Finiteness for Hecke algebras of p-adic groups.

A theorem by Jean-Francois Dat, David Helm, RobertT Kurinczuk, and Gilbert Moss

Rami's Lecture:

We reduce the main result to showing: Any f.g. module $V \in \mathcal{M}_{R}(G)$ is $\mathfrak{Z}_{R}(G)$ -finite.

Rami's Lecture:

We reduce the main result to showing: Any f.g. module $V \in \mathcal{M}_R(G)$ is $\mathfrak{Z}_R(G)$ -finite. Our Strategy:

Rami's Lecture:

We reduce the main result to showing: Any f.g. module $V \in \mathcal{M}_R(G)$ is $\mathfrak{Z}_R(G)$ -finite. Our Strategy:

 Embedding of any representation in a sum of induced from cuspidals.

Rami's Lecture:

We reduce the main result to showing: Any f.g. module $V \in \mathcal{M}_R(G)$ is $\mathfrak{Z}_R(G)$ -finite. Our Strategy:

- Embedding of any representation in a sum of induced from cuspidals.
- Dat's Theorem the cuspidal case.

Rami's Lecture:

We reduce the main result to showing: Any f.g. module $V \in \mathcal{M}_R(G)$ is $\mathfrak{Z}_R(G)$ -finite. Our Strategy:

- Embedding of any representation in a sum of induced from cuspidals.
- Dat's Theorem the cuspidal case.
- Enough to show induced from cuspidal $\mathfrak{Z}_R(M)$ -finite, is $\mathfrak{Z}_R(G)$ -finite

Eitan's First Lecture:

Eitan's First Lecture:

• Irreducible compact representation Split $\mathcal{M}(G)$.

Eitan's First Lecture:

- Irreducible compact representation Split $\mathcal{M}(G)$.
- f.g. compact representations are admissible.

Eitan's Second Lecture:

• Restriction to $G^0 < G$, normal and $[G : Z(G)G^0] < \infty$

- Restriction to $G^0 < G$, normal and $[G: Z(G)G^0] < \infty$
- quasi cuspidal is equivalent to compact modulo center.

- Restriction to $G^0 < G$, normal and $[G: Z(G)G^0] < \infty$
- quasi cuspidal is equivalent to compact modulo center.
- Splitting of one cuspidal component $D_{\rho} = \Psi(G)\rho$.

- Restriction to $G^0 < G$, normal and $[G : Z(G)G^0] < \infty$
- quasi cuspidal is equivalent to compact modulo center.
- Splitting of one cuspidal component $D_{\rho} = \Psi(G)\rho$. (orbit of an irreducible cuspidal ρ of G under group $\Psi(G) = \operatorname{Hom}(G/G^0, \mathbb{C}^*)$ of unramified characters).

- Restriction to $G^0 < G$, normal and $[G : Z(G)G^0] < \infty$
- quasi cuspidal is equivalent to compact modulo center.
- Splitting of one cuspidal component $D_{\rho} = \Psi(G)\rho$. (orbit of an irreducible cuspidal ρ of G under group $\Psi(G) = \operatorname{Hom}(G/G^0, \mathbb{C}^*)$ of unramified characters).
- Beginning of Weak classification: any irreducible is a sub-representation of an induced representation from an irreducible cuspidal representation of a Levi M < G.

- Restriction to $G^0 < G$, normal and $[G : Z(G)G^0] < \infty$
- quasi cuspidal is equivalent to compact modulo center.
- Splitting of one cuspidal component $D_{\rho} = \Psi(G)\rho$. (orbit of an irreducible cuspidal ρ of G under group $\Psi(G) = \operatorname{Hom}(G/G^0, \mathbb{C}^*)$ of unramified characters).
- Beginning of Weak classification: any irreducible is a sub-representation of an induced representation from an irreducible cuspidal representation of a Levi M < G.
- Irreducible representations are admissible.

- Restriction to $G^0 < G$, normal and $[G : Z(G)G^0] < \infty$
- quasi cuspidal is equivalent to compact modulo center.
- Splitting of one cuspidal component $D_{\rho} = \Psi(G)\rho$. (orbit of an irreducible cuspidal ρ of G under group $\Psi(G) = \operatorname{Hom}(G/G^0, \mathbb{C}^*)$ of unramified characters).
- Beginning of Weak classification: any irreducible is a sub-representation of an induced representation from an irreducible cuspidal representation of a Levi M < G.
- Irreducible representations are admissible.
- Formulated (UA) and (FC) to show Splitting of all cuspidals of a Levi.

Bernstein's theory:

Splitting of all cuspidals.

- Splitting of all cuspidals.
- Completing weak classification.

- Splitting of all cuspidals.
- Completing weak classification.
- Splitting the category to components.

- Splitting of all cuspidals.
- Completing weak classification.
- Splitting the category to components.
- Noetherian Property of Hecke algebra and of $\mathcal{M}(G)$.

- Splitting of all cuspidals.
- Completing weak classification.
- Splitting the category to components.
- Noetherian Property of Hecke algebra and of $\mathcal{M}(G)$.
- Second adjointness. TODAY and next time.

Bernstein's theory:

- Splitting of all cuspidals.
- Completing weak classification.
- Splitting the category to components.
- Noetherian Property of Hecke algebra and of $\mathcal{M}(G)$.
- Second adjointness. TODAY and next time.

Goals:

Bernstein's theory:

- Splitting of all cuspidals.
- Completing weak classification.
- Splitting the category to components.
- Noetherian Property of Hecke algebra and of $\mathcal{M}(G)$.
- Second adjointness. TODAY and next time.

Goals:

Bernstein's decomposition

Bernstein's theory:

- Splitting of all cuspidals.
- Completing weak classification.
- Splitting the category to components.
- Noetherian Property of Hecke algebra and of $\mathcal{M}(G)$.
- Second adjointness. TODAY and next time.

Goals:

- Bernstein's decomposition
- Information on Bernstein center

Bernstein's theory:

- Splitting of all cuspidals.
- Completing weak classification.
- Splitting the category to components.
- Noetherian Property of Hecke algebra and of $\mathcal{M}(G)$.
- Second adjointness. TODAY and next time.

Goals:

- Bernstein's decomposition
- Information on Bernstein center
- Proof of Second adjointness

Let G be a reductive group over a local field F.

