

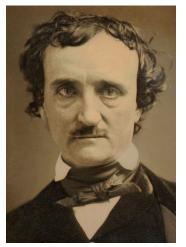
# Artificial Intelligence in Medicine

Visualizations and Dimensionality Reduction

Nir Friedman and Tommy Kaplan 12/12/22

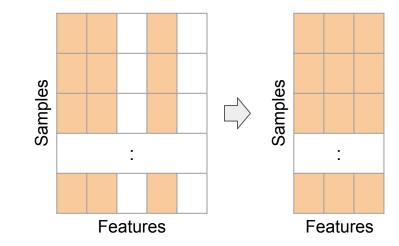
# "Believe half of what you see..."

Edgar Allan Poe



## Why dimensionality reduction?

- Represent data with fewer dimensions
- Remove irrelevant data features



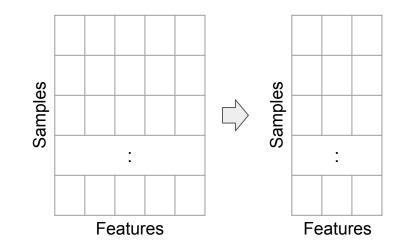
 $x \in \mathcal{R}^n$ 

 $x \in \mathcal{R}^d$ 

 $d \ll n$ 

## Why dimensionality reduction?

- Represent data with fewer dimensions
- Remove irrelevant data features
- Merge correlated/coordinated measures
- Reduce noise
- Avoid over-fitting (the Curse of Dimensionality)
- Cluster
- Find trajectory of disease, continuous state

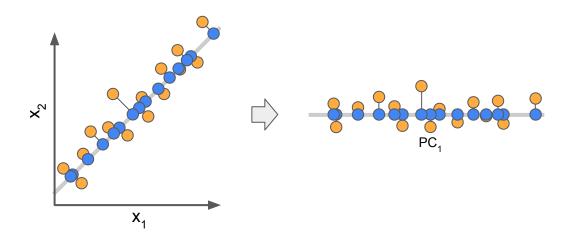


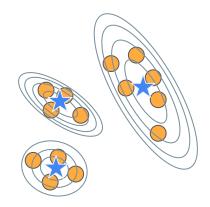
 $x \in \mathcal{R}^n$ 

 $d \ll n$ 

 $x \in \mathcal{R}^d$ 

#### Why dimensionality reduction?

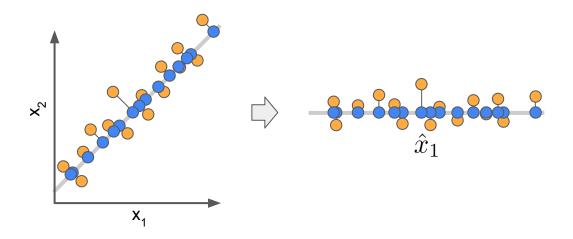




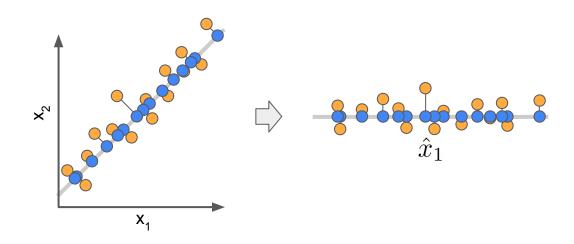
#### **Linear projections**

Use a linear function to transform data to new space

$$\hat{x}_1 = w_1 x_1 + w_2 x_2$$



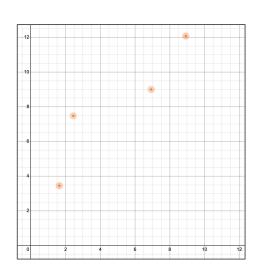
#### Which projection is "optimal"?

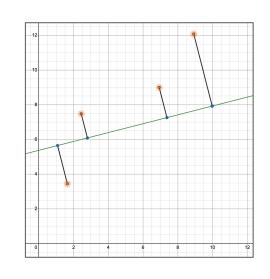


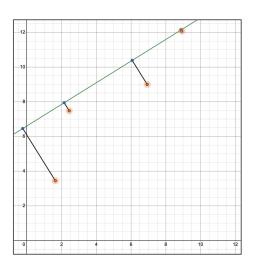
- Low-dimensional representation often introduces errors
- Aim for the most "accurate" new representation

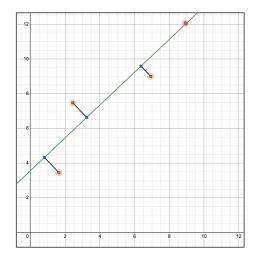
$$\arg\min\sum_{i}||x_{i} - \hat{x}_{i}||_{2}^{2}$$

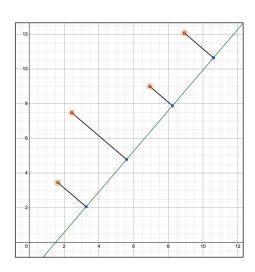
# Find the axis (PC) that minimizes the error





