Finiteness for Hecke algebras of p-adic
groups.

A theorem by Jean-Francois Dat, David Helm, RobertT
Kurinczuk, and Gilbert Moss
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Reminder N1

Rami’s Lecture:
We reduce the main result to showing:
Any f.g. module V € Mg(G) is 37(G)-finite.
Our Strategy:
@ Embedding of any representation in a sum of induced from
cuspidals.
@ Dat’s Theorem - the cuspidal case.
@ Enough to show induced from cuspidal 3g(M)-finite, is
3pr(G)-finite
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Reminder N3

Eitan’s Second Lecture:
@ Restriction to G° < G, normal and [G: Z(G)G°] < oo
@ quasi cuspidal is equivalent to compact modulo center.

@ Splitting of one cuspidal component D, = W(G)p. (orbit of
an irreducible cuspidal p of G under group
V(G) = Hom(G/G°, C*) of unramified characters).

@ Beginning of Weak classification: any irreducible is a
sub-representation of an induced representation from an
irreducible cuspidal representation of a Levi M < G.

@ Irreducible representations are admissible.

@ Formulated (UA) and (FC) to show Splitting of all cuspidals
of a Levi.
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Where are we going

Bernstein’s theory:
@ Splitting of all cuspidals.
@ Completing weak classification.
@ Splitting the category to components.
@ Noetherian Property of Hecke algebra and of M(G).
@ Second adjointness. TODAY and next time.
Goals:
@ Bernstein’s decomposition
@ Information on Bernstein center
@ Proof of Second adjointness
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Bernstein’s Decomposition - one component

Let G be a reductive group over a local field F. Let

M(G) := Mc(G) 2 M(Hc(G)) be the category of smooth
representations of G.

Theorem (Bernstein)

For p € Irre(G), D, splits M"9:(G)

We show that D splits M(G). Notice D|go = {p|go}. Now use :

For (p, V) irreducible rep. of G, the representation p|go is
semi-simple of finite length. Also p|go = p|go iff D, = D,y iff
JH(plgo) nJH(p'|0) # @

plgo = p1 ® - @® pp with irr. cuspidal rep. of G°. Hence compact.
Write V = Vp @ VP with JH(Vp) c {p1,--, pn} and

JH(VPYn {p1,-,pn} = @. This is a decomposition of G°
representations. Also a G decomposition.
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Structure of Cuspidal component

Generalities.

Definition

M an abelian category with arbitrary direct sums.
@ For X € Obj(M) we denote Fx(A) := Hom(X,A).
@ X is a Compact object if Fx commutes with direct limits.
@ X is projective if Fy is exact.

@ X is generator if Fy is faithful (e.g. injective on morphisms,
being exact same as does not Kill objects).

Proposition

Let M be an abelian category and let P € Obj(M) be a
compact projective generator. Let R = Endu(P). Then

B(X) = Homa(P, X) is an equivalence from 3 : M - Mod"(R)
(right R-modules).




One component, Continuation



One component, Continuation

Let W(G) := Hom(G/GP°, C*) the torus of unramified characters
of G.



One component, Continuation

Let W(G) := Hom(G/GP°, C*) the torus of unramified characters
of G.

For D=V(G)-plet Pp=C[G/G°] ® p = ¢ - ind%, (ple)-

It is a projective generator of M(G)(D).

Proposition (Bernstein)




One component, Continuation

Let W(G) := Hom(G/GP°, C*) the torus of unramified characters
of G.

For D=V(G)-plet Pp=C[G/G°] ® p = ¢ - ind%, (ple)-

It is a projective generator of M(G)(D).

Proposition (Bernstein)

@ M(G)(D) = M(R(D)) with R(D) = End(Pp)




One component, Continuation

Let W(G) := Hom(G/GP°, C*) the torus of unramified characters
of G.

For D=V(G)-plet Pp=C[G/G°] ® p = ¢ - ind%, (ple)-

It is a projective generator of M(G)(D).

Proposition (Bernstein)

@ M(G)(D) = M(R(D)) with R(D) = End(Pp)
@ R(D) is finite over its center Z(R(D)) which is f.g. algebra
over C.




One component, Continuation

Let W(G) := Hom(G/GP°, C*) the torus of unramified characters
of G.

For D=V(G)-plet Pp=C[G/G°] ® p = ¢ - ind%, (ple)-

It is a projective generator of M(G)(D).