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Theorem (Bernstein)

For
$$\rho \in Irr_{c}(G)$$
, D_{ρ} splits $\mathcal{M}^{f.g.}(G)$

We show that D splits $\mathcal{M}(G)$. Notice $D|_{G^0} = \{\rho|_{G^0}\}$. Now use :

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Theorem (Bernstein)

For
$$\rho \in Irr_{c}(G)$$
, D_{ρ} splits $\mathcal{M}^{f.g.}(G)$

We show that D splits $\mathcal{M}(G)$. Notice $D|_{G^0} = \{\rho|_{G^0}\}$. Now use :

Lemma

For (ρ, V) irreducible rep. of G, the representation $\rho|_{G^0}$ is semi-simple of finite length. Also $\rho|_{G^0}\cong \rho'|_{G^0}$ iff $D_\rho=D_{\rho'}$ iff $JH(\rho|_{G^0})\cap JH(\rho'|_{G^0})\neq\varnothing$

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Theorem (Bernstein)

For
$$\rho \in Irr_{c}(G)$$
, D_{ρ} splits $\mathcal{M}^{f.g.}(G)$

We show that D splits $\mathcal{M}(G)$. Notice $D|_{G^0} = \{\rho|_{G^0}\}$. Now use :

Lemma

For (ρ, V) irreducible rep. of G, the representation $\rho|_{G^0}$ is semi-simple of finite length. Also $\rho|_{G^0}\cong \rho'|_{G^0}$ iff $D_\rho=D_{\rho'}$ iff $JH(\rho|_{G^0})\cap JH(\rho'|_{G^0})\neq\varnothing$

 $\rho|_{G^0} = \rho_1 \oplus \cdots \oplus \rho_n$ with irr. cuspidal rep. of G^0 . Hence compact.

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Theorem (Bernstein)

For
$$\rho \in Irr_{c}(G)$$
, D_{ρ} splits $\mathcal{M}^{f.g.}(G)$

We show that D splits $\mathcal{M}(G)$. Notice $D|_{G^0} = \{\rho|_{G^0}\}$. Now use :

Lemma

For (ρ, V) irreducible rep. of G, the representation $\rho|_{G^0}$ is semi-simple of finite length. Also $\rho|_{G^0}\cong \rho'|_{G^0}$ iff $D_\rho=D_{\rho'}$ iff $JH(\rho|_{G^0})\cap JH(\rho'|_{G^0})\neq\varnothing$

 $\rho|_{G^0} = \rho_1 \oplus \cdots \oplus \rho_n$ with irr. cuspidal rep. of G^0 . Hence compact. Write $V = V_D \oplus V^D$ with $JH(V_D) \subset \{\rho_1, \cdots, \rho_n\}$ and $JH(V^D) \cap \{\rho_1, \cdots, \rho_n\} = \emptyset$.

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Theorem (Bernstein)

For
$$\rho \in Irr_c(G)$$
, D_ρ splits $\mathcal{M}^{f.g.}(G)$

We show that D splits $\mathcal{M}(G)$. Notice $D|_{G^0} = \{\rho|_{G^0}\}$. Now use :

Lemma

For (ρ,V) irreducible rep. of G, the representation $\rho|_{G^0}$ is semi-simple of finite length. Also $\rho|_{G^0}\cong\rho'|_{G^0}$ iff $D_\rho=D_{\rho'}$ iff $JH(\rho|_{G^0})\cap JH(\rho'|_{G^0})\neq\varnothing$

 $ho|_{G^0}=
ho_1\oplus\cdots\oplus
ho_n$ with irr. cuspidal rep. of G^0 . Hence compact. Write $V=V_D\oplus V^D$ with $JH(V_D)\subset\{
ho_1,\cdots,
ho_n\}$ and $JH(V^D)\cap\{
ho_1,\cdots,
ho_n\}=\varnothing$. This is a decomposition of G^0 representations.

Let G be a reductive group over a local field F. Let $\mathcal{M}(G) \coloneqq \mathcal{M}_{\mathbb{C}}(G) \cong \mathcal{M}(\mathcal{H}_{\mathbb{C}}(G))$ be the category of smooth representations of G.

Theorem (Bernstein)

For
$$\rho \in Irr_{c}(G)$$
, D_{ρ} splits $\mathcal{M}^{f.g.}(G)$

We show that D splits $\mathcal{M}(G)$. Notice $D|_{G^0} = \{\rho|_{G^0}\}$. Now use :

Lemma

For (ρ,V) irreducible rep. of G, the representation $\rho|_{G^0}$ is semi-simple of finite length. Also $\rho|_{G^0}\cong\rho'|_{G^0}$ iff $D_\rho=D_{\rho'}$ iff $JH(\rho|_{G^0})\cap JH(\rho'|_{G^0})\neq\varnothing$

 $ho|_{G^0} =
ho_1 \oplus \cdots \oplus
ho_n$ with irr. cuspidal rep. of G^0 . Hence compact. Write $V = V_D \oplus V^D$ with $JH(V_D) \subset \{\rho_1, \cdots, \rho_n\}$ and $JH(V^D) \cap \{\rho_1, \cdots, \rho_n\} = \varnothing$. This is a decomposition of G^0 representations. Also a G decomposition.

Structure of Cuspidal component

Generalities.

Generalities.

Definition

 $\ensuremath{\mathcal{M}}$ an abelian category with arbitrary direct sums.

Generalities.

Definition

 $\ensuremath{\mathcal{M}}$ an abelian category with arbitrary direct sums.

• For $X \in Obj(\mathcal{M})$ we denote $F_X(A) := Hom(X, A)$.

Generalities.

Definition

 ${\cal M}$ an abelian category with arbitrary direct sums.

- For $X \in Obj(\mathcal{M})$ we denote $F_X(A) := Hom(X, A)$.
- X is a Compact object if F_X commutes with direct limits.

Generalities.

Definition

 ${\cal M}$ an abelian category with arbitrary direct sums.

- For $X \in Obj(\mathcal{M})$ we denote $F_X(A) := Hom(X, A)$.
- X is a Compact object if F_X commutes with direct limits.
- X is projective if F_X is exact.

Generalities.

Definition

 ${\cal M}$ an abelian category with arbitrary direct sums.

- For $X \in Obj(\mathcal{M})$ we denote $F_X(A) := Hom(X, A)$.
- X is a Compact object if F_X commutes with direct limits.
- X is projective if F_X is exact.
- X is generator if F_X is faithful (e.g. injective on morphisms, being exact same as does not kill objects).

Generalities.

Definition

 ${\cal M}$ an abelian category with arbitrary direct sums.

- For $X \in Obj(\mathcal{M})$ we denote $F_X(A) := Hom(X, A)$.
- X is a Compact object if F_X commutes with direct limits.
- X is projective if F_X is exact.
- X is generator if F_X is faithful (e.g. injective on morphisms, being exact same as does not kill objects).

Proposition

Let \mathcal{M} be an abelian category and let $P \in Obj(\mathcal{M})$ be a compact projective generator.

Generalities.

Definition

 ${\cal M}$ an abelian category with arbitrary direct sums.

