Finiteness for Hecke algebras of p-adic
groups.

A theorem by Jean-Francois Dat, David Helm, Robert
Kurinczuk, and Gilbert Moss
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@ Cuspidal representations
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@ Formulation of the finiteness result
@ Recollection of Bernstein center theory
@ Formulation of Fargues-Sholze Theory

@ Proof of the finiteness result modulo Fargues-Sholze
Theory
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@ End(Pg) is finite over its center which is f.g. Equivalently:

@ H~(G. K) is finite over its center which is f.g.
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Formulation of the main result

Definition
HRr(G,K) = End(R[G/K]) 2 R[K\G/K]

If p~' € R then Hp(G, K) s finite over its center which is f.g.

Theorem ([DHKM])

If¢+pandZ, — R then Hr(G, K) is finite over its center which
isf.g.

Question (to the audience)
What happens in general?
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Simple reductions

@ Reduction to the case R = Z,(./p) — fathfully flat desent
@ Localizing the problem — A-finit objects

@ Reduction to "parabolic induction of cuspidal
representations preseres finitness" — Bernstein
decomposition.
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Faithfully flat descent

We will say that an R-ring is of finite type over R if it is finite
over its center which is finitely generated over R.

Lemma

Let R — S be a ring homomorphism.
@ If A is R—finite type then A®g S is S—finite type

o IfA®g S is S—finite type and S is faithfully flat over R then
A is R-finite type

Corollary

@ The main theorem holds for R = Q.
@ [tis enough to prove the main theorem for R = Z(\/p).

From now we will fix R = Z,(./p).
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A-finite objects

Definition

Let a (com. unital) ring A act on an object V e Mg(G). We say
that V is A-finite if

@ the image of A in End( V) is finitely generated over R.

@ For any compact open K < G, the module V¥ is f.g over A.

The main Theorem is equivalent to the following one:

Theorem ([DHKM])
Any f.g. module V e Mg(G) is 3r(G) := 3(MRg(QG))-finite.

Proof of the reduction.
Take

V = R[G/K]
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Preservation of finiteness

Definition
V is A-finite if
@ the image of A in End(V) is f.g. over R.

@ For any compact open K < G, the module VK is f.g. over A.

if M is A-finite then End(M) is finite over A.

Proof.
JR[G/K]" - M. So End(M) c Hom(R[G/K]", M) = (M¥)" isf.g. [

| A\

Corollary
Let A act on an objects N c M e Mg(G), and let B - A.

@ M is B-finite then M is A-finite
@ If B - Ais finite and M is A-finite then M is B-finite
O M is B-finite then so is N.
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Reduction to representations induced from cuspidal

any V e M:% (G) can be embedded

T @iy (W),

for some Levis M; < G and cuspidal representations
W, e M2 (M)

Theorem (Dat)
The main theorem holds for cuspidal representations

So, it is enough to show

Theorem ([DHKM])

Parabolic induction of a cuspidal 3-finite representation is
3-finite.
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For any G one can
define a Z-group scheme, equipped with an action of s
Galr, denoted by Gy. Denote G := Gg := Gz, x Spec(R)

Q@ G--G

Q@ GL,=GL,

Q@ SL,- PGL,

Q Fors.s. Gwe have Z(Gc) = m1(Gc)
Q S0u4.1 = Span

e §O2n = SOZn

@ M<Gisalevi= M<Gis a Levi.
Q Gis a split = GalF acts trivially on G.
o Gab = m
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Fargues-Scholze Theory as a black box

For a R-group scheme
G (with an action of Galg) one have R-algebras E,(G)
(contravariantly depending on G) with morphisms ”%
° En+1 (g) - En(g) )
FSg ‘12‘

o E(G) := limpy(Ex(G)) =° 3r(G)
s.t.
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Fargues-Scholze Theory as a black box

For a R-group scheme
G (with an action of Galg) one have R-algebras E,(G)
(contravariantly depending on G) with morphisms @
° En+1 (g) - En(g)
= . - FSg g
@ E(G) = Ilimy(En(G)) - 3r(G) ﬂ

s.t.

© Compatibility with induction:
V Levi M < G, and V € Mg(M) the following diagram is
commutative:

E(G) — End(iG(V))

| |

E(M) —— End(V)
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© Compatibility with abelianization: The following diagram
is commutative:

© The toric case: If Gis a torus then
FSg: E(G) > 3r(G)

is an isomorphism
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Fargues-Scholze Theory as a black box (cont)

© Compatibility with abelianization: The following diagram
is commutative:

© The toric case: If Gis a torus then
FSg: E(G) > 3r(G)

is an isomorphism
@ Continuity: If Ve Mg(G) is f.g. then E(G) - End(V)
factors as
E(G) - EA(G) - End(V)

for large enough n.
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7 MespZe Pr =
F% Fun 4& I_—tame CF F

(] ( )
7 HZ#pZZ I °op

Galr > Ip > Pg=P2 >PE > ek
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What is (roughly) E(G)
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° A
Fépunlie” pame T p
° .
7 TespZe 0 1 @
Galr b I = Pr = PE > Pg > i
(*} . 7 1
7 Lxp £ >
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°
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What is (roughly) E(G)

We have
° A~
F% Funné:#p Z,:tam I—__
o
VA HZ#p 0 1 i @
Galr > Ir > Pg= Pe > Pg > - .i
o
7 TlespZe 0 | ‘
WE DIl &= Pr=Pg D> PgD>-- N7
o

N |
w2 l>/ > Pr=P2>PLD>-

Assume for simplicity that G is split.
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What is (roughly) E(G)

We have

7 IespZe Pe =
Fc Fun & fptame'Z F

o q
7 HZ#p Zyg i ,@p

o
7 TlespZe 0 | ‘
WE DIl &= Pr=Pg D> PgD>-- AN
o

AN/
W22 >Pr=P2>PLD>-

Assume for simplicity that G is split.
Definition
Define En(G) := O(Hom( Wﬁ/P",g)//Ad(g))
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Finiteness on the Galois side

Theorem ([DHKM])
For a Levi M < G the map E,(G) - En(M) is finite.
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This theorem follows from:

Theorem ([DHKM])

The natural map Hom(W2/P2,G)//Ad(G) - G/|Ad(G) is finite

Proof of the reduction.
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Sketch of the proof of the main theorem

Let W e Mg(M) be cuspidal 3z(M)-finite object. We have to
show that iZ(W) is 35(G)-finite. We have:
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