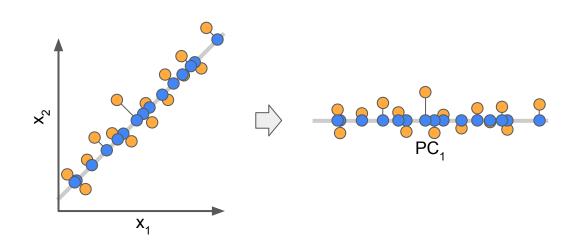






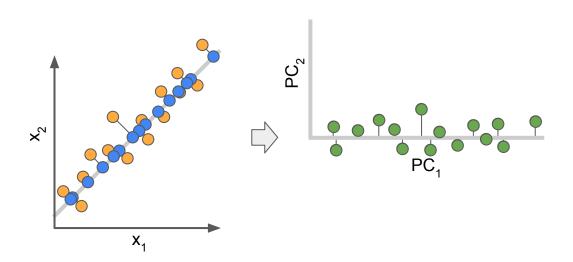
## PCA - principal component analysis

- PC<sub>1</sub> is the direction that minimizes the errors on a
   1-dimensional projection
- ⇒ PC₁ maximizes the variance
- → More information is conserved
- → The "optimal" 1D projection



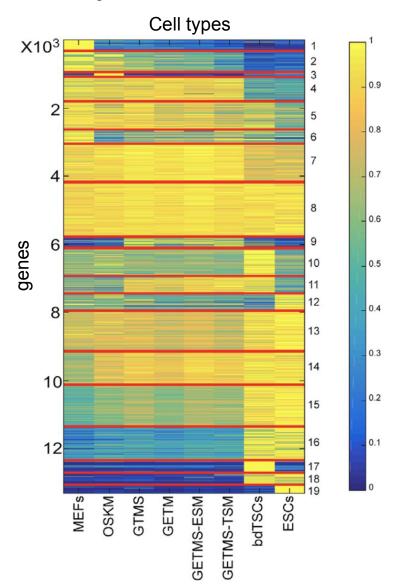
## PCA - principal component analysis

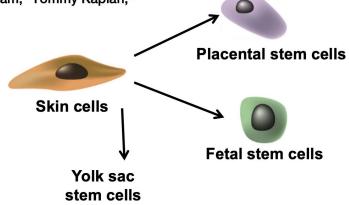
- PC<sub>1</sub> is the direction that minimizes the errors on a
   1-dimensional projection
- PC<sub>2</sub> minimizes the remaining errors



# Direct Induction of the Three Pre-implantation Blastocyst Cell Types from Fibroblasts

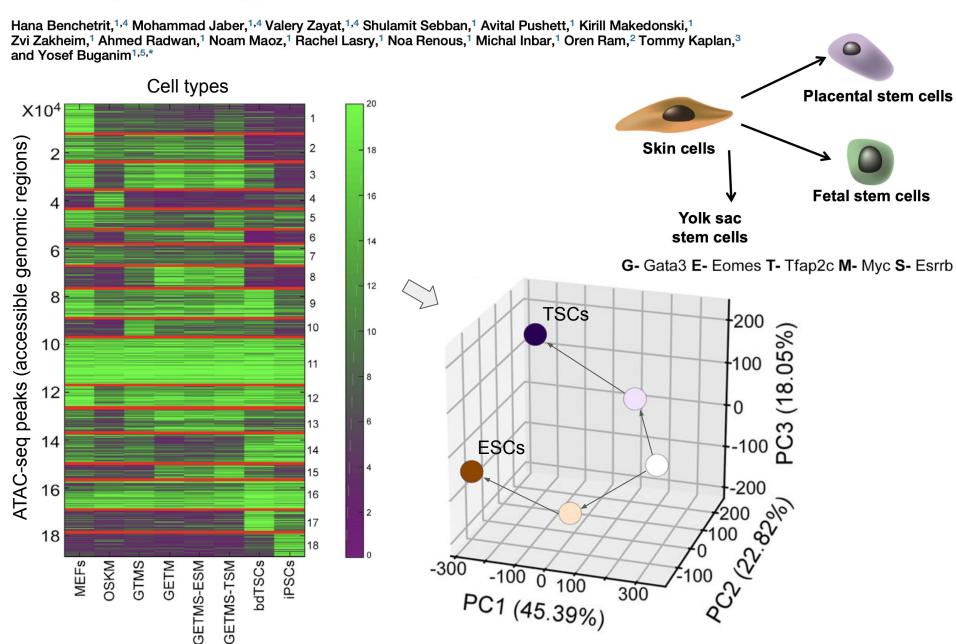
Hana Benchetrit,<sup>1,4</sup> Mohammad Jaber,<sup>1,4</sup> Valery Zayat,<sup>1,4</sup> Shulamit Sebban,<sup>1</sup> Avital Pushett,<sup>1</sup> Kirill Makedonski,<sup>1</sup> Zvi Zakheim,<sup>1</sup> Ahmed Radwan,<sup>1</sup> Noam Maoz,<sup>1</sup> Rachel Lasry,<sup>1</sup> Noa Renous,<sup>1</sup> Michal Inbar,<sup>1</sup> Oren Ram,<sup>2</sup> Tommy Kaplan,<sup>3</sup> and Yosef Buganim<sup>1,5,\*</sup>





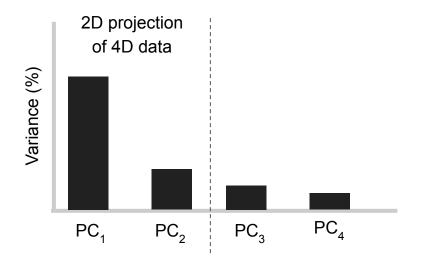
G- Gata3 E- Eomes T- Tfap2c M- Myc S- Esrrb