Proposition (Bernstein)

@ M(G)(D) = M(R(D)) with R(D) = End(Pp)
@ R(D) is finite over its center Z(R(D)) which is f.g. algebra
over C.

Typically, R(D) = Z(R(D)) = C[G/G°].




One component, Continuation

Let W(G) := Hom(G/GP°, C*) the torus of unramified characters
of G.

For D=V(G)-plet Pp=C[G/G°] ® p = ¢ - ind%, (ple)-

It is a projective generator of M(G)(D).

Proposition (Bernstein)

@ M(G)(D) = M(R(D)) with R(D) = End(Pp)
@ R(D) is finite over its center Z(R(D)) which is f.g. algebra
over C.

Typically, R(D) = Z(R(D)) = C[G/G°].

Corollary (Bernstein)
M(G)(D) is Noetherian (a submodule of f.g is £.g).
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Splitting Irrc(G) - Uniform admissibility

Fix G, F and K < G. Then Supy,. iy dim(V¥) < oo.

V.

Lemma (Kazhdan)

Given r commuting N x N matrices A+, Az, ..., Ar € Mn(C) we
have dimc(< Ay, ..., Ar >) < C(r)N?,e = 515 Infact e = 2;
works.

v

Proof of Uniform Admissibility.

By Burnside: p: #(G, K) - End(VK) is onto. Let
(G, K) = H(Ko, K)CH (Ko, K) with d = dim(H (Ko, K)) and

C:= Spanc{a()\) = ex k : A e N}
Key calculation:

N2 = dim(VK)2 = dim(p(H(G, K)) < d?dim(p(C)) < d?C(r)N*>=<
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Consider orbits of U(G) = Homg(G/GP, C) on Irr(G).

Theorem (Finiteness of cuspidals)

Fix G, F and K < G. Then the number of orbits D in Irr.( G) with
DX = & is finite.

Let V be an irreducible cuspidal representation.
@ Forany \ e A* the operator a()\) : VK — VK is nilpotent.

@ There exists a set S(G, K, V) c G that is compact modulo
the center Z( G) with the following property:

Supp(Dk,v) c S(G, K, V)

for all v e VK. Here Dk ,(g) = m(ex)m (g ")v.

€

We use a(\) = ek k = 9r€\-1x) €k 1o get
VKU Ker(a(\)™) = VKA v(Uy) = VK
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Theorem (Finiteness of cuspidals)

Fix G, F and K < G. Then the number of orbits D in Irr.( G) with
DX + & is finite.

Using UA we obtain

Corollary

For K < G there exists a set S(G, K) c G that is compact
modulo the center Z(G) with the following property:

Supp(Dk,v)  S(G, K)

forallve VK and all V < Irrg(G).

v

Let F(K) be the space of functions on G that are bi K invariant
and are supported in S(G°, K). For each orbit D with DX + &
we get a vector space Fp c F(K) and for different D’s these
spaces are linearly independent.
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Splitting Irrc(G) - Construction of Splitting

Theorem (Splitting of all cuspidals)
Irro(G) splits M(G).

Fix K < G. Let Dy, ..., D, be the orbits with DX = .
We write E = E; x ® ESX. Define

c,K
Ec = ukgEck, Ei = nk<gE

For any E e M(G) we have E = E; & E;

Proof on BlackBoard
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Weak Classification and Decomposition

For M < G we have Irre(M) = uDy,.

Say (M,p) ~(N,7) if Ad(g)M = N,Ad(g)p ~ .
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Denote a connected Component by Q. So Q(G) = uQ.
We later will see

3:=End(ld) = O(Q2(G))
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Theorem (Decomposition)
Irrq splits M(G).

V() the union of all sub-modules W c V with JH(W) c Q.
Say Visgoodif V=aV(Q)
Step 1: Submodule of a good module is good. [Blackboard.]

Let M(cusp) = @M cusp(M;) where M; are standard Levi's.
Define I : M(cusp) - M(G), R: M(G) -~ M(cusp). Here
R(7) = (rma(m)c)-
@ R is left adjoint to I. R is faithful, exact and maps f.g to f.g.
@ cany: V - IR(V) is an embedding. )
Poof. .
I(V) is never zero if V is non zero. Same for R( V). Consider

the kernel W := ker(V — IR(V)). Clearly IR(W) = 0 and hence
W =0. 0




Proof of Decomposition: More details



Proof of Decomposition: More details

Theorem (Decomposition)
Irrq splits M(G).