- For $X \in Obj(\mathcal{M})$ we denote $F_X(A) := Hom(X, A)$.
- X is a Compact object if F_X commutes with direct limits.
- X is projective if F_X is exact.
- X is generator if F_X is faithful (e.g. injective on morphisms, being exact same as does not kill objects).

Proposition

Let \mathcal{M} be an abelian category and let $P \in Obj(\mathcal{M})$ be a compact projective generator. Let $R = End_{\mathcal{M}}(P)$.

Generalities.

Definition

 ${\cal M}$ an abelian category with arbitrary direct sums.

- For $X \in Obj(\mathcal{M})$ we denote $F_X(A) := Hom(X, A)$.
- X is a Compact object if F_X commutes with direct limits.
- X is projective if F_X is exact.
- X is generator if F_X is faithful (e.g. injective on morphisms, being exact same as does not kill objects).

Proposition

Let \mathcal{M} be an abelian category and let $P \in Obj(\mathcal{M})$ be a compact projective generator. Let $R = End_{\mathcal{M}}(P)$. Then $\beta(X) = Hom_{\mathcal{M}}(P,X)$ is an equivalence from $\beta: \mathcal{M} \to Mod^r(R)$ (right R-modules).

Let $\Psi(G) := \text{Hom}(G/G^0, \mathbb{C}^*)$ the torus of unramified characters of G.

Let $\Psi(G) := \text{Hom}(G/G^0, \mathbb{C}^*)$ the torus of unramified characters of G.

For $D = \Psi(G) \cdot \rho$ let $P_D = \mathbb{C}[G/G^0] \otimes \rho = c - ind_{G^0}^G(\rho|_{G^0})$. It is a projective generator of $\mathcal{M}(G)(D)$.

Proposition (Bernstein)

Let $\Psi(G) := \text{Hom}(G/G^0, \mathbb{C}^*)$ the torus of unramified characters of G.

For $D = \Psi(G) \cdot \rho$ let $P_D = \mathbb{C}[G/G^0] \otimes \rho = c - ind_{G^0}^G(\rho|_{G^0})$. It is a projective generator of $\mathcal{M}(G)(D)$.

Proposition (Bernstein)

• $\mathcal{M}(G)(D) \cong \mathcal{M}(R(D))$ with $R(D) = End(P_D)$

Let $\Psi(G) := \text{Hom}(G/G^0, \mathbb{C}^*)$ the torus of unramified characters of G.

For $D = \Psi(G) \cdot \rho$ let $P_D = \mathbb{C}[G/G^0] \otimes \rho = c - ind_{G^0}^G(\rho|_{G^0})$. It is a projective generator of $\mathcal{M}(G)(D)$.

Proposition (Bernstein)

- $\mathcal{M}(G)(D) \cong \mathcal{M}(R(D))$ with $R(D) = End(P_D)$
- R(D) is finite over its center Z(R(D)) which is f.g. algebra over C.

Let $\Psi(G) := \text{Hom}(G/G^0, \mathbb{C}^*)$ the torus of unramified characters of G.

For $D = \Psi(G) \cdot \rho$ let $P_D = \mathbb{C}[G/G^0] \otimes \rho = c - ind_{G^0}^G(\rho|_{G^0})$. It is a projective generator of $\mathcal{M}(G)(D)$.

Proposition (Bernstein)

- $\mathcal{M}(G)(D) \cong \mathcal{M}(R(D))$ with $R(D) = End(P_D)$
- R(D) is finite over its center Z(R(D)) which is f.g. algebra over C.

Typically,
$$R(D) = Z(R(D)) = \mathbb{C}[G/G^0]$$
.

Let $\Psi(G) := \text{Hom}(G/G^0, \mathbb{C}^*)$ the torus of unramified characters of G.

For $D = \Psi(G) \cdot \rho$ let $P_D = \mathbb{C}[G/G^0] \otimes \rho = c - ind_{G^0}^G(\rho|_{G^0})$. It is a projective generator of $\mathcal{M}(G)(D)$.

Proposition (Bernstein)

- $\mathcal{M}(G)(D) \cong \mathcal{M}(R(D))$ with $R(D) = End(P_D)$
- R(D) is finite over its center Z(R(D)) which is f.g. algebra over C.

Typically, $R(D) = Z(R(D)) = \mathbb{C}[G/G^0]$.

Corollary (Bernstein)

 $\mathcal{M}(G)(D)$ is Noetherian (a submodule of f.g is f.g).

Our aim is:

Theorem (Bernstein)

 $\mathit{Irr}_c(G)$ splits $\mathcal{M}^{\mathit{f.g.}}(G)$

Our aim is:

Theorem (Bernstein)

 $Irr_c(G)$ splits $\mathcal{M}^{f.g.}(G)$

This is a three step argument:

Our aim is:

Theorem (Bernstein)

 $Irr_c(G)$ splits $\mathcal{M}^{f.g.}(G)$

This is a three step argument:

Uniform admissibility

Our aim is:

Theorem (Bernstein)

 $Irr_c(G)$ splits $\mathcal{M}^{f.g.}(G)$

This is a three step argument:

- Uniform admissibility
- Certain Finiteness of Cuspidals

Our aim is:

Theorem (Bernstein)

 $Irr_c(G)$ splits $\mathcal{M}^{f.g.}(G)$

This is a three step argument:

- Uniform admissibility
- Certain Finiteness of Cuspidals
- Construction of Splitting

Theorem (Bernstein Uniform admissibility)

Fix G, F and K < G. Then $Sup_{V \in Irr(G)} \dim(V^K) < \infty$.

Theorem (Bernstein Uniform admissibility)

Fix G, F and K < G. Then $Sup_{V \in Irr(G)} \dim(V^K) < \infty$.

Lemma (Kazhdan)

Given r commuting $N \times N$ matrices $A_1, A_2, ..., A_r \in M_N(\mathbb{C})$ we have $\dim_{\mathbb{C}}(\langle A_1, ..., A_r \rangle) \leq C(r)N^{2-\epsilon}, \epsilon = \frac{1}{2^{r-1}}$.

Theorem (Bernstein Uniform admissibility)

Fix G, F and K < G. Then $Sup_{V \in Irr(G)} \dim(V^K) < \infty$.

Lemma (Kazhdan)

Given r commuting $N \times N$ matrices $A_1, A_2, ..., A_r \in M_N(\mathbb{C})$ we have $\dim_{\mathbb{C}}(\langle A_1, ..., A_r \rangle) \leq C(r)N^{2-\epsilon}, \epsilon = \frac{1}{2^{r-1}}$. In fact $\epsilon = \frac{2}{r+1}$ works.