# Direct Induction of the Three Pre-implantation Blastocyst Cell Types from Fibroblasts

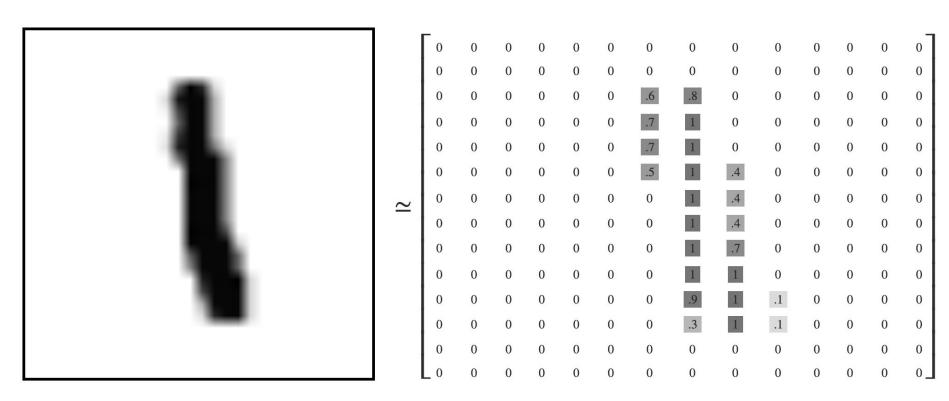


## PCA - principal component analysis

- PC<sub>1</sub> is the direction that minimizes the errors on a
   1-dimensional projection
- PC<sub>2</sub> minimizes the remaining errors
- PC<sub>3</sub> minimizes the remaining errors
- and so on...
- We then ignore components that are less important



- Images are points in high-dimensional space
- A hand-drawn digit "1", shown as a 14x14 matrix
- A point in a 196-dimensional space

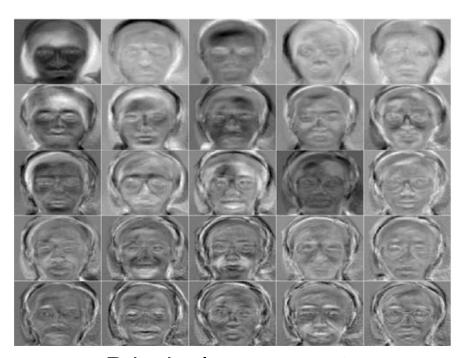


Every value actually limited to one of 256 binary values encoded using 8 bits

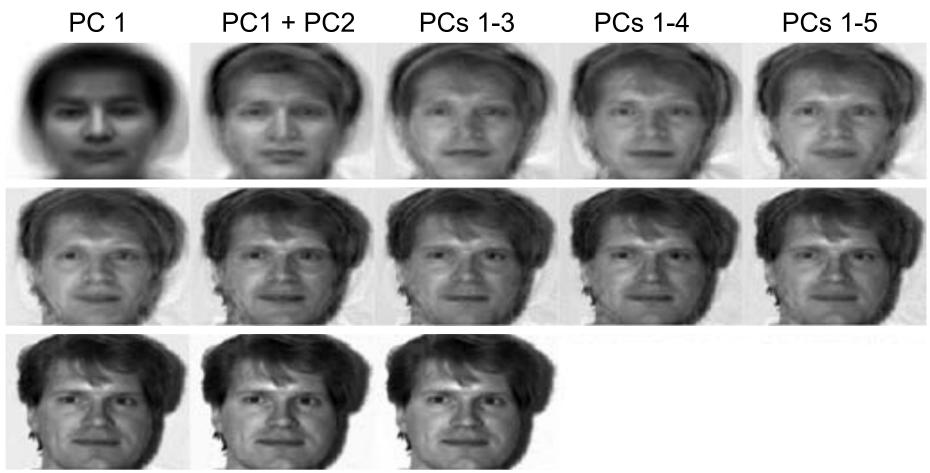
- Faces, for images
- Each picture is a 256x256 pixel image



Input faces



Principal components



PCs 1 through 13

(13D projection of 256x256 data)

#### Face Recognition Using Eigenfaces

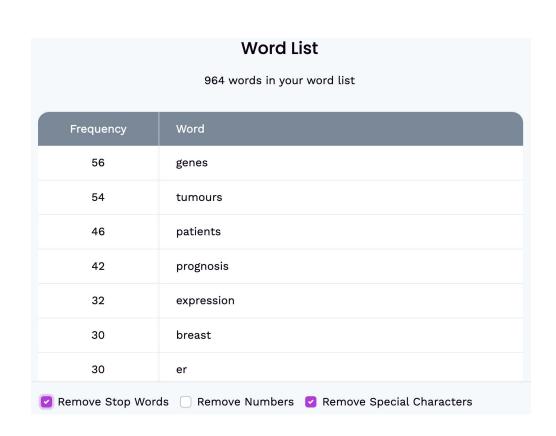
#### Similar methods applied to text analysis

