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Reminder N1

Rami’s Lecture:
We reduce the main result to showing:
Any f.g. module V ∈ MR(G) is ZR(G)-finite.

Our Strategy:
Embedding of any representation in a sum of induced from
cuspidals.
Dat’s Theorem - the cuspidal case.
Enough to show induced from cuspidal ZR(M)-finite, is
ZR(G)-finite
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Reminder N2

Eitan’s First Lecture:

Irreducible compact representation SplitM(G).
f.g. compact representations are admissible.
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Reminder N3

Eitan’s Second Lecture:

Restriction to G0 < G, normal and [G ∶ Z(G)G0] < ∞

quasi cuspidal is equivalent to compact modulo center.
Splitting of one cuspidal component Dρ = Ψ(G)ρ. (orbit of
an irreducible cuspidal ρ of G under group
Ψ(G) = Hom(G/G0,C∗) of unramified characters).
Beginning of Weak classification: any irreducible is a
sub-representation of an induced representation from an
irreducible cuspidal representation of a Levi M < G.

Irreducible representations are admissible.
Formulated (UA) and (FC) to show Splitting of all cuspidals
of a Levi.
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Where are we going

Bernstein’s theory:

Splitting of all cuspidals.
Completing weak classification.
Splitting the category to components.
Noetherian Property of Hecke algebra and ofM(G).
Second adjointness. TODAY and next time.

Goals:
Bernstein’s decomposition
Information on Bernstein center
Proof of Second adjointness
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Bernstein’s Decomposition - one component
Let G be a reductive group over a local field F .

Let
M(G) ∶= MC(G) ≅M(HC(G)) be the category of smooth
representations of G.

Theorem (Bernstein)

For ρ ∈ Irrc(G), Dρ splitsMf .g.(G)

We show that D splitsM(G). Notice D∣G0 = {ρ∣G0}. Now use :

Lemma
For (ρ,V) irreducible rep. of G, the representation ρ∣G0 is
semi-simple of finite length. Also ρ∣G0 ≅ ρ′∣G0 iff Dρ = Dρ′ iff
JH(ρ∣G0) ∩ JH(ρ′∣G0) ≠ ∅

ρ∣G0 = ρ1 ⊕⋯⊕ ρn with irr. cuspidal rep. of G0. Hence compact.
Write V = VD ⊕V D with JH(VD) ⊂ {ρ1,⋯, ρn} and
JH(V D) ∩ {ρ1,⋯, ρn} = ∅. This is a decomposition of G0

representations. Also a G decomposition.



Bernstein’s Decomposition - one component
Let G be a reductive group over a local field F . Let
M(G) ∶= MC(G) ≅M(HC(G)) be the category of smooth
representations of G.

Theorem (Bernstein)

For ρ ∈ Irrc(G), Dρ splitsMf .g.(G)

We show that D splitsM(G). Notice D∣G0 = {ρ∣G0}. Now use :

Lemma
For (ρ,V) irreducible rep. of G, the representation ρ∣G0 is
semi-simple of finite length. Also ρ∣G0 ≅ ρ′∣G0 iff Dρ = Dρ′ iff
JH(ρ∣G0) ∩ JH(ρ′∣G0) ≠ ∅

ρ∣G0 = ρ1 ⊕⋯⊕ ρn with irr. cuspidal rep. of G0. Hence compact.
Write V = VD ⊕V D with JH(VD) ⊂ {ρ1,⋯, ρn} and
JH(V D) ∩ {ρ1,⋯, ρn} = ∅. This is a decomposition of G0

representations. Also a G decomposition.



Bernstein’s Decomposition - one component
Let G be a reductive group over a local field F . Let
M(G) ∶= MC(G) ≅M(HC(G)) be the category of smooth
representations of G.

Theorem (Bernstein)

For ρ ∈ Irrc(G), Dρ splitsMf .g.(G)

We show that D splitsM(G). Notice D∣G0 = {ρ∣G0}. Now use :

Lemma
For (ρ,V) irreducible rep. of G, the representation ρ∣G0 is
semi-simple of finite length. Also ρ∣G0 ≅ ρ′∣G0 iff Dρ = Dρ′ iff
JH(ρ∣G0) ∩ JH(ρ′∣G0) ≠ ∅

ρ∣G0 = ρ1 ⊕⋯⊕ ρn with irr. cuspidal rep. of G0. Hence compact.
Write V = VD ⊕V D with JH(VD) ⊂ {ρ1,⋯, ρn} and
JH(V D) ∩ {ρ1,⋯, ρn} = ∅. This is a decomposition of G0

representations. Also a G decomposition.