Theorem (Bernstein Uniform admissibility)

Fix G, F and K < G. Then $Sup_{V \in Irr(G)} \dim(V^K) < \infty$.

Lemma (Kazhdan)

Given r commuting $N \times N$ matrices $A_1, A_2, ..., A_r \in M_N(\mathbb{C})$ we have $\dim_{\mathbb{C}}(\langle A_1, ..., A_r \rangle) \leq C(r)N^{2-\epsilon}, \epsilon = \frac{1}{2^{r-1}}$. In fact $\epsilon = \frac{2}{r+1}$ works.

Proof of Uniform Admissibility.

By Burnside: $\rho: \mathcal{H}(G,K) \to End(V^K)$ is onto. Let $\mathcal{H}(G,K) = \mathcal{H}(K_0,K)\mathcal{CH}(K_0,K)$ with $d = dim(\mathcal{H}(K_0,K))$ and

$$C := Span_{\mathbb{C}} \{ a(\lambda) = e_{K\lambda K} : \lambda \in \Lambda^+ \}$$

Key calculation:

$$\textit{N}^2 = \dim(\textit{V}^{\textit{K}})^2 = \dim(\rho(\mathcal{H}(\textit{G},\textit{K})) \leq \textit{d}^2\dim(\rho(\textit{C})) \leq \textit{d}^2\textit{C}(\textit{r})\textit{N}^{2-\epsilon}$$

Consider orbits of $\Psi(G) = \operatorname{Hom}_{\mathcal{C}}(G/G^0, \mathbb{C})$ on $Irr_{\mathcal{C}}(G)$.

Theorem (Finiteness of cuspidals)

Fix G, F and K < G. Then the number of orbits D in $Irr_c(G)$ with $D^K \neq \emptyset$ is finite.

Consider orbits of $\Psi(G) = \operatorname{Hom}_{\mathcal{C}}(G/G^0, \mathbb{C})$ on $Irr_{\mathcal{C}}(G)$.

Theorem (Finiteness of cuspidals)

Fix G, F and K < G. Then the number of orbits D in $Irr_c(G)$ with $D^K \neq \emptyset$ is finite.

Lemma

Let V be an irreducible cuspidal representation.

Consider orbits of $\Psi(G) = \operatorname{Hom}_{\mathcal{C}}(G/G^0, \mathbb{C})$ on $Irr_{\mathcal{C}}(G)$.

Theorem (Finiteness of cuspidals)

Fix G, F and K < G. Then the number of orbits D in $Irr_c(G)$ with $D^K \neq \emptyset$ is finite.

Lemma

Let V be an irreducible cuspidal representation.

• For any $\lambda \in \Lambda^+$ the operator $a(\lambda) : V^K \to V^K$ is nilpotent.

Consider orbits of $\Psi(G) = \operatorname{Hom}_{\mathcal{C}}(G/G^0, \mathbb{C})$ on $Irr_{\mathcal{C}}(G)$.

Theorem (Finiteness of cuspidals)

Fix G, F and K < G. Then the number of orbits D in $Irr_c(G)$ with $D^K \neq \emptyset$ is finite.

Lemma

Let V be an irreducible cuspidal representation.

- For any $\lambda \in \Lambda^+$ the operator $\mathbf{a}(\lambda) : V^K \to V^K$ is nilpotent.
- There exists a set S(G, K, V) ⊂ G that is compact modulo the center Z(G) with the following property:

$$Supp(D_{K,v}) \subset S(G,K,V)$$

for all $v \in V^K$. Here $D_{K,v}(g) = \pi(e_K)\pi(g^{-1})v$.

Consider orbits of $\Psi(G) = \operatorname{Hom}_{\mathcal{C}}(G/G^0, \mathbb{C})$ on $Irr_{\mathcal{C}}(G)$.

Theorem (Finiteness of cuspidals)

Fix G, F and K < G. Then the number of orbits D in $Irr_c(G)$ with $D^K \neq \emptyset$ is finite.

Lemma

Let V be an irreducible cuspidal representation.

- For any $\lambda \in \Lambda^+$ the operator $a(\lambda) : V^K \to V^K$ is nilpotent.
- There exists a set S(G, K, V) ⊂ G that is compact modulo the center Z(G) with the following property:

$$Supp(D_{K,v}) \subset S(G,K,V)$$

for all
$$v \in V^K$$
. Here $D_{K,v}(g) = \pi(e_K)\pi(g^{-1})v$.

We use
$$a(\lambda) = e_{K\lambda K} = \delta_{\lambda} e_{\lambda^{-1} K\lambda} e_{K}$$
 to get
$$V^{K} \cap \cup_{n=1}^{\infty} Ker(a(\lambda)^{n}) = V^{K} \cap V(U_{\lambda}) = V^{K}$$

Theorem (Finiteness of cuspidals)

Fix G, F and K < G. Then the number of orbits D in $Irr_c(G)$ with $D^K \neq \emptyset$ is finite.

Theorem (Finiteness of cuspidals)

Fix G, F and K < G. Then the number of orbits D in $Irr_c(G)$ with $D^K \neq \emptyset$ is finite.

Using UA we obtain

Corollary

For K < G there exists a set $S(G, K) \subset G$ that is compact modulo the center Z(G) with the following property:

$$Supp(D_{K,v}) \subset S(G,K)$$

for all $v \in V^K$ and all $V \in Irr_c(G)$.

Theorem (Finiteness of cuspidals)

Fix G, F and K < G. Then the number of orbits D in $Irr_c(G)$ with $D^K \neq \emptyset$ is finite.

Using UA we obtain

Corollary

For K < G there exists a set $S(G, K) \subset G$ that is compact modulo the center Z(G) with the following property:

$$Supp(D_{K,v}) \subset S(G,K)$$

for all $v \in V^K$ and all $V \in Irr_c(G)$.

Let F(K) be the space of functions on G that are bi K invariant and are supported in $S(G^0, K)$.

Theorem (Finiteness of cuspidals)

Fix G, F and K < G. Then the number of orbits D in $Irr_c(G)$ with $D^K \neq \emptyset$ is finite.

Using UA we obtain

Corollary

For K < G there exists a set $S(G, K) \subset G$ that is compact modulo the center Z(G) with the following property:

$$Supp(D_{K,v}) \subset S(G,K)$$

for all $v \in V^K$ and all $V \in Irr_c(G)$.

Let F(K) be the space of functions on G that are bi K invariant and are supported in $S(G^0, K)$. For each orbit D with $D^K \neq \emptyset$ we get a vector space $F_D \subset F(K)$

Theorem (Finiteness of cuspidals)

Fix G, F and K < G. Then the number of orbits D in $Irr_c(G)$ with $D^K \neq \emptyset$ is finite.