Each document viewed as a weighted list of words

# **Gene expression profiling predicts clinical outcome of breast cancer**

Laura J. van 't Veer\*†, Hongyue Dai†‡, Marc J. van de Vijver\*†, Yudong D. He‡, Augustinus A. M. Hart\*, Mao Mao‡, Hans L. Peterse\*, Karin van der Kooy\*, Matthew J. Marton‡, Anke T. Witteveen\*, George J. Schreiber‡, Ron M. Kerkhoven\*, Chris Roberts‡, Peter S. Linsley‡, René Bernards\* & Stephen H. Friend‡

https://www.nature.com/articles/415530a



<sup>\*</sup> Divisions of Diagnostic Oncology, Radiotherapy and Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands ‡ Rosetta Inpharmatics, 12040 115th Avenue NE, Kirkland, Washington 98034,

#### Similar methods applied to text analysis

Each document viewed as a weighted list of words

#### Gene expression clinical outcome

Laura J. van 't Veer\*†, Hongyu Yudong D. He‡, Augustinus A. Karin van der Kooy\*, Matthew George J. Schreiber‡, Ron M. I Peter S. Linsley‡, René Bernar

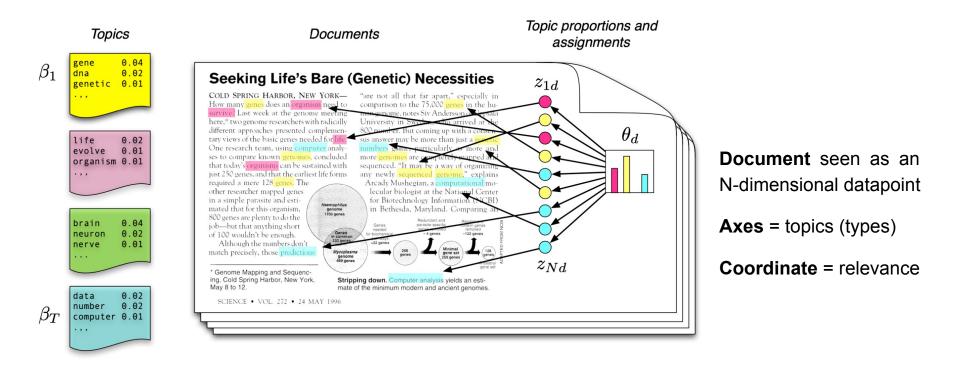
https://www.nature.cor



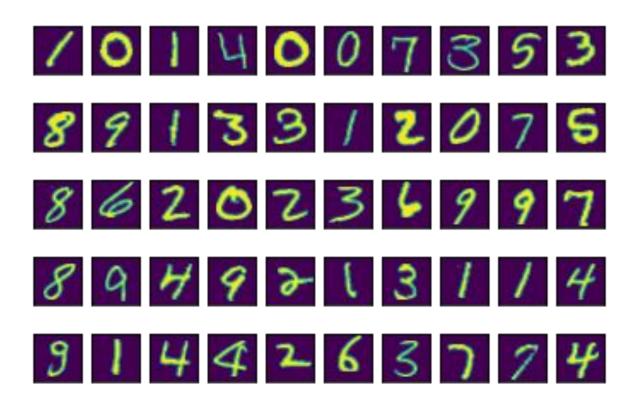
<sup>\*</sup> Divisions of Diagnostic Oncology and Center for Biomedical Genetic 121 Plesmanlaan, 1066 CX Amste ‡ Rosetta Inpharmatics, 12040 115

#### Similar methods applied to text analysis

- Each document viewed as a weighted list of words
- Train on huge corpus, define typical "topics"
  - \*a bit different than PCA, as topics are not orthogonal, but idea is similar

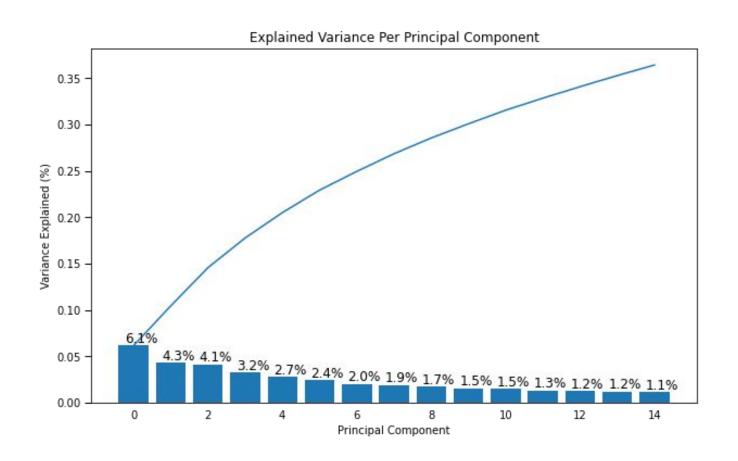


- MNIST dataset of handwritten digits
- Each sample is a 28x28 pixel image



### **PCA** applied to MNIST

First projections do not capture much of variance

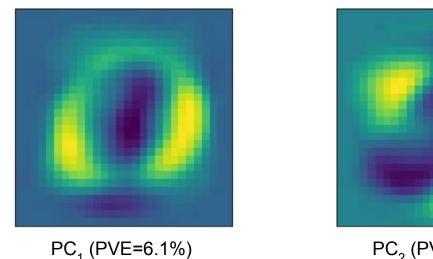


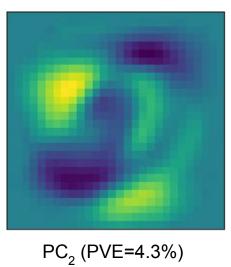
## **PCA** applied to MNIST

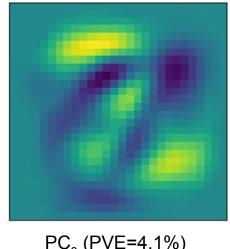


## **PCA** applied to MNIST

- Simple projections do not capture much of variance
- Not do they make much sense



