\subset} F^{un} \overset{\prod_{\ell \neq p} \mathbb{Z}_{\ell}}{\subset} F^{tame} \overset{P_F}{\subset} \bar{F}$$

$$Gal_F \overset{\hat{\mathbb{Z}}}{\triangleright} I_F \overset{\prod_{\ell \neq p} \mathbb{Z}_\ell}{\triangleright} P_F = P_F^0 \triangleright P_F^1 \triangleright \cdots$$

•

$$W_F \overset{\mathbb{Z}}{\triangleright} I_F \overset{\prod_{\ell \neq p} \mathbb{Z}_\ell}{\longmapsto} P_F = P_F^0 \mathrel{\triangleright} P_F^1 \mathrel{\triangleright} \cdots$$

We have

•

$$F \overset{\hat{\mathbb{Z}}}{\subset} F^{un} \overset{\prod_{\ell \neq p} \mathbb{Z}_{\ell}}{\subset} F^{tame} \overset{P_F}{\subset} \bar{F}$$

$$Gal_F \overset{\hat{\mathbb{Z}}}{\triangleright} I_F \overset{\Pi_{\ell \neq p} \mathbb{Z}_{\ell}}{\triangleright} P_F = P_F^0 \triangleright P_F^1 \triangleright \cdots$$

•

$$W_F \overset{\mathbb{Z}}{\triangleright} I_F \overset{\prod_{\ell \neq p} \mathbb{Z}_\ell}{\triangleright} P_F = P_F^0 \mathrel{\triangleright} P_F^1 \mathrel{\triangleright} \cdots$$

•

$$W_F^0 \overset{\mathbb{Z}}{\triangleright} I_F^0 \overset{\mathbb{Z}(p^{-1})}{\triangleright} P_F = P_F^0 \triangleright P_F^1 \triangleright \cdots$$

We have

•

$$F \overset{\hat{\mathbb{Z}}}{\subset} F^{un} \overset{\prod_{\ell \neq p} \mathbb{Z}_{\ell}}{\subset} F^{tame} \overset{P_F}{\subset} \bar{F}$$

•

$$Gal_{F} \overset{\hat{\mathbb{Z}}}{\triangleright} I_{F} \overset{\Pi_{\ell \neq \rho} \mathbb{Z}_{\ell}}{\triangleright} P_{F} = P_{F}^{0} \triangleright P_{F}^{1} \triangleright \cdots$$

•

$$W_F \overset{\mathbb{Z}}{\triangleright} I_F \overset{\prod_{\ell \neq p} \mathbb{Z}_\ell}{\triangleright} P_F = P_F^0 \triangleright P_F^1 \triangleright \cdots$$

•

$$W_F^0 \overset{\mathbb{Z}}{\triangleright} I_F^0 \overset{\mathbb{Z}\langle p^{-1} \rangle}{\triangleright} P_F = P_F^0 \triangleright P_F^1 \triangleright \cdots$$

Assume for simplicity that G is split.

We have

•

$$F \overset{\hat{\mathbb{Z}}}{\subset} F^{un} \overset{\prod_{\ell \neq p} \mathbb{Z}_{\ell}}{\subset} F^{tame} \overset{P_F}{\subset} \bar{F}$$

•

$$Gal_F \overset{\hat{\mathbb{Z}}}{\triangleright} I_F \overset{\prod_{\ell \neq p} \mathbb{Z}_\ell}{\triangleright} P_F = P_F^0 \triangleright P_F^1 \triangleright \cdots$$

•

$$W_F \overset{\mathbb{Z}}{\triangleright} I_F \overset{\prod_{\ell \neq p} \mathbb{Z}_\ell}{\triangleright} P_F = P_F^0 \triangleright P_F^1 \triangleright \cdots$$

•

$$W_F^0 \overset{\mathbb{Z}}{\triangleright} I_F^0 \overset{\mathbb{Z}(p^{-1})}{\triangleright} P_F = P_F^0 \triangleright P_F^1 \triangleright \cdots$$

Assume for simplicity that G is split.

Definition

Define
$$E_n(\mathcal{G}) := O(Hom(W_F^0/P_F^n, \mathcal{G})//Ad(\mathcal{G}))$$

Finiteness on the Galois side

Theorem ([DHKM])

For a Levi $\mathcal{M} < \mathcal{G}$ the map $E_n(\mathcal{G}) \to E_n(\mathcal{M})$ is finite.

Finiteness on the Galois side

Theorem ([DHKM])

For a Levi $\mathcal{M} < \mathcal{G}$ the map $E_n(\mathcal{G}) \to E_n(\mathcal{M})$ is finite.

This theorem follows from:

Theorem ([DHKM])

The natural map $Hom(W_F^0/P_F^n,\mathcal{G})//Ad(\mathcal{G}) \to \mathcal{G}//Ad(\mathcal{G})$ is finite

Finiteness on the Galois side

Theorem ([DHKM])

For a Levi $\mathcal{M} < \mathcal{G}$ the map $E_n(\mathcal{G}) \to E_n(\mathcal{M})$ is finite.

This theorem follows from:

Theorem ([DHKM])

The natural map $Hom(W_F^0/P_F^n,\mathcal{G})//Ad(\mathcal{G}) \to \mathcal{G}//Ad(\mathcal{G})$ is finite

Proof of the reduction.

$$E_{n}(\mathcal{G}) \xrightarrow{} E_{n}(\mathcal{M})$$

$$\uparrow \qquad \qquad \uparrow$$

$$O(\mathcal{G}//Ad(\mathcal{G})) \longrightarrow O(\mathcal{M}//Ad(\mathcal{M}))$$

Let $W \in \mathcal{M}_R(M)$ be cuspidal $\mathfrak{Z}_R(M)$ -finite object. We have to show that $i_M^G(W)$ is $\mathfrak{Z}_R(G)$ -finite. We have:

• W is $\mathfrak{Z}_R(M)$ -finite.