Using UA we obtain

Corollary

For K < G there exists a set $S(G, K) \subset G$ that is compact modulo the center Z(G) with the following property:

$$Supp(D_{K,v}) \subset S(G,K)$$

for all $v \in V^K$ and all $V \in Irr_c(G)$.

Let F(K) be the space of functions on G that are bi K invariant and are supported in $S(G^0,K)$. For each orbit D with $D^K \neq \emptyset$ we get a vector space $F_D \subset F(K)$ and for different D's these spaces are linearly independent.

Splitting $Irr_c(G)$ - Construction of Splitting

Theorem (Splitting of all cuspidals)

 $Irr_c(G)$ splits $\mathcal{M}(G)$.

Theorem (Splitting of all cuspidals)

 $Irr_c(G)$ splits $\mathcal{M}(G)$.

Fix K < G. Let $D_1, ..., D_r$ be the orbits with $D^K \neq \emptyset$.

Theorem (Splitting of all cuspidals)

 $Irr_c(G)$ splits $\mathcal{M}(G)$.

Fix K < G. Let $D_1, ..., D_r$ be the orbits with $D^K \neq \emptyset$. We write $E = E_{c,K} \oplus E^{c,K}$.

Theorem (Splitting of all cuspidals)

 $Irr_c(G)$ splits $\mathcal{M}(G)$.

Fix K < G. Let $D_1, ..., D_r$ be the orbits with $D^K \neq \emptyset$. We write $E = E_{c,K} \oplus E^{c,K}$. Define

$$E_c = \cup_{K < G} E_{c,K}, E_i = \cap_{K < G} E^{c,K}$$

Theorem (Splitting of all cuspidals)

 $Irr_c(G)$ splits $\mathcal{M}(G)$.

Fix K < G. Let $D_1, ..., D_r$ be the orbits with $D^K \neq \emptyset$. We write $E = E_{c,K} \oplus E^{c,K}$. Define

$$E_c = \cup_{K < G} E_{c,K}, E_i = \cap_{K < G} E^{c,K}$$

Lemma

For any $E \in \mathcal{M}(G)$ we have $E = E_c \oplus E_i$

Theorem (Splitting of all cuspidals)

 $Irr_c(G)$ splits $\mathcal{M}(G)$.

Fix K < G. Let $D_1, ..., D_r$ be the orbits with $D^K \neq \emptyset$. We write $E = E_{c,K} \oplus E^{c,K}$. Define

$$E_c = \cup_{K < G} E_{c,K}, E_i = \cap_{K < G} E^{c,K}$$

Lemma

For any $E \in \mathcal{M}(G)$ we have $E = E_c \oplus E_i$

Proof on BlackBoard

For M < G we have $Irr_c(M) = \cup D_M$.

For M < G we have $Irr_c(M) = \cup D_M$. Say $(M, \rho) \sim (N, \tau)$ if $Ad(g)M = N, Ad(g)\rho \simeq \tau$.

For M < G we have $Irr_{C}(M) = \cup D_{M}$. Say $(M, \rho) \sim (N, \tau)$ if $Ad(g)M = N, Ad(g)\rho \simeq \tau$. Define $\Omega(G)$ the set of $[(M, \rho)]$ up to association.

For M < G we have $Irr_{\mathcal{C}}(M) = \cup D_M$. Say $(M, \rho) \sim (N, \tau)$ if $Ad(g)M = N, Ad(g)\rho \simeq \tau$. Define $\Omega(G)$ the set of $[(M, \rho)]$ up to association. $\Omega(G)$ is an algebraic variety as

$$\Omega(G) = \cup Irr_{c}(M_{i})/W_{i}$$

For M < G we have $Irr_c(M) = \cup D_M$. Say $(M, \rho) \sim (N, \tau)$ if $Ad(g)M = N, Ad(g)\rho \simeq \tau$. Define $\Omega(G)$ the set of $[(M, \rho)]$ up to association. $\Omega(G)$ is an algebraic variety as

$$\Omega(G) = \cup Irr_c(M_i)/W_i$$

Denote a connected Component by Ω . So $\Omega(G) = \cup \Omega$.

For M < G we have $Irr_c(M) = \cup D_M$. Say $(M, \rho) \sim (N, \tau)$ if $Ad(g)M = N, Ad(g)\rho \simeq \tau$. Define $\Omega(G)$ the set of $[(M, \rho)]$ up to association. $\Omega(G)$ is an algebraic variety as

$$\Omega(G) = \cup Irr_c(M_i)/W_i$$

Denote a connected Component by Ω . So $\Omega(G) = \cup \Omega$. We later will see

$$\mathfrak{Z} \coloneqq \mathsf{End}(\mathsf{Id}) \cong \mathcal{O}(\Omega(\mathsf{G}))$$

.

We define

$$p(\pi) = \{ [(M, \rho)] : \rho \in JH(r_M(\pi)) \}$$

We define

$$p(\pi) = \{ [(M, \rho)] : \rho \in JH(r_M(\pi)) \}$$

The next lemma implies that $p(\pi)$ is a singelton.

We define

$$p(\pi) = \{ [(M, \rho)] : \rho \in JH(r_M(\pi)) \}$$

The next lemma implies that $p(\pi)$ is a singelton.

Lemma (Geometric Lemma)

Let $\rho \in Irr_c(M)$ then $r_{M,G} \circ i_{G,M}(\rho)$ has a canonical finite filtration with associated grades isomorphic to $w\rho$, with $w \in N_G(M)$.

We define

$$p(\pi) = \{ [(M, \rho)] : \rho \in JH(r_M(\pi)) \}$$

The next lemma implies that $p(\pi)$ is a singelton.

Lemma (Geometric Lemma)

Let $\rho \in Irr_{c}(M)$ then $r_{M,G} \circ i_{G,M}(\rho)$ has a canonical finite filtration with associated grades isomorphic to $w\rho$, with $w \in N_{G}(M)$.

More is true:

We define

$$p(\pi) = \{ [(M, \rho)] : \rho \in JH(r_M(\pi)) \}$$

The next lemma implies that $p(\pi)$ is a singelton.

Lemma (Geometric Lemma)

Let $\rho \in Irr_{c}(M)$ then $r_{M,G} \circ i_{G,M}(\rho)$ has a canonical finite filtration with associated grades isomorphic to $w\rho$, with $w \in N_{G}(M)$.

More is true:

Theorem (Weak Classification)

 $p: Irr(G) \rightarrow \Omega(G)$ is finite to one.

We define

$$p(\pi) = \{ [(M, \rho)] : \rho \in JH(r_M(\pi)) \}$$

The next lemma implies that $p(\pi)$ is a singelton.