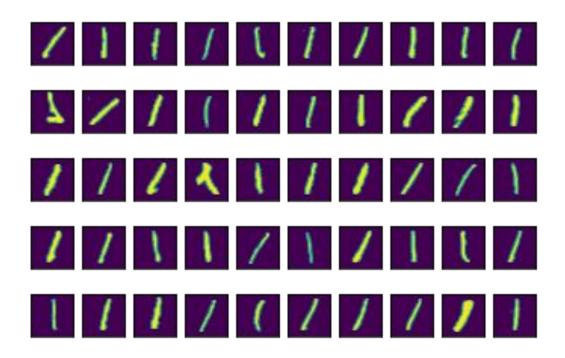




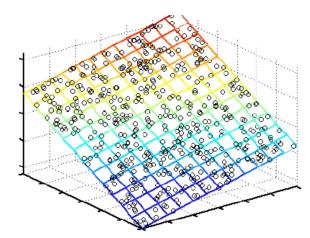
PC<sub>3</sub> (PVE=4.1%)

Always check percent of variance explained (PVE) by PCs

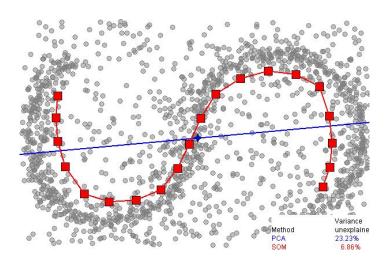
- Why has it failed?
- In this representation, digits are similar enough (different regions/pixels are "on" - no archetypes)



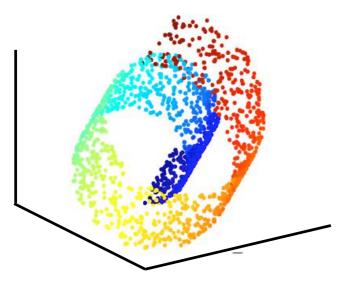
#### Beyond linear dimensionality reduction



Linear models are limited to hyperplanes (or lower dimensional subspaces)



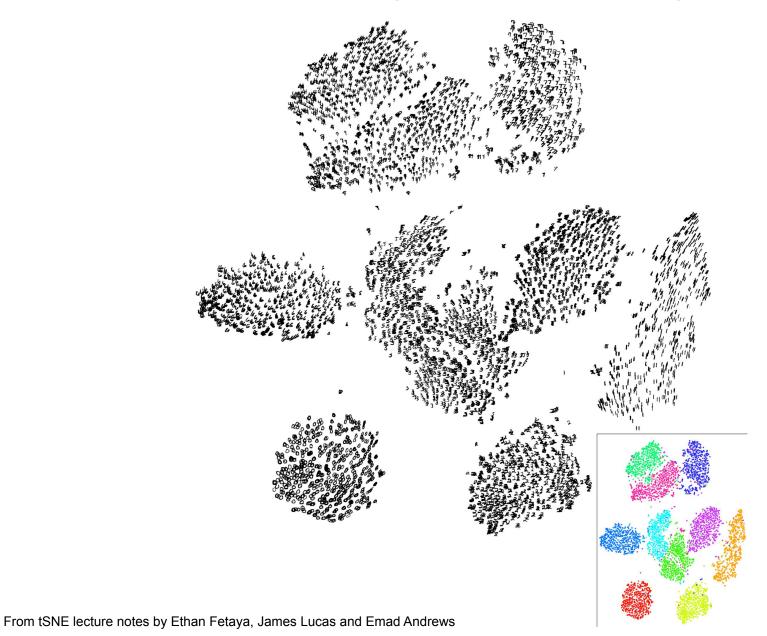
They will perform poorly on other structures