Bernstein’s Decomposition - one component
Let G be a reductive group over a local field F . Let
M(G) ∶= MC(G) ≅M(HC(G)) be the category of smooth
representations of G.

Theorem (Bernstein)

For ρ ∈ Irrc(G), Dρ splitsMf .g.(G)

We show that D splitsM(G). Notice D∣G0 = {ρ∣G0}. Now use :

Lemma
For (ρ,V) irreducible rep. of G, the representation ρ∣G0 is
semi-simple of finite length. Also ρ∣G0 ≅ ρ′∣G0 iff Dρ = Dρ′ iff
JH(ρ∣G0) ∩ JH(ρ′∣G0) ≠ ∅

ρ∣G0 = ρ1 ⊕⋯⊕ ρn with irr. cuspidal rep. of G0. Hence compact.
Write V = VD ⊕V D with JH(VD) ⊂ {ρ1,⋯, ρn} and
JH(V D) ∩ {ρ1,⋯, ρn} = ∅. This is a decomposition of G0

representations. Also a G decomposition.



Bernstein’s Decomposition - one component
Let G be a reductive group over a local field F . Let
M(G) ∶= MC(G) ≅M(HC(G)) be the category of smooth
representations of G.

Theorem (Bernstein)

For ρ ∈ Irrc(G), Dρ splitsMf .g.(G)

We show that D splitsM(G). Notice D∣G0 = {ρ∣G0}. Now use :

Lemma
For (ρ,V) irreducible rep. of G, the representation ρ∣G0 is
semi-simple of finite length. Also ρ∣G0 ≅ ρ′∣G0 iff Dρ = Dρ′ iff
JH(ρ∣G0) ∩ JH(ρ′∣G0) ≠ ∅

ρ∣G0 = ρ1 ⊕⋯⊕ ρn with irr. cuspidal rep. of G0. Hence compact.

Write V = VD ⊕V D with JH(VD) ⊂ {ρ1,⋯, ρn} and
JH(V D) ∩ {ρ1,⋯, ρn} = ∅. This is a decomposition of G0

representations. Also a G decomposition.



Bernstein’s Decomposition - one component
Let G be a reductive group over a local field F . Let
M(G) ∶= MC(G) ≅M(HC(G)) be the category of smooth
representations of G.

Theorem (Bernstein)

For ρ ∈ Irrc(G), Dρ splitsMf .g.(G)

We show that D splitsM(G). Notice D∣G0 = {ρ∣G0}. Now use :

Lemma
For (ρ,V) irreducible rep. of G, the representation ρ∣G0 is
semi-simple of finite length. Also ρ∣G0 ≅ ρ′∣G0 iff Dρ = Dρ′ iff
JH(ρ∣G0) ∩ JH(ρ′∣G0) ≠ ∅

ρ∣G0 = ρ1 ⊕⋯⊕ ρn with irr. cuspidal rep. of G0. Hence compact.
Write V = VD ⊕V D with JH(VD) ⊂ {ρ1,⋯, ρn} and
JH(V D) ∩ {ρ1,⋯, ρn} = ∅.

This is a decomposition of G0

representations. Also a G decomposition.



Bernstein’s Decomposition - one component
Let G be a reductive group over a local field F . Let
M(G) ∶= MC(G) ≅M(HC(G)) be the category of smooth
representations of G.

Theorem (Bernstein)

For ρ ∈ Irrc(G), Dρ splitsMf .g.(G)

We show that D splitsM(G). Notice D∣G0 = {ρ∣G0}. Now use :

Lemma
For (ρ,V) irreducible rep. of G, the representation ρ∣G0 is
semi-simple of finite length. Also ρ∣G0 ≅ ρ′∣G0 iff Dρ = Dρ′ iff
JH(ρ∣G0) ∩ JH(ρ′∣G0) ≠ ∅

ρ∣G0 = ρ1 ⊕⋯⊕ ρn with irr. cuspidal rep. of G0. Hence compact.
Write V = VD ⊕V D with JH(VD) ⊂ {ρ1,⋯, ρn} and
JH(V D) ∩ {ρ1,⋯, ρn} = ∅. This is a decomposition of G0

representations.

Also a G decomposition.



Bernstein’s Decomposition - one component
Let G be a reductive group over a local field F . Let
M(G) ∶= MC(G) ≅M(HC(G)) be the category of smooth
representations of G.