Lemma (Geometric Lemma)

Let $\rho \in Irr_c(M)$ then $r_{M,G} \circ i_{G,M}(\rho)$ has a canonical finite filtration with associated grades isomorphic to $w\rho$, with $w \in N_G(M)$.

More is true:

Theorem (Weak Classification)

$$p: Irr(G) \rightarrow \Omega(G)$$
 is finite to one.

Define
$$Irr_{\Omega} = p^{-1}(\Omega)$$

We define

$$p(\pi) = \{ [(M, \rho)] : \rho \in JH(r_M(\pi)) \}$$

The next lemma implies that $p(\pi)$ is a singelton.

Lemma (Geometric Lemma)

Let $\rho \in Irr_{c}(M)$ then $r_{M,G} \circ i_{G,M}(\rho)$ has a canonical finite filtration with associated grades isomorphic to $w\rho$, with $w \in N_{G}(M)$.

More is true:

Theorem (Weak Classification)

 $p: Irr(G) \rightarrow \Omega(G)$ is finite to one.

Define $Irr_{\Omega} = p^{-1}(\Omega)$

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

 $V(\Omega)$ the union of all sub-modules $W \subset V$ with $JH(W) \subset \Omega$.

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

 $V(\Omega)$ the union of all sub-modules $W \subset V$ with $JH(W) \subset \Omega$. Say V is **good** if $V = \bigoplus V(\Omega)$

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

 $V(\Omega)$ the union of all sub-modules $W \subset V$ with $JH(W) \subset \Omega$.

Say V is **good** if $V = \bigoplus V(\Omega)$

Step 1: Submodule of a good module is good. [Blackboard.]

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

 $V(\Omega)$ the union of all sub-modules $W \subset V$ with $JH(W) \subset \Omega$. Say V is **good** if $V = \bigoplus V(\Omega)$

Step 1: Submodule of a good module is good. [Blackboard.]

Lemma

Let $\mathcal{M}(\textit{cusp}) = \oplus \mathcal{M}_{\textit{cusp}}(\textit{M}_i)$ where \textit{M}_i are standard Levi's. Define $\textit{I}: \mathcal{M}(\textit{cusp}) \to \mathcal{M}(\textit{G}), \textit{R}: \mathcal{M}(\textit{G}) \to \mathcal{M}(\textit{cusp})$. Here $\textit{R}(\pi) = (\textit{r}_{\textit{MG}}(\pi)_c)$.

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

 $V(\Omega)$ the union of all sub-modules $W \subset V$ with $JH(W) \subset \Omega$. Say V is **good** if $V = \bigoplus V(\Omega)$

Step 1: Submodule of a good module is good. [Blackboard.]

Lemma

Let $\mathcal{M}(\textit{cusp}) = \oplus \mathcal{M}_{\textit{cusp}}(M_i)$ where M_i are standard Levi's. Define $I: \mathcal{M}(\textit{cusp}) \to \mathcal{M}(G), R: \mathcal{M}(G) \to \mathcal{M}(\textit{cusp})$. Here $R(\pi) = (r_{MG}(\pi)_c)$.

- R is left adjoint to I. R is faithful, exact and maps f.g to f.g.
- 2 $can_V: V \rightarrow IR(V)$ is an embedding.

Proof.

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

 $V(\Omega)$ the union of all sub-modules $W \subset V$ with $JH(W) \subset \Omega$. Say V is **good** if $V = \bigoplus V(\Omega)$

Step 1: Submodule of a good module is good. [Blackboard.]

Lemma

Let $\mathcal{M}(\textit{cusp}) = \oplus \mathcal{M}_{\textit{cusp}}(\textit{M}_i)$ where \textit{M}_i are standard Levi's. Define $\textit{I}: \mathcal{M}(\textit{cusp}) \to \mathcal{M}(\textit{G}), \textit{R}: \mathcal{M}(\textit{G}) \to \mathcal{M}(\textit{cusp})$. Here $\textit{R}(\pi) = (\textit{r}_{\textit{MG}}(\pi)_c)$.

- R is left adjoint to I. R is faithful, exact and maps f.g to f.g.
- 2 $can_V: V \rightarrow IR(V)$ is an embedding.

Proof.

I(V) is never zero if V is non zero. Same for R(V).

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

 $V(\Omega)$ the union of all sub-modules $W \subset V$ with $JH(W) \subset \Omega$. Say V is **good** if $V = \bigoplus V(\Omega)$

Step 1: Submodule of a good module is good. [Blackboard.]

Lemma

Let $\mathcal{M}(\textit{cusp}) = \oplus \mathcal{M}_{\textit{cusp}}(\textit{M}_i)$ where \textit{M}_i are standard Levi's. Define $\textit{I}: \mathcal{M}(\textit{cusp}) \to \mathcal{M}(\textit{G}), \textit{R}: \mathcal{M}(\textit{G}) \to \mathcal{M}(\textit{cusp})$. Here $R(\pi) = (\textit{r}_{\textit{MG}}(\pi)_c)$.

- R is left adjoint to I. R is faithful, exact and maps f.g to f.g.
- 2 $can_V: V \rightarrow IR(V)$ is an embedding.

Proof.

I(V) is never zero if V is non zero. Same for R(V). Consider the kernel $W := ker(V \to IR(V))$. Clearly IR(W) = 0 and hence W = 0.

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

We need to show all modules are good.

Proof.

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

We need to show all modules are good.

Proof.

use the embedding $can_V: V \to IR(V)$ and the fact that direct sum of good is good to **reduce** to $V = i_{G,M}(\rho_M)$.

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

We need to show all modules are good.

Proof.

use the embedding $can_V: V \to IR(V)$ and the fact that direct sum of good is good to **reduce** to $V = i_{G,M}(\rho_M)$. We (essentially) proved that the presentation $Irr_c(M) = \cup D_M$ induces a decomposition of $\mathcal{M}_c(M)$ to cuspidal components $\mathcal{M}_c(M)(D_M)$.

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

We need to show all modules are good.

Proof.

use the embedding $can_V: V \to IR(V)$ and the fact that direct sum of good is good to **reduce** to $V = i_{G,M}(\rho_M)$. We (essentially) proved that the presentation $Irr_c(M) = \cup D_M$ induces a decomposition of $\mathcal{M}_c(M)$ to cuspidal components $\mathcal{M}_c(M)(D_M)$. Thus, can **reduce** to $V = i_{G,M}(\rho(D_M))$ with $\rho_{D_M} \in \mathcal{M}_c(M)(D_M)$.

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

We need to show all modules are good.