The swiss roll is a (locally linear) manifold

Let's use neighbors' adjacency to unfold nonlinear structures

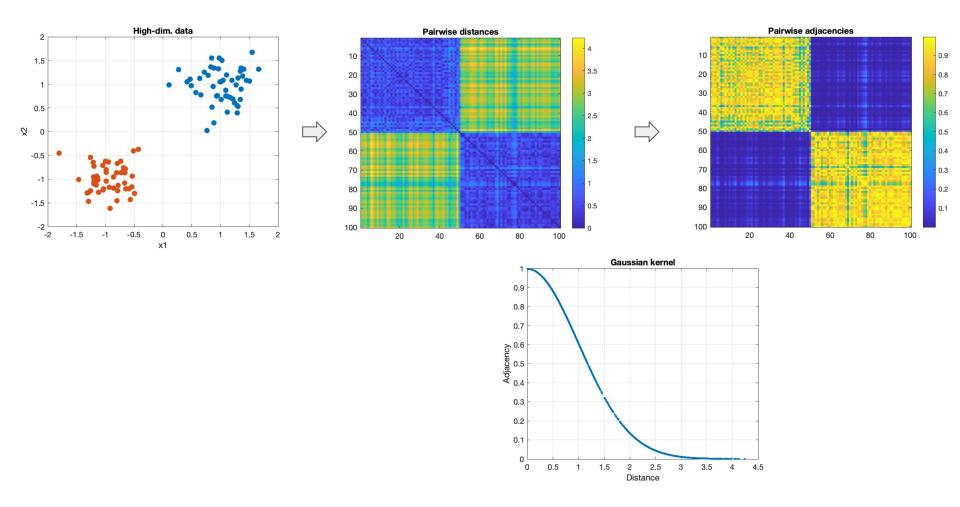
## 2D embedding of MNIST using tSNE



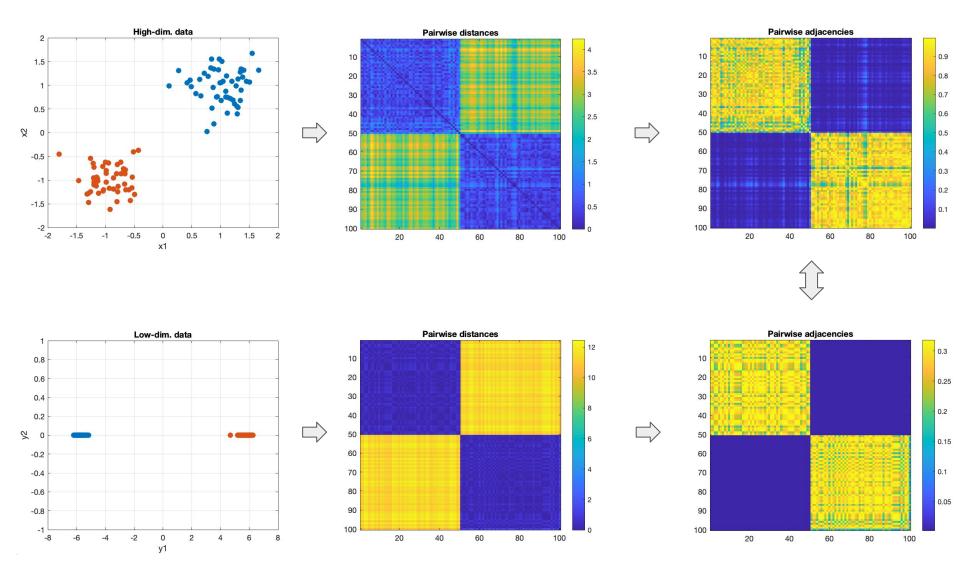
Keep your neighbors close



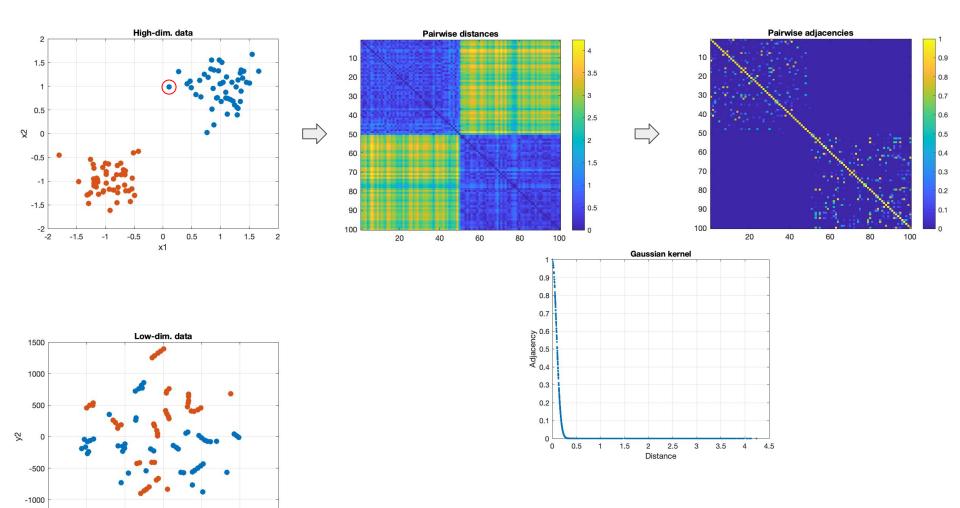
- tSNE stochastically projects data points to a lower dimension
- Iterates until converges to a local solution
- Close neighbors remain close
- Distant pairs could be distorted (less important)



Look for low-dimensional embedding with similar adjacencies



Stochastic Neighbor Embedding, Hinton and Roweis (2002); Visualizing Data using t-SNE, van der Maaten and Hinton (2008)



Too few neighbors (tight neighborhood) and it'll fail

Stochastic Neighbor Embedding, Hinton and Roweis (2002); Visualizing Data using t-SNE, van der Maaten and Hinton (2008)

