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Where are we going

Required Background:
basic representation theory of p-adic groups -

Definitions (smooth, admissible)
the parabolic induction/Jacquet functor construction
Cuspidal representations

Goals:
Formulation of the finiteness result
Recollection of Bernstein center theory
Formulation of Fargues-Sholze Theory
Proof of the finiteness result modulo Fargues-Sholze
Theory
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Bernstein Theory

Let G be a reductive group
over a local field F .

LetM�G� ��MC�G� �M�HC�G��
be the category of smooth representations of G.

Theorem (Bernstein)

Mf .g.�G� �>β>BM�G�f .g.
β � �K M�G�K

M�G�β �M�End�Pβ��
M�G�K �M�HC�G,K ��

Definition
Z�G� �� Z�M�G�� � End�IdM�G��

Theorem (Bernstein)

M�G� is locally finite over Z�G� which is locally finitely
generated.

End�Pβ� is finite over its center which is f.g. Equivalently:
HC�G,K � is finite over its center which is f.g.
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Other rings

Question
What changes when we replace C with other rings?

Definition
HR�G,K � � End�R�G~K �� � R�K �G~K �

Warning
In general - there are no R-valued Haar measures. but:

if p�1
> R then, for small K , there is an R-valued Haar

measure m with m�K � � 1.
if N�1

> R for certain N then, for all K , there is an R-valued
Haar measure m with m�K � � 1. – banal case
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Formulation of the main result

Definition
HR�G,K � � End�R�G~K �� � R�K �G~K �

Conjecture

If p�1
> R then HR�G,K � is finite over its center which is f.g.

Theorem ([DHKM])

If ` x p and Z` � R then HR�G,K � is finite over its center which
is f.g.

Question (to the audience)
What happens in general?
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Simple reductions

Reduction to the case R � Z``ºpe – fathfully flat desent
Localizing the problem – A-finit objects
Reduction to "parabolic induction of cuspidal
representations preseres finitness" – Bernstein
decomposition.
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Faithfully flat descent

We will say that an R-ring is of finite type over R if it is finite
over its center which is finitely generated over R.

Lemma
Let R � S be a ring homomorphism.

If A is R�finite type then AaR S is S�finite type
If AaR S is S�finite type and S is faithfully flat over R then
A is R�finite type

Corollary
The main theorem holds for R � Q`.
It is enough to prove the main theorem for R � Z``ºpe.

From now we will fix R � Z``ºpe.
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A-finite objects

Definition
Let a (com. unital) ring A act on an object V >MR�G�. We say
that V is A-finite if

the image of A in End�V� is finitely generated over R.
For any compact open K @ G, the module V K is f.g over A.

The main Theorem is equivalent to the following one:

Theorem ([DHKM])

Any f.g. module V >MR�G� is ZR�G� �� Z�MR�G��-finite.

Proof of the reduction.
Take

V � R�G~K �

Finiteness 8 / 16



A-finite objects

Definition
Let a (com. unital) ring A act on an object V >MR�G�. We say
that V is A-finite if

the image of A in End�V� is finitely generated over R.

For any compact open K @ G, the module V K is f.g over A.

The main Theorem is equivalent to the following one:

Theorem ([DHKM])

Any f.g. module V >MR�G� is ZR�G� �� Z�MR�G��-finite.

Proof of the reduction.
Take

V � R�G~K �

Finiteness 8 / 16



A-finite objects

Definition
Let a (com. unital) ring A act on an object V >MR�G�. We say
that V is A-finite if

the image of A in End�V� is finitely generated over R.
For any compact open K @ G, the module V K is f.g over A.

The main Theorem is equivalent to the following one:

Theorem ([DHKM])

Any f.g. module V >MR�G� is ZR�G� �� Z�MR�G��-finite.

Proof of the reduction.
Take

V � R�G~K �

Finiteness 8 / 16



A-finite objects

Definition
Let a (com. unital) ring A act on an object V >MR�G�. We say
that V is A-finite if

the image of A in End�V� is finitely generated over R.
For any compact open K @ G, the module V K is f.g over A.

The main Theorem is equivalent to the following one:

Theorem ([DHKM])

Any f.g. module V >MR�G� is ZR�G� �� Z�MR�G��-finite.

Proof of the reduction.
Take

V � R�G~K �

Finiteness 8 / 16



A-finite objects

Definition
Let a (com. unital) ring A act on an object V >MR�G�. We say
that V is A-finite if

the image of A in End�V� is finitely generated over R.
For any compact open K @ G, the module V K is f.g over A.