Proof.

use the embedding $can_V: V \to IR(V)$ and the fact that direct sum of good is good to **reduce** to $V = i_{G,M}(\rho_M)$. We (essentially) proved that the presentation $Irr_c(M) = \cup D_M$ induces a decomposition of $\mathcal{M}_c(M)$ to cuspidal components $\mathcal{M}_c(M)(D_M)$. Thus, can **reduce** to $V = i_{G,M}(\rho(D_M))$ with $\rho_{D_M} \in \mathcal{M}_c(M)(D_M)$. Now use the Geometric Lemma to Ponder this:

Proof of Decomposition: More details

Theorem (Decomposition)

 Irr_{Ω} splits $\mathcal{M}(G)$.

We need to show all modules are good.

Proof.

use the embedding $can_V: V \to IR(V)$ and the fact that direct sum of good is good to **reduce** to $V = i_{G,M}(\rho_M)$. We (essentially) proved that the presentation $Irr_c(M) = \cup D_M$ induces a decomposition of $\mathcal{M}_c(M)$ to cuspidal components $\mathcal{M}_c(M)(D_M)$. Thus, can **reduce** to $V = i_{G,M}(\rho(D_M))$ with $\rho_{D_M} \in \mathcal{M}_c(M)(D_M)$. Now use the Geometric Lemma to Ponder this: any $W \in JH(i_{G,M}(\rho(D_M)))$ satisfy $p(W) \in \Omega$.

Theorem (Decomposition)

 $\mathcal{M}(\textit{G})$ is Noetherian (sub of f.g is f.g).

Proof.

Theorem (Decomposition)

 $\mathcal{M}(G)$ is Noetherian (sub of f.g is f.g).

Proof.

 $\mathcal{M}(\textit{cusp})$ is Noetherian (as a finite product of Noetherian categories).

Theorem (Decomposition)

 $\mathcal{M}(G)$ is Noetherian (sub of f.g is f.g).

Proof.

 $\mathcal{M}(\textit{cusp})$ is Noetherian (as a finite product of Noetherian categories).

We will use the equivalent chain formulation to check Noetherity of a given f.g. G-module V.

Theorem (Decomposition)

 $\mathcal{M}(G)$ is Noetherian (sub of f.g is f.g).

Proof.

 $\mathcal{M}(\textit{cusp})$ is Noetherian (as a finite product of Noetherian categories).

We will use the equivalent chain formulation to check Noetherity of a given f.g. G-module V.

Take a chain $V_1 \subset \cdots V_n \subset \cdots$ of submodles of a f.g. V

Theorem (Decomposition)

 $\mathcal{M}(G)$ is Noetherian (sub of f.g is f.g).

Proof.

 $\mathcal{M}(\textit{cusp})$ is Noetherian (as a finite product of Noetherian categories).

We will use the equivalent chain formulation to check Noetherity of a given f.g. *G*-module *V*.

Take a chain $V_1 \subset \cdots V_n \subset \cdots$ of submodles of a f.g. V as R preserve f.g. this chain is mapped by R to a chain that must stop in $\mathcal{M}(cusp)$.

Theorem (Decomposition)

 $\mathcal{M}(G)$ is Noetherian (sub of f.g is f.g).

Proof.

 $\mathcal{M}(\textit{cusp})$ is Noetherian (as a finite product of Noetherian categories).

We will use the equivalent chain formulation to check Noetherity of a given f.g. G-module V.

Take a chain $V_1 \subset \cdots V_n \subset \cdots$ of submodles of a f.g. V as R preserve f.g. this chain is mapped by R to a chain that must stop in $\mathcal{M}(cusp)$. But R is exact and faithful.

Theorem (Decomposition)

 $\mathcal{M}(G)$ is Noetherian (sub of f.g is f.g).

Proof.

 $\mathcal{M}(\textit{cusp})$ is Noetherian (as a finite product of Noetherian categories).

We will use the equivalent chain formulation to check Noetherity of a given f.g. G-module V.

Take a chain $V_1 \subset \cdots V_n \subset \cdots$ of submodles of a f.g. V as R preserve f.g. this chain is mapped by R to a chain that must stop in $\mathcal{M}(cusp)$. But R is exact and faithful.

Theorem (*i* preserve f.g.)

i send f.g to f.g.

Exercise (using Geometric Lemma).

 $S^*(G)^{Ad(G)}$ - the space of distributions invariant to conjugation. $D \in S^*(G)^{Ad(G)}$ is called essentially compact if D*h = h*D is of compact support for all $h \in \mathcal{H}$.

 $S^*(G)^{Ad(G)}$ - the space of distributions invariant to conjugation. $D \in S^*(G)^{Ad(G)}$ is called essentially compact if D * h = h * D is of compact support for all $h \in \mathcal{H}$. The space of those is $S_{e.c}(G)^{Ad(G)}$

 $S^*(G)^{Ad(G)}$ - the space of distributions invariant to conjugation. $D \in S^*(G)^{Ad(G)}$ is called essentially compact if D*h = h*D is of compact support for all $h \in \mathcal{H}$. The space of those is $S_{e.c}(G)^{Ad(G)}$ It is easy to see $\mathfrak{Z}(G) := End(Id) \cong End_{\mathcal{H} \times \mathcal{H}}(\mathcal{H}) = S_{e.c}(G)^{Ad(G)}$.

 $S^*(G)^{Ad(G)}$ - the space of distributions invariant to conjugation. $D \in S^*(G)^{Ad(G)}$ is called essentially compact if D*h = h*D is of compact support for all $h \in \mathcal{H}$. The space of those is $S_{e.c}(G)^{Ad(G)}$ It is easy to see $3(G) := End(Id) \cong End_{\mathcal{H} \times \mathcal{H}}(\mathcal{H}) = S_{e.c}(G)^{Ad(G)}$. Notice that by Schur's lemma we can map

$$\mathfrak{Z}(G) \to Func(Irr(G))$$

 $S^*(G)^{Ad(G)}$ - the space of distributions invariant to conjugation. $D \in S^*(G)^{Ad(G)}$ is called essentially compact if D*h=h*D is of compact support for all $h \in \mathcal{H}$. The space of those is $S_{e.c}(G)^{Ad(G)}$ It is easy to see $\mathfrak{Z}(G):=End(Id)\cong End_{\mathcal{H}\times\mathcal{H}}(\mathcal{H})=S_{e.c}(G)^{Ad(G)}$. Notice that by Schur's lemma we can map

$$\mathfrak{Z}(G) \to Func(Irr(G))$$

To see what kind of functions we get it is better to act on projective generators.

