Finiteness for Hecke algebras of p-adic
groups — finiteness on the Galois side.

A theorem by Jean-Francois Dat, David Helm, Robert
Kurinczuk, and Gilbert Moss
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We fix a non-Arch. local field F. Let R = Z, for ¢ # res.char(F).
Theorem (DHKM)

Let G be a reductive algebraic group scheme over R. Then
red(Excy(G)) is finite over O(G)®

“Recall” that red(Exc,(G)) c O(Hom(W°(F)/P,, G))C, soitis
enough to prove:

Theorem (DHKM)
O(Hom(W°(F)/Pp, G))€ is finite over O(G)®

Moreover, we will prove:
Theorem (DHKM)

O(Z' (WO (F)/Py,, G))C is finite over O(Z' ((Fr), O(G)))€ for
any action of W°(F)/P, on G, that factors through a finite
group.
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Reformulations

Proposition

Letaf.g. groupT acton G through a (finite) quotient A, then

Z'(T,G)={¢:T > Gx Alprg*® o ¢ = prp }

So it is enough to show:
Theorem (DHKM)

Let G be a, not necessarily connected, reductive algebraic
group scheme over R. Then

Hom(WO(F)Pn, G)//G° 2= 2T, G11Ge is finite.

In fact we will prove a more general statement
Theorem (DHKM)

LetT > P s.t. T/P = (f,s|fsf™' = s9) and P is a p-group.
LiftftoT. Let G be as above.

Then Hom(T, G)//G° 2=, G/1Ge is finite.
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Lemma (Cancellation)
Assume: Then:

XdominantY finite Z w
\_/
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O(X) « O(Y) < O(Z) <« O(W). Noetherianity. O

Lemma (dominance criterion)

Let X c Y be a closed embedding of affine schemes and let a
reductive group scheme G acton Y. Then, X — Y//G is dominant, if
for any field k the set X (k) intersects any closed orbit in Y (k).

V.
Any fiber of Y - Y//G includes a closed orbit = X (k) - (Y//G)(k)
_, ydominant 0
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Theorem (Gantmacher)
Fix a pinning (Tg(k),...) of G°(k). Let

S = {x ¢ G(k)|Ad(x) comes from automorphism of the root datumy.

Then S- Tg(k) intersects any closed G°(k) orbit in G(k).

Ng(Tg) — G//G° is dominant

for any x € G(k) with a closed G°-orbit, the group Cgs(Tg,)° is a
maximal torus in G°.

By induction, it is enough to show that (Gx)° ¢ Z(G). O]



Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case — computation.




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case — computation.
@ The case when G° is a torus




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case — computation.

@ The case when G° is a torus — a torus has a unique
integral model.




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case — computation.

@ The case when G° is a torus — a torus has a unique
integral model.

@ General case:




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case — computation.
@ The case when G° is a torus — a torus has a unique
integral model.
@ General case:
Py Gp c GSS




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case — computation.
@ The case when G° is a torus — a torus has a unique
integral model.
@ General case:
e Gpc G* —-byGL,




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case — computation.

@ The case when G° is a torus — a torus has a unique
integral model.

@ General case:

o Gp C GSS _by GLn
@ orbits are closed




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case — computation.

@ The case when G° is a torus — a torus has a unique
integral model.
@ General case:
o G,cG* -byGL,
e orbits are closed
e finitely many orbits




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case — computation.

@ The case when G° is a torus — a torus has a unique
integral model.
@ General case:
o G,cG* -byGL,
e orbits are closed
e finitely many orbits — Reduction to Ng(Tg)




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case — computation.

@ The case when G° is a torus — a torus has a unique
integral model.

@ General case:

Gpc G* —by GL,

orbits are closed

finitely many orbits — Reduction to Ng(Tg)

orbits are clopen




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case — computation.

@ The case when G° is a torus — a torus has a unique
integral model.

@ General case:

Gpc G* —by GL,

orbits are closed

finitely many orbits — Reduction to Ng(Tg)

orbits are clopen

orbits have points




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case — computation.

@ The case when G° is a torus — a torus has a unique
integral model.

@ General case:

Gpc G* —by GL,

orbits are closed

finitely many orbits — Reduction to Ng(Tg)

orbits are clopen

orbits have points — Reduction to Ng(Tg)




Thecasel = P=C,

Gp = {x € G|xP = 1} is a finite union of clopen G°-orbits (having
points) with reductive stabilizers.

@ The GL, case — computation.

@ The case when G° is a torus — a torus has a unique
integral model.

@ General case:

Gpc G* —by GL,

orbits are closed

finitely many orbits — Reduction to Ng(Tg)

orbits are clopen

orbits have points — Reduction to Ng(Tg)

.

Hom(C,, G) is a finite union of clopen G° orbits with reductive
stabilizers.
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Proposition

Let1—->Q—T - A -1 be an exact sequence of .g. groups.
Assume that Q is finite. Let ¢ : T - G and ¢ = ¢|q.
Then we have a Cartesian square:

Hom(T', G)/G® +— Z'(1,Gy)/(G*)y &2% Hom(A, Na(#(2)))/(G")e
Hom(Q,G)/G° +—— {¢} Hom(A, Na(4()))/(Ge)°
Where A acts on Gy by:  [v]-g = é(7)go(y) ™
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o 1 Gy - Na(6(Q)) > Aut(Q)
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Reduction to the case P =1
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