Proof of Decomposition: More details

Theorem (Decomposition)
Irrq splits M(G).

We need to show all modules are good.

V.




Proof of Decomposition: More details

Theorem (Decomposition)
Irrq splits M(G).

We need to show all modules are good.

use the embedding cany : V - IR(V) and the fact that direct
sum of good is good to reduce to V = ig y(pum).




Proof of Decomposition: More details

Theorem (Decomposition)
Irrq splits M(G).

We need to show all modules are good.

use the embedding cany : V — IR(V) and the fact that direct
sum of good is good to reduce to V' = ig y(pm). We
(essentially) proved that the presentation Irre(M) = uDy
induces a decomposition of M¢(M) to cuspidal components
Mc(M) (D).




Proof of Decomposition: More details

Theorem (Decomposition)
Irrq splits M(G).

We need to show all modules are good.

use the embedding cany : V — IR(V) and the fact that direct
sum of good is good to reduce to V' = ig y(pm). We
(essentially) proved that the presentation Irre(M) = uDy
induces a decomposition of M¢(M) to cuspidal components
Mc(M)(Dy). Thus, can reduce to V = ig y(p(Dpy)) with
Py € Mo(M)(Dyy).




Proof of Decomposition: More details

Theorem (Decomposition)
Irrq splits M(G).

We need to show all modules are good.

use the embedding cany : V — IR(V) and the fact that direct
sum of good is good to reduce to V' = ig y(pm). We
(essentially) proved that the presentation Irre(M) = uDy
induces a decomposition of M¢(M) to cuspidal components
Mc(M)(Dy). Thus, can reduce to V = ig y(p(Dpy)) with

pDy € Mc(M)(Dp). Now use the Geometric Lemma to Ponder
this:




Proof of Decomposition: More details

Theorem (Decomposition)
Irrq splits M(G).

We need to show all modules are good.

use the embedding cany : V — IR(V) and the fact that direct
sum of good is good to reduce to V' = ig y(pm). We
(essentially) proved that the presentation Irre(M) = uDy
induces a decomposition of M¢(M) to cuspidal components
Mc(M)(Dy). Thus, can reduce to V = ig y(p(Dpy)) with

pDy € Mc(M)(Dp). Now use the Geometric Lemma to Ponder
this: any W e JH(ig m(p(Dum))) satisty p(W) € Q. O

V.
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Corollaries of the Decomposition

Theorem (Decomposition)
M(QG) is Noetherian (sub of £.g is f.g).

M (cusp) is Noetherian (as a finite product of Noetherian
categories).

We will use the equivalent chain formulation to check
Noetherity of a given f.g. G-module V.

Take a chain Vj c---V, c--- of submodles of af.g. Vas R
preserve f.g. this chain is mapped by R to a chain that must
stop in M(cusp). But R is exact and faithful. O

v

Theorem (i preserve f.g.)
i sendfgtofg.

Exercise (using Geometric Lemma).
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S*(G)*9(G) - the space of distributions invariant to conjugation.
D e S*(G)"9(9) is called essentially compactif Dx h=hx Dis
of compact support for all h e H. The space of those is
Se.c(G)9(Q) ltis easy to see

3(G) := End(Id) = Endyyup(H) = Se.c(G)A49.

Notice that by Schur’s lemma we can map

3(G) — Func(Irr(G))

To see what kind of functions we get it is better to act on
projective generators.

Theorem (Bernstein)

The decomposition M(G) = NaM(Q) induces 3(G) = M3(Q).
We have 3(2) ~ O(Q2) given by action.

Let Q = [(M, D)] then we have MN(D) = ¢ - ind$,(D|g) and
M(Q) = igm(N(D) a f.g. module.
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Proof of genralized Jacquet’s Lemma follows from Stabilization
lemma.

Definition

Lavs. and ac End(L). The pair (L, a) is stable if

L = Ker(a) ® Im(a) and Ker(a?) = Ker(a), Im(a?) = Im(a). This
means a: Im(a) - Im(a) is invertible.

€

Theorem (Stabilization Lemma)

For K < G there exists C(G, K) such that for any

P=MU,Xe N (M,K) any Ve M(G) and any n> C(G, K) the
map

a(\)": VK - VK

is stable.

.

For V cuspidal (not necessarily irreducible) we can deduce it
from uniform admissibility. The general case requires another
lecture.