The main Theorem is equivalent to the following one:

Theorem ([DHKM])

Any f.g. module V >MR�G� is ZR�G� �� Z�MR�G��-finite.

Proof of the reduction.
Take

V � R�G~K �

Finiteness 8 / 16



Preservation of finiteness

Definition
V is A-finite if

the image of A in End�V� is f.g. over R.

For any compact open K @ G, the module V K is f.g. over A.

Lemma

if M is A-finite then End�M� is finite over A.

Proof.

§R�G~K �n
�M. So End�M� ` Hom�R�G~K �n,M� � �MK �

n
is f.g.

Corollary

Let A act on an objects N ` M >MR�G�, and let B � A.

1 M is B-finite then M is A-finite

2 If B � A is finite and M is A-finite then M is B-finite

3 M is B-finite then so is N.
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Reduction to representations induced from cuspidal

Proposition

any V >M
f .g.
R �G� can be embedded

π `? iGMi
�Wi�,

for some Levis Mi @ G and cuspidal representations
Wi >M

f .g.
R �Mi�

Theorem (Dat)
The main theorem holds for cuspidal representations

So, it is enough to show

Theorem ([DHKM])
Parabolic induction of a cuspidal Z-finite representation is
Z-finite.
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Langlands’ dual group

For any G one can
define a Z-group scheme, equipped with an action of
GalF , denoted by ÂGZ.

Denote ÂG �� ÂGR �� ÂGZ �Spec�R�
Examples

1
ÂÂGF � G

2 ÃGLn � GLn

3 ÃSLn � PGLn

4 For s.s. G we have Z�ÂGC� � π1�GC�
5 ÃSO2n�1 � Sp2n

6 ÃSO2n � SO2n

7 M @ G is a Levi� ÂM @
ÂG is a Levi.

8 G is a split� GalF acts trivially on ÂG.
9 ÂGab �

ÆZ�G�0
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Fargues-Scholze Theory as a black box

For a R-group scheme
G (with an action of GalF ) one have R-algebras En�G�
(contravariantly depending on G) with morphisms

En�1�G�� En�G�
E�ÂG� �� limn�En�ÂG�� FSG

� ZR�G�
s.t.

1 Compatibility with induction:
¦ Levi M @ G, and V >MR�M� the following diagram is
commutative:

E�ÂG�

��

// End�iGM�V��

E�ÂM� // End�V�

OO
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Fargues-Scholze Theory as a black box (cont)

2 Compatibility with abelianization: The following diagram
is commutative:

E�ÂG� // ZR�G�

E�ÂGab�

OO

// ZR�Z�G��

OO

3 The toric case: If G is a torus then

FSG � E�ÂG� �

� ZR�G�
is an isomorphism

4 Continuity: If V >MR�G� is f.g. then E�ÂG�� End�V�
factors as

E�ÂG�� En�ÂG�� End�V�
for large enough n.
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What is (roughly) E�G�

We have

F
Ẑ
` F un L`xp Z`

` F tame PF
` F̄

GalF
Ẑ
P IF

L`xp Z`

P PF � P0
F PP1

F P�

WF
Z
P IF

L`xp Z`

P PF � P0
F PP1

F P�

W 0
F

Z
P I0

F

Z`p�1e

PPF � P0
F PP1

F P�

Assume for simplicity that G is split.

Definition

Define En�G� �� O�Hom�W 0
F ~Pn

F ,G�~~Ad�G��
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Finiteness on the Galois side

Theorem ([DHKM])

For a LeviM @ G the map En�G�� En�M� is finite.

This theorem follows from:

Theorem ([DHKM])

The natural map Hom�W 0
F ~Pn

F ,G�~~Ad�G�� G~~Ad�G� is finite

Proof of the reduction.

En�G� // En�M�

O�G~~Ad�G��

OO

// O�M~~Ad�M��

OO
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Sketch of the proof of the main theorem

Let W >MR�M� be cuspidal ZR�M�-finite object. We have to
show that iGM�W � is ZR�G�-finite. We have:

1 W is ZR�M�-finite.
2 W is ZR�Z�M�0�-finite.
3 W is E�ÂMab� finite.
4 W is E�ÂM� finite.
5 W is En�ÂM� finite, for a large enough n.
6 iGM�W � is En�ÂM� finite. Indeed:

iGM�W �K
� ?

�x�>K �G~P
W xKx�1

9P

is f.g. over En�ÂM�
7 iGM�W � is En�ÂG� finite.
8 iGM�W � is E�ÂG� finite.
9 iGM�W � is ZR�G�- finite.
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