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“Believe half of what you see…”

Edgar Allan Poe



Why dimensionality reduction?

● Remove irrelevant data features

● Represent data with fewer dimensions
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Why dimensionality reduction?

● Remove irrelevant data features
● Merge correlated/coordinated measures
● Reduce noise
● Avoid over-fitting (the Curse of Dimensionality)
● Cluster
● Find trajectory of disease, continuous state

● Represent data with fewer dimensions
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Why dimensionality reduction?
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Linear projections

● Use a linear function to transform data to new space
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Which projection is “optimal”?

● Low-dimensional representation often introduces errors
● Aim for the most “accurate” new representation
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Find the axis (PC) that minimizes the error



PCA - principal component analysis 

● PC1 is the direction that minimizes the errors on a 
1-dimensional projection

● ⇒ PC1 maximizes the variance
● ⇒ More information is conserved
● ⇒ The “optimal” 1D projection 
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PCA - principal component analysis 

● PC1 is the direction that minimizes the errors on a 
1-dimensional projection

● PC2 minimizes the remaining errors
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PCA - principal component analysis 

● PC1 is the direction that minimizes the errors on a 
1-dimensional projection

● PC2 minimizes the remaining errors
● PC3 minimizes the remaining errors
● and so on…
● We then ignore components that are less important
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PCA can be applied to different types of data

● Images are points in high-dimensional space
● A hand-drawn digit “1”, shown as a 14x14 matrix
● A point in a 196-dimensional space

Every value actually limited to one of 256 binary values encoded using 8 bits



PCA can be applied to different types of data

● Faces, for images
● Each picture is a 256x256 pixel image

Slide from David Sontag, NYU

Input faces Principal components



PCA can be applied to different types of data

Slide from David Sontag, NYU

PC 1 PC1 + PC2 PCs 1-3 PCs 1-5PCs 1-4

PCs 1 through 13
(13D projection of 256x256 data)



Similar methods applied to text analysis

● Each document viewed as a weighted list of words

Latent Dirichlet Allocation, Blei, Ng, and Jordan (2003)

https://www.nature.com/articles/415530a



Similar methods applied to text analysis

● Each document viewed as a weighted list of words

Latent Dirichlet Allocation, Blei, Ng, and Jordan (2003)

https://www.nature.com/articles/415530a



Similar methods applied to text analysis

● Each document viewed as a weighted list of words
● Train on huge corpus, define typical “topics”

*a bit different than PCA, as topics are not orthogonal, but idea is similar

Slide from David Sontag, NYULatent Dirichlet Allocation, Blei, Ng, and Jordan (2003)

Document seen as an 
N-dimensional datapoint

Axes = topics (types)

Coordinate = relevance



PCA can be applied to different types of data

● MNIST dataset of handwritten digits
● Each sample is a 28x28 pixel image



PCA applied to MNIST

● First projections do not capture much of variance

https://ryanwingate.com/intro-to-machine-learning/unsupervised/pca-on-mnist/



PCA applied to MNIST

From tSNE lecture notes by Ethan Fetaya, James Lucas and Emad Andrews 



PCA applied to MNIST

● Simple projections do not capture much of variance
● Not do they make much sense

https://ryanwingate.com/intro-to-machine-learning/unsupervised/pca-on-mnist/

PC1 (PVE=6.1%) PC2 (PVE=4.3%) PC3 (PVE=4.1%)

Always check percent of variance explained (PVE) by PCs



PCA can be applied to different types of data

● Why has it failed?

● In this representation, digits are similar enough
(different regions/pixels are “on” - no archetypes)



Beyond linear dimensionality reduction

Linear models are limited to hyperplanes
(or lower dimensional subspaces)

They will perform poorly on other structures 

The swiss roll is a (locally linear) manifold

Let’s use neighbors’ adjacency to 
unfold nonlinear structures



2D embedding of MNIST using tSNE

From tSNE lecture notes by Ethan Fetaya, James Lucas and Emad Andrews 



How does tSNE work?

Keep your neighbors close

● tSNE stochastically projects data points to a lower dimension
● Iterates until converges to a local solution
● Close neighbors remain close
● Distant pairs could be distorted (less important)

Stochastic Neighbor Embedding, Hinton and Roweis (2002); Visualizing Data using t-SNE, van der Maaten and Hinton (2008)



How does tSNE work?

Stochastic Neighbor Embedding, Hinton and Roweis (2002); Visualizing Data using t-SNE, van der Maaten and Hinton (2008)

● Look for low-dimensional embedding with similar adjacencies 



How does tSNE work?

Stochastic Neighbor Embedding, Hinton and Roweis (2002); Visualizing Data using t-SNE, van der Maaten and Hinton (2008)



How does tSNE work?

Stochastic Neighbor Embedding, Hinton and Roweis (2002); Visualizing Data using t-SNE, van der Maaten and Hinton (2008)

Too few neighbors (tight neighborhood) and it’ll fail



How does tSNE work?

Stochastic Neighbor Embedding, Hinton and Roweis (2002); Visualizing Data using t-SNE, van der Maaten and Hinton (2008)

Too many neighbors (wide neighborhood) and it’ll fail



How does tSNE work?
https://distill.pub/2016/misread-tsne

https://distill.pub/2016/misread-tsne




Trajectories and Pseudotime

● Many other alternatives were developed for analysis of 
single-cell RNA-seq data.

● Slingshot, Monocle and others track gradual changes in cells
● Most embed in a low-dim, cluster, and connect clusters 





What have we learned?

● Dimensionality reduction increases interpretability
● Projection onto important features
● PCA minimizes distortion, maximizes variance (information).

○ Each new coordinate is a linear function of old coords.
○ Each new axis is orthogonal to previous ones
○ Spans the maximal variance

● Non-linear embedding
○ tSNE converts pairwise distances to adjacencies
○ Stochastically seeks low-dim embedding that mimics 

original adjacencies. Converges to local optimum.
○ Other similar methods also used, allow inference of 

trajectories or pseudotime.  



Syllabus

1. Introduction
2. Classification
3. Learning 1
4. AI in ophthalmology (Prof. Itay Chowers)
5. Learning 2
6. Regression
7. Clustering
8. Visualization (and dimensionality reduction)
9. Deep learning in image analysis (Prof. Leo Joskowicz)

10. Missing data, statistical dependencies
11. Natural language in medicine (Dr. Gabi Stanovsky)
12. Decisions (utility)
13. Longitudinal Data / Project