Theorem (Bernstein)

For ρ ∈ Irrc(G), Dρ splitsMf .g.(G)

We show that D splitsM(G). Notice D∣G0 = {ρ∣G0}. Now use :

Lemma
For (ρ,V) irreducible rep. of G, the representation ρ∣G0 is
semi-simple of finite length. Also ρ∣G0 ≅ ρ′∣G0 iff Dρ = Dρ′ iff
JH(ρ∣G0) ∩ JH(ρ′∣G0) ≠ ∅

ρ∣G0 = ρ1 ⊕⋯⊕ ρn with irr. cuspidal rep. of G0. Hence compact.
Write V = VD ⊕V D with JH(VD) ⊂ {ρ1,⋯, ρn} and
JH(V D) ∩ {ρ1,⋯, ρn} = ∅. This is a decomposition of G0

representations. Also a G decomposition.



Structure of Cuspidal component

Generalities.

Definition
M an abelian category with arbitrary direct sums.

For X ∈ Obj(M) we denote FX (A) ∶= Hom(X ,A).
X is a Compact object if FX commutes with direct limits.
X is projective if FX is exact.
X is generator if FX is faithful (e.g. injective on morphisms,
being exact same as does not kill objects).

Proposition

LetM be an abelian category and let P ∈ Obj(M) be a
compact projective generator. Let R = EndM(P). Then
β(X) = HomM(P,X) is an equivalence from β ∶ M →Mod r(R)
(right R-modules).
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One component, Continuation

Let Ψ(G) ∶= Hom(G/G0,C∗) the torus of unramified characters
of G.
For D = Ψ(G) ⋅ ρ let PD = C[G/G0] ⊗ ρ = c − indG

G0(ρ∣G0).
It is a projective generator ofM(G)(D).

Proposition (Bernstein)

M(G)(D) ≅M(R(D)) with R(D) = End(PD)

R(D) is finite over its center Z(R(D)) which is f.g. algebra
over C.

Typically, R(D) = Z(R(D)) = C[G/G0].

Corollary (Bernstein)

M(G)(D) is Noetherian (a submodule of f.g is f.g).
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Splitting Irrc(G) - Uniform admissibility

Theorem (Bernstein Uniform admissibility)

Fix G,F and K < G. Then SupV∈Irr(G) dim(V
K ) < ∞.

Lemma (Kazhdan)

Given r commuting N ×N matrices A1,A2, ...,Ar ∈MN(C) we
have dimC(< A1, ...,Ar >) ≤ C(r)N2−ϵ, ϵ = 1

2r−1 . In fact ϵ = 2
r+1

works.

Proof of Uniform Admissibility.

By Burnside: ρ ∶ H(G,K ) → End(V K ) is onto. Let
H(G,K ) = H(K0,K )CH(K0,K ) with d = dim(H(K0,K )) and

C ∶= SpanC{a(λ) = eKλK ∶ λ ∈ Λ
+
}

Key calculation:

N2
= dim(V K

)
2
= dim(ρ(H(G,K )) ≤ d2 dim(ρ(C)) ≤ d2C(r)N2−ϵ
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Splitting Irrc(G) - Finiteness of Cuspidals
Consider orbits of Ψ(G) = HomC(G/G0,C) on Irrc(G).

Theorem (Finiteness of cuspidals)

Fix G,F and K < G. Then the number of orbits D in Irrc(G) with
DK ≠ ∅ is finite.

Lemma
Let V be an irreducible cuspidal representation.

For any λ ∈ Λ+ the operator a(λ) ∶ V K → V K is nilpotent.
There exists a set S(G,K ,V) ⊂ G that is compact modulo
the center Z(G) with the following property:

Supp(DK ,v) ⊂ S(G,K ,V)

for all v ∈ V K . Here DK ,v(g) = π(eK )π(g−1)v.

We use a(λ) = eKλK = δλeλ−1KλeK to get

V K
∩ ∪
∞
n=1Ker(a(λ)n) = V K

∩V(Uλ) = V K
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Splitting Irrc(G) - Finiteness of Cuspidals

Theorem (Finiteness of cuspidals)

Fix G,F and K < G. Then the number of orbits D in Irrc(G) with
DK ≠ ∅ is finite.

Using UA we obtain

Corollary

For K < G there exists a set S(G,K ) ⊂ G that is compact
modulo the center Z(G) with the following property:

Supp(DK ,v) ⊂ S(G,K )

for all v ∈ V K and all V ∈ Irrc(G).