-1500

-1500

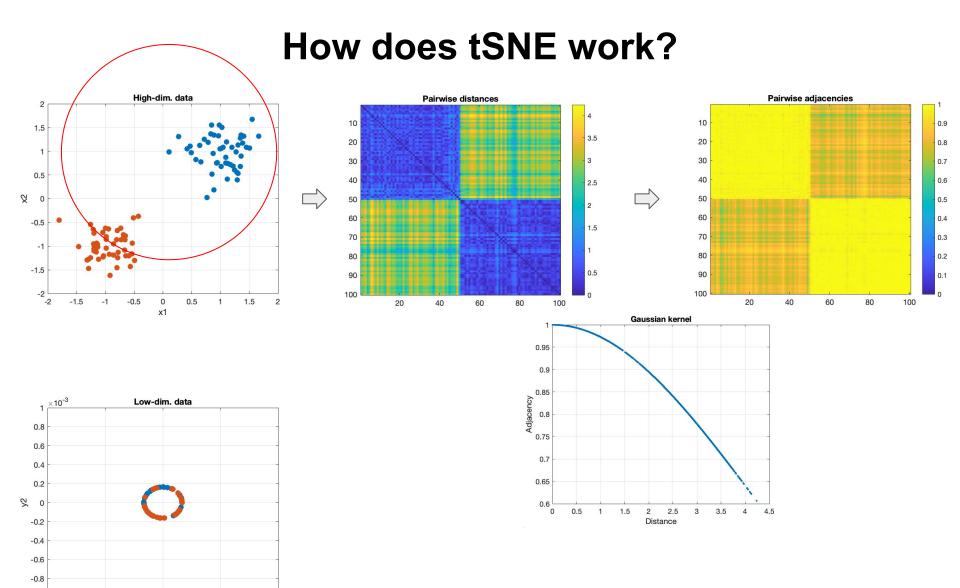
-1000

-500

0 y1 500

1000

150

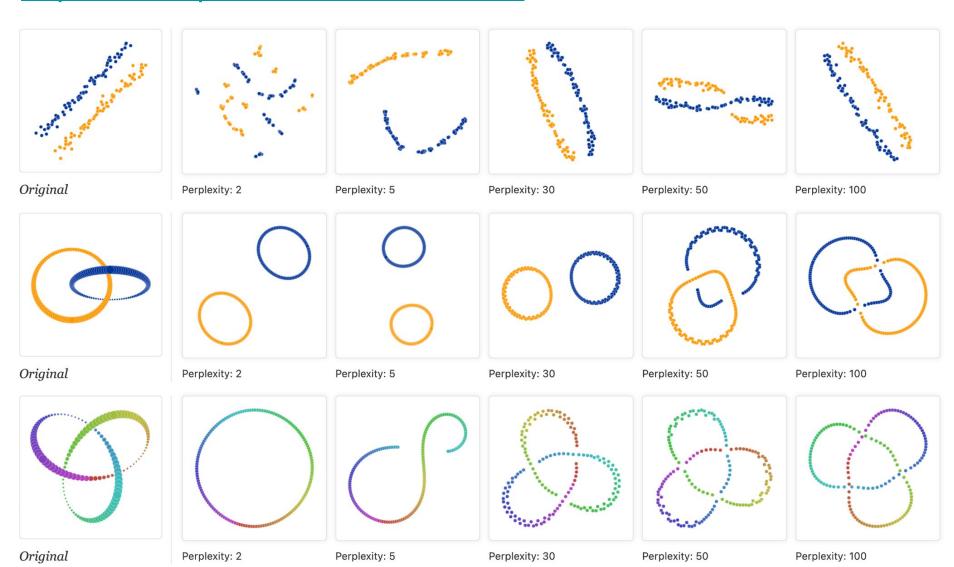


Too many neighbors (wide neighborhood) and it'll fail

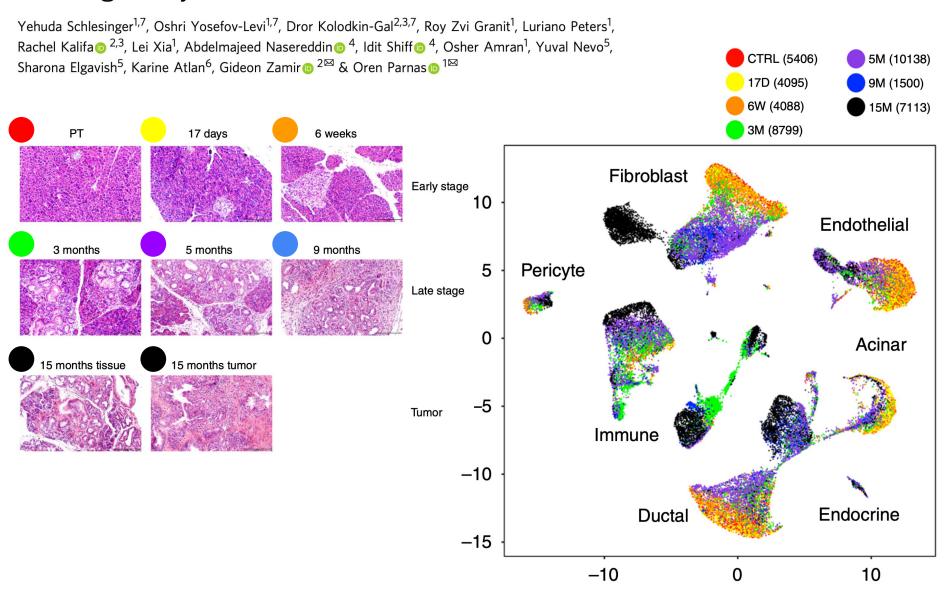
Stochastic Neighbor Embedding, Hinton and Roweis (2002); Visualizing Data using t-SNE, van der Maaten and Hinton (2008)