 $S^*(G)^{Ad(G)}$ - the space of distributions invariant to conjugation. $D \in S^*(G)^{Ad(G)}$ is called essentially compact if D*h = h*D is of compact support for all $h \in \mathcal{H}$. The space of those is $S_{e.c}(G)^{Ad(G)}$ It is easy to see $\mathfrak{Z}(G) := End(Id) \cong End_{\mathcal{H} \times \mathcal{H}}(\mathcal{H}) = S_{e.c}(G)^{Ad(G)}$. Notice that by Schur's lemma we can map

$$\mathfrak{Z}(G) \to Func(Irr(G))$$

To see what kind of functions we get it is better to act on projective generators.

Theorem (Bernstein)

The decomposition $\mathcal{M}(G) = \Pi_{\Omega}\mathcal{M}(\Omega)$ induces $\mathfrak{Z}(G) = \Pi\mathfrak{Z}(\Omega)$. We have $\mathfrak{Z}(\Omega) \simeq \mathcal{O}(\Omega)$ given by action.

Let $\Omega = [(M, D)]$ then we have $\Pi(D) = c - ind_{G^0}^G(D|_{G^0})$ and $\Pi(\Omega) = i_{G,M}(\Pi(D))$ a f.g. module.

The projectivity of $\Pi(\Omega)$ follows from

The projectivity of $\Pi(\Omega)$ follows from i has a right adjoint which is exact

The projectivity of $\Pi(\Omega)$ follows from i has a right adjoint which is exact

Theorem (second adjointness: Formulation)

There is a canonical isomorphism $\operatorname{Hom}_G(i_{G,M}(\tau),\pi) \to \operatorname{Hom}_M(\tau,\overline{r}(\pi))$

The projectivity of $\Pi(\Omega)$ follows from i has a right adjoint which is exact

Theorem (second adjointness: Formulation)

There is a canonical isomorphism $\operatorname{Hom}_{G}(i_{G,M}(\tau),\pi) \to \operatorname{Hom}_{M}(\tau,\overline{r}(\pi))$

The map can be described using Geometric Lemma and also using boundary degenerations.

The projectivity of $\Pi(\Omega)$ follows from i has a right adjoint which is exact

Theorem (second adjointness: Formulation)

There is a canonical isomorphism $\operatorname{Hom}_{G}(i_{G,M}(\tau),\pi) \to \operatorname{Hom}_{M}(\tau,\overline{r}(\pi))$

The map can be described using Geometric Lemma and also using boundary degenerations.

We describe Bernstein's original strategy:

The projectivity of $\Pi(\Omega)$ follows from i has a right adjoint which is exact

Theorem (second adjointness: Formulation)

There is a canonical isomorphism $\operatorname{Hom}_G(i_{G,M}(\tau),\pi) \to \operatorname{Hom}_M(\tau,\overline{r}(\pi))$

The map can be described using Geometric Lemma and also using boundary degenerations.

We describe Bernstein's original strategy:

Step 1: reduce to

Theorem (Casselman pairing)

$$\overline{r}_{M,G}(\tilde{\sigma}) \simeq \widetilde{r_{M,G}(\sigma)}$$

The projectivity of $\Pi(\Omega)$ follows from i has a right adjoint which is exact

Theorem (second adjointness: Formulation)

There is a canonical isomorphism $\operatorname{Hom}_{G}(i_{G,M}(\tau),\pi) \to \operatorname{Hom}_{M}(\tau,\overline{r}(\pi))$

The map can be described using Geometric Lemma and also using boundary degenerations.

We describe Bernstein's original strategy:

Step 1: reduce to

Theorem (Casselman pairing)

$$\overline{r}_{M,G}(\tilde{\sigma}) \simeq \widetilde{r}_{M,G}(\sigma)$$

Step2: Reduce to Jacquet's lemma (*r* sends admissible to admissible).

Theorem (Casselman pairing)

$$\overline{r}_{M,G}(\tilde{\sigma}) \simeq r_{M,G}(\sigma)$$

Theorem (Casselman pairing)

$$\overline{r}_{M,G}(\tilde{\sigma}) \simeq \widetilde{r}_{M,G}(\sigma)$$

Step2: Reduce to Jacquet's lemma (*r* sends admissible to admissible).

Theorem (generalized Jacquet's Lemma)

For $V \in \mathcal{M}(G)$ the map

$$p: V^K \to r_{M,G}(V)^{K\cap M}$$

is onto. It has a natural inverse.

Theorem (Casselman pairing)

$$\overline{r}_{M,G}(\tilde{\sigma}) \simeq \widetilde{r}_{M,G}(\sigma)$$

Step2: Reduce to Jacquet's lemma (*r* sends admissible to admissible).

Theorem (generalized Jacquet's Lemma)

For $V \in \mathcal{M}(G)$ the map

$$p: V^K \to r_{M,G}(V)^{K\cap M}$$

is onto. It has a natural inverse.

Deduce Casselman pairing version.

Theorem (Casselman pairing)

$$\overline{r}_{M,G}(\tilde{\sigma}) \simeq \widetilde{r_{M,G}(\sigma)}$$

Step2: Reduce to Jacquet's lemma (*r* sends admissible to admissible).

Theorem (generalized Jacquet's Lemma)

For $V \in \mathcal{M}(G)$ the map

$$p: V^K \to r_{M,G}(V)^{K\cap M}$$

is onto. It has a natural inverse.

Deduce Casselman pairing version. Proof of genralized Jacquet's Lemma follows from Stabilization lemma.

Proof of genralized Jacquet's Lemma follows from Stabilization lemma.

Definition

L a v.s. and $a \in End(L)$. The pair (L, a) is **stable** if $L = Ker(a) \oplus Im(a)$ and $Ker(a^2) = Ker(a)$, $Im(a^2) = Im(a)$. This means $a : Im(a) \to Im(a)$ is invertible.

Theorem (Stabilization Lemma)

For K < G there exists C(G,K) such that for any $P = MU, \lambda \in \Lambda^+(M,K)$ any $V \in \mathcal{M}(G)$ and any $n \ge C(G,K)$ the map

$$a(\lambda)^n: V^K \to V^K$$

is stable.

Proof of genralized Jacquet's Lemma follows from Stabilization lemma.

Definition

L a v.s. and $a \in End(L)$. The pair (L, a) is **stable** if $L = Ker(a) \oplus Im(a)$ and $Ker(a^2) = Ker(a)$, $Im(a^2) = Im(a)$. This means $a : Im(a) \to Im(a)$ is invertible.

Theorem (Stabilization Lemma)

For K < G there exists C(G,K) such that for any $P = MU, \lambda \in \Lambda^+(M,K)$ any $V \in \mathcal{M}(G)$ and any $n \ge C(G,K)$ the map

$$a(\lambda)^n: V^K \to V^K$$

is stable.

For V cuspidal (not necessarily irreducible) we can deduce it from uniform admissibility. The general case requires another lecture.