Let F(K ) be the space of functions on G that are bi K invariant
and are supported in S(G0,K ). For each orbit D with DK ≠ ∅

we get a vector space FD ⊂ F(K ) and for different D’s these
spaces are linearly independent.
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Splitting Irrc(G) - Construction of Splitting

Theorem (Splitting of all cuspidals)

Irrc(G) splitsM(G).

Fix K < G. Let D1, ...,Dr be the orbits with DK ≠ ∅.
We write E = Ec,K ⊕Ec,K . Define

Ec = ∪K<GEc,K ,Ei = ∩K<GEc,K

Lemma
For any E ∈ M(G) we have E = Ec ⊕Ei

Proof on BlackBoard
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Weak Classification and Decomposition

For M < G we have Irrc(M) = ∪DM .
Say (M, ρ) ∼ (N, τ) if Ad(g)M = N,Ad(g)ρ ≃ τ .
Define Ω(G) the set of [(M, ρ)] up to association.
Ω(G) is an algebraic variety as

Ω(G) = ∪Irrc(Mi)/Wi

Denote a connected Component by Ω. So Ω(G) = ∪Ω.
We later will see

Z ∶= End(Id) ≅ O(Ω(G))

.
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Weak Classification

We define
p(π) = {[(M, ρ)] ∶ ρ ∈ JH(rM(π))}

The next lemma implies that p(π) is a singelton.

Lemma (Geometric Lemma)

Let ρ ∈ Irrc(M) then rM,G ○ iG,M(ρ) has a canonical finite filtration
with associated grades isomorphic to wρ, with w ∈ NG(M).

More is true:

Theorem (Weak Classification)

p ∶ Irr(G) → Ω(G) is finite to one.

Define IrrΩ = p−1(Ω)

Theorem (Decomposition)

IrrΩ splitsM(G).
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Proof of Decomposition: Strategy

Theorem (Decomposition)

IrrΩ splitsM(G).

V(Ω) the union of all sub-modules W ⊂ V with JH(W ) ⊂ Ω.
Say V is good if V = ⊕V(Ω)
Step 1: Submodule of a good module is good. [Blackboard.]

Lemma
LetM(cusp) = ⊕Mcusp(Mi) where Mi are standard Levi’s.
Define I ∶ M(cusp) →M(G),R ∶ M(G) →M(cusp). Here
R(π) = (rMG(π)c).

1 R is left adjoint to I. R is faithful, exact and maps f.g to f.g.
2 canV ∶ V → IR(V) is an embedding.

Proof.
I(V) is never zero if V is non zero. Same for R(V). Consider
the kernel W ∶= ker(V → IR(V)). Clearly IR(W ) = 0 and hence
W = 0.
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Proof of Decomposition: More details

Theorem (Decomposition)

IrrΩ splitsM(G).

We need to show all modules are good.

Proof.
use the embedding canV ∶ V → IR(V) and the fact that direct
sum of good is good to reduce to V = iG,M(ρM). We
(essentially) proved that the presentation Irrc(M) = ∪DM
induces a decomposition ofMc(M) to cuspidal components
Mc(M)(DM). Thus, can reduce to V = iG,M(ρ(DM)) with
ρDM ∈ Mc(M)(DM). Now use the Geometric Lemma to Ponder
this: any W ∈ JH(iG,M(ρ(DM))) satisfy p(W ) ∈ Ω.
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Corollaries of the Decomposition

Theorem (Decomposition)

M(G) is Noetherian (sub of f.g is f.g).

Proof.
M(cusp) is Noetherian (as a finite product of Noetherian
categories).
We will use the equivalent chain formulation to check
Noetherity of a given f.g. G-module V .
Take a chain V1 ⊂ ⋯Vn ⊂ ⋯ of submodles of a f.g. V as R
preserve f.g. this chain is mapped by R to a chain that must
stop inM(cusp). But R is exact and faithful.

Theorem (i preserve f.g.)

i send f.g to f.g.

Exercise (using Geometric Lemma).
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Remarks on the center

S∗(G)Ad(G) - the space of distributions invariant to conjugation.
D ∈ S∗(G)Ad(G) is called essentially compact if D ∗ h = h ∗D is
of compact support for all h ∈ H. The space of those is
Se.c(G)Ad(G) It is easy to see
Z(G) ∶= End(Id) ≅ EndH×H(H) = Se.c(G)Ad(G).
Notice that by Schur’s lemma we can map

Z(G) → Func(Irr(G))

To see what kind of functions we get it is better to act on
projective generators.