0 y1

#### https://distill.pub/2016/misread-tsne

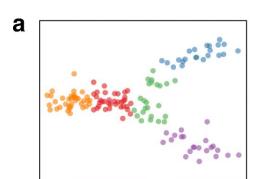


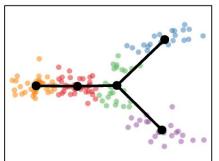
# Single-cell transcriptomes of pancreatic preinvasive lesions and cancer reveal acinar metaplastic cells' heterogeneity

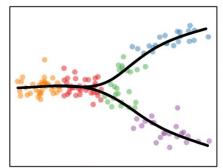


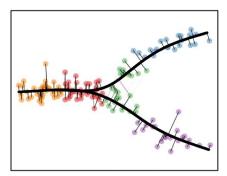
#### **Trajectories and Pseudotime**

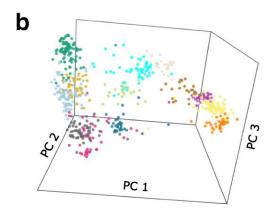
- Many other alternatives were developed for analysis of single-cell RNA-seq data.
- Slingshot, Monocle and others track gradual changes in cells
- Most embed in a low-dim, cluster, and connect clusters

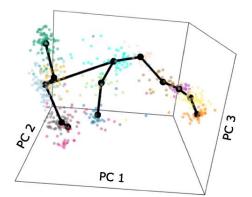


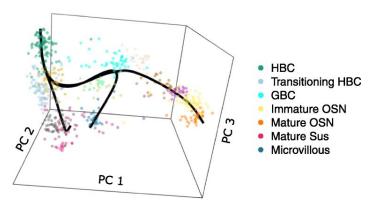






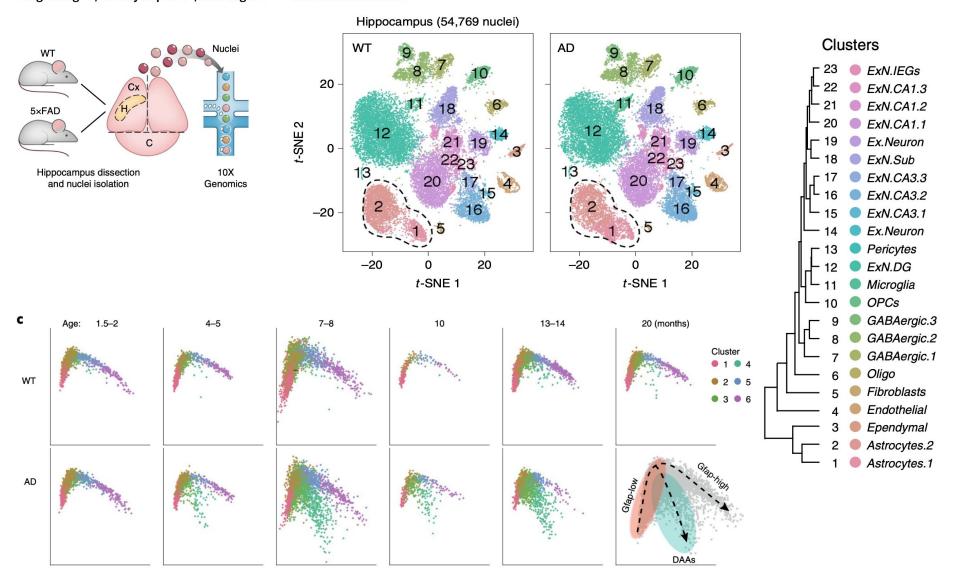






# Disease-associated astrocytes in Alzheimer's disease and aging

Naomi Habib <sup>1,2 ∞</sup>, Cristin McCabe<sup>2,8</sup>, Sedi Medina<sup>3,8</sup>, Miriam Varshavsky<sup>1,8</sup>, Daniel Kitsberg<sup>1</sup>, Raz Dvir-Szternfeld<sup>3</sup>, Gilad Green<sup>1</sup>, Danielle Dionne <sup>1</sup>, Lan Nguyen<sup>2</sup>, Jamie L. Marshall <sup>1</sup>, Fei Chen<sup>2</sup>, Feng Zhang<sup>2,4,5</sup>, Tommy Kaplan <sup>1</sup>, Aviv Regev <sup>1</sup>, Aviv Regev <sup>1</sup>, and Michal Schwartz <sup>1</sup>, Schwartz <sup>1</sup>,



#### What have we learned?

- Dimensionality reduction increases interpretability
- Projection onto important features
- PCA minimizes distortion, maximizes variance (information).
  - Each new coordinate is a linear function of old coords.
  - Each new axis is orthogonal to previous ones
  - Spans the maximal variance
- Non-linear embedding
  - tSNE converts pairwise distances to adjacencies
  - Stochastically seeks low-dim embedding that mimics original adjacencies. Converges to local optimum.
  - Other similar methods also used, allow inference of trajectories or pseudotime.

#### **Syllabus**

- 1. Introduction
- 2. Classification
- 3. Learning 1
- 4. Al in ophthalmology (Prof. Itay Chowers)
- 5. Learning 2
- 6. Regression
- 7. Clustering
- 8. Visualization (and dimensionality reduction)
- 9. Deep learning in image analysis (Prof. Leo Joskowicz)
- 10. Missing data, statistical dependencies
- 11. Natural language in medicine (Dr. Gabi Stanovsky)
- 12. Decisions (utility)
- 13. Longitudinal Data / Project