- W is $\mathfrak{Z}_R(M)$ -finite.
- **2** W is $\mathfrak{Z}_R(Z(M)_0)$ -finite.

- W is $\mathfrak{Z}_R(M)$ -finite.
- **3** W is $E(\widehat{M}_{ab})$ finite.

- W is $\mathfrak{Z}_R(M)$ -finite.
- ② W is $\mathfrak{Z}_R(Z(M)_0)$ -finite.
- **3** W is $E(\widehat{M}_{ab})$ finite.
- **4** W is $E(\widehat{M})$ finite.

- W is $\mathfrak{Z}_R(M)$ -finite.
- ② W is $\mathfrak{Z}_R(Z(M)_0)$ -finite.
- **3** W is $E(\widehat{M}_{ab})$ finite.
- **4** W is $E(\widehat{M})$ finite.
- **1** W is $E_n(\widehat{M})$ finite, for a large enough n.

- W is $\mathfrak{Z}_R(M)$ -finite.
- **2** W is $\mathfrak{Z}_R(Z(M)_0)$ -finite.
- **3** W is $E(\widehat{M}_{ab})$ finite.
- W is $E(\widehat{M})$ finite.
- **1** W is $E_n(\widehat{M})$ finite, for a large enough n.
- $i_M^G(W)$ is $E_n(\widehat{M})$ finite.

Let $W \in \mathcal{M}_R(M)$ be cuspidal $\mathfrak{Z}_R(M)$ -finite object. We have to show that $i_M^G(W)$ is $\mathfrak{Z}_R(G)$ -finite. We have:

- W is $\mathfrak{Z}_R(M)$ -finite.
- **2** W is $\mathfrak{Z}_R(Z(M)_0)$ -finite.
- **3** W is $E(\widehat{M}_{ab})$ finite.
- **1** W is $E_n(\widehat{M})$ finite, for a large enough n.
- \bullet $i_M^G(W)$ is $E_n(\widehat{M})$ finite. Indeed:

$$i_M^G(W)^K = \bigoplus_{[x] \in K \setminus G/P} W^{xKx^{-1} \cap P}$$

is f.g. over $E_n(\widehat{M})$

Let $W \in \mathcal{M}_R(M)$ be cuspidal $\mathfrak{Z}_R(M)$ -finite object. We have to show that $i_M^G(W)$ is $\mathfrak{Z}_R(G)$ -finite. We have:

- W is $\mathfrak{Z}_R(M)$ -finite.
- **3** W is $E(\widehat{M}_{ab})$ finite.
- **4** W is $E(\widehat{M})$ finite.
- **1** W is $E_n(\widehat{M})$ finite, for a large enough n.
- \bullet $i_M^G(W)$ is $E_n(\widehat{M})$ finite. Indeed:

$$i_M^G(W)^K = \bigoplus_{[x] \in K \setminus G/P} W^{xKx^{-1} \cap P}$$

is f.g. over $E_n(\widehat{M})$

 $i_M^G(W)$ is $E_n(\widehat{G})$ finite.

Let $W \in \mathcal{M}_R(M)$ be cuspidal $\mathfrak{Z}_R(M)$ -finite object. We have to show that $i_M^G(W)$ is $\mathfrak{Z}_R(G)$ -finite. We have:

- W is $\mathfrak{Z}_R(M)$ -finite.
- **2** W is $\mathfrak{Z}_R(Z(M)_0)$ -finite.
- **3** W is $E(\widehat{M}_{ab})$ finite.
- W is $E(\widehat{M})$ finite.
- **1** W is $E_n(\widehat{M})$ finite, for a large enough n.
- \bullet $i_M^G(W)$ is $E_n(\widehat{M})$ finite. Indeed:

$$i_M^G(W)^K = \bigoplus_{[x] \in K \setminus G/P} W^{xKx^{-1} \cap P}$$

is f.g. over $E_n(\widehat{M})$

- $i_M^G(W)$ is $E_n(\widehat{G})$ finite.
- $i_M^G(W)$ is $E(\widehat{G})$ finite.

Let $W \in \mathcal{M}_R(M)$ be cuspidal $\mathfrak{Z}_R(M)$ -finite object. We have to show that $i_M^G(W)$ is $\mathfrak{Z}_R(G)$ -finite. We have:

- W is $\mathfrak{Z}_R(M)$ -finite.
- **2** W is $\mathfrak{Z}_R(Z(M)_0)$ -finite.
- **3** W is $E(\widehat{M}_{ab})$ finite.
- W is $E(\widehat{M})$ finite.
- **1** W is $E_n(\widehat{M})$ finite, for a large enough n.
- $i_M^G(W)$ is $E_n(\widehat{M})$ finite. Indeed:

$$i_M^G(W)^K = \bigoplus_{[x] \in K \setminus G/P} W^{xKx^{-1} \cap P}$$

is f.g. over $E_n(\widehat{M})$

- $i_M^G(W)$ is $E_n(\widehat{G})$ finite.
- $i_M^G(W)$ is $E(\widehat{G})$ finite.
- \circ $i_M^G(W)$ is $\mathfrak{Z}_R(G)$ finite.