Theorem (Bernstein)

The decompositionM(G) = ΠΩM(Ω) induces Z(G) = ΠZ(Ω).
We have Z(Ω) ≃ O(Ω) given by action.

Let Ω = [(M,D)] then we have Π(D) = c − indG
G0(D∣G0) and

Π(Ω) = iG,M(Π(D) a f.g. module.
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Second adjointness

The projectivity of Π(Ω) follows from
i has a right adjoint which is exact

Theorem (second adjointness: Formulation)
There is a canonical isomorphism
HomG(iG,M(τ), π) → HomM(τ, r(π))

The map can be described using Geometric Lemma and also
using boundary degenerations.
We describe Bernstein’s original strategy:
Step 1: reduce to

Theorem (Casselman pairing)

rM,G(σ̃) ≃
̃rM,G(σ)

Step2: Reduce to Jacquet’s lemma (r sends admissible to
admissible).
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admissible).
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Second adjointness: Jacquet’s lemma

Theorem (Casselman pairing)

rM,G(σ̃) ≃
̃rM,G(σ)

Step2: Reduce to Jacquet’s lemma (r sends admissible to
admissible).

Theorem (generalized Jacquet’s Lemma)

For V ∈ M(G) the map

p ∶ V K
→ rM,G(V)

K∩M

is onto. It has a natural inverse.

Deduce Casselman pairing version. Proof of genralized
Jacquet’s Lemma follows from Stabilization lemma.
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Second adjointness: Stabilization Theorem

Proof of genralized Jacquet’s Lemma follows from Stabilization
lemma.

Definition
L a v.s. and a ∈ End(L). The pair (L,a) is stable if
L = Ker(a) ⊕ Im(a) and Ker(a2) = Ker(a), Im(a2) = Im(a). This
means a ∶ Im(a) → Im(a) is invertible.

Theorem (Stabilization Lemma)

For K < G there exists C(G,K ) such that for any
P =MU, λ ∈ Λ+(M,K ) any V ∈ M(G) and any n ≥ C(G,K ) the
map

a(λ)n ∶ V K
→ V K

is stable.

For V cuspidal (not necessarily irreducible) we can deduce it
from uniform admissibility. The general case requires another
lecture.



Second adjointness: Stabilization Theorem

Proof of genralized Jacquet’s Lemma follows from Stabilization
lemma.

Definition
L a v.s. and a ∈ End(L). The pair (L,a) is stable if
L = Ker(a) ⊕ Im(a) and Ker(a2) = Ker(a), Im(a2) = Im(a). This
means a ∶ Im(a) → Im(a) is invertible.

Theorem (Stabilization Lemma)

For K < G there exists C(G,K ) such that for any
P =MU, λ ∈ Λ+(M,K ) any V ∈ M(G) and any n ≥ C(G,K ) the
map

a(λ)n ∶ V K
→ V K

is stable.

For V cuspidal (not necessarily irreducible) we can deduce it
from uniform admissibility. The general case requires another
lecture.



Second adjointness: Stabilization Theorem
Proof of genralized Jacquet’s Lemma follows from Stabilization
lemma.

Definition
L a v.s. and a ∈ End(L). The pair (L,a) is stable if
L = Ker(a) ⊕ Im(a) and Ker(a2) = Ker(a), Im(a2) = Im(a). This
means a ∶ Im(a) → Im(a) is invertible.

Theorem (Stabilization Lemma)

For K < G there exists C(G,K ) such that for any
P =MU, λ ∈ Λ+(M,K ) any V ∈ M(G) and any n ≥ C(G,K ) the
map

a(λ)n ∶ V K
→ V K

is stable.

For V cuspidal (not necessarily irreducible) we can deduce it
from uniform admissibility. The general case requires another
lecture.



Second adjointness: Stabilization Theorem
Proof of genralized Jacquet’s Lemma follows from Stabilization
lemma.

Definition
L a v.s. and a ∈ End(L). The pair (L,a) is stable if
L = Ker(a) ⊕ Im(a) and Ker(a2) = Ker(a), Im(a2) = Im(a). This
means a ∶ Im(a) → Im(a) is invertible.

Theorem (Stabilization Lemma)

For K < G there exists C(G,K ) such that for any
P =MU, λ ∈ Λ+(M,K ) any V ∈ M(G) and any n ≥ C(G,K ) the
map

a(λ)n ∶ V K
→ V K

is stable.

For V cuspidal (not necessarily irreducible) we can deduce it
from uniform admissibility. The general case requires another
lecture.


