Finiteness for Hecke algebras of p-adic groups – finiteness on the Galois side.

A theorem by Jean-Francois Dat, David Helm, Robert Kurinczuk, and Gilbert Moss

We fix a non-Arch. local field F.

We fix a non-Arch. local field F. Let $R = \overline{\mathbb{Z}}_{\ell}$ for $\ell \neq res.char(F)$.

We fix a non-Arch. local field F. Let $R = \overline{\mathbb{Z}}_{\ell}$ for $\ell \neq res.char(F)$.

Theorem (DHKM)

Let G be a reductive algebraic group scheme over R. Then $red(Exc_n(G))$ is finite over $O(G)^G$

We fix a non-Arch. local field F. Let $R = \overline{\mathbb{Z}}_{\ell}$ for $\ell \neq res.char(F)$.

Theorem (DHKM)

Let G be a reductive algebraic group scheme over R. Then $red(Exc_n(G))$ is finite over $O(G)^G$

"Recall" that $red(Exc_n(G)) \subset O(Hom(W^0(F)/P_n, G))^G$, so it is enough to prove:

We fix a non-Arch. local field F. Let $R = \overline{\mathbb{Z}}_{\ell}$ for $\ell \neq res.char(F)$.

Theorem (DHKM)

Let G be a reductive algebraic group scheme over R. Then $red(Exc_n(G))$ is finite over $O(G)^G$

"Recall" that $red(Exc_n(G)) \subset O(Hom(W^0(F)/P_n, G))^G$, so it is enough to prove:

Theorem (DHKM)

 $O(Hom(W^0(F)/P_n, G))^G$ is finite over $O(G)^G$

We fix a non-Arch. local field F. Let $R = \overline{\mathbb{Z}}_{\ell}$ for $\ell \neq res.char(F)$.

Theorem (DHKM)

Let G be a reductive algebraic group scheme over R. Then $red(Exc_n(G))$ is finite over $O(G)^G$

"Recall" that $red(Exc_n(G)) \subset O(Hom(W^0(F)/P_n, G))^G$, so it is enough to prove:

Theorem (DHKM)

 $O(Hom(W^0(F)/P_n, G))^G$ is finite over $O(G)^G$

Moreover, we will prove:

Theorem (DHKM)

 $O(Z^1(W^0(F)/P_n,G))^G$ is finite over $O(Z^1(\langle Fr \rangle,O(G)))^G$ for any action of $W^0(F)/P_n$ on G,

We fix a non-Arch. local field F. Let $R = \overline{\mathbb{Z}}_{\ell}$ for $\ell \neq res.char(F)$.

Theorem (DHKM)

Let G be a reductive algebraic group scheme over R. Then $red(Exc_n(G))$ is finite over $O(G)^G$

"Recall" that $red(Exc_n(G)) \subset O(Hom(W^0(F)/P_n, G))^G$, so it is enough to prove:

Theorem (DHKM)

 $O(Hom(W^0(F)/P_n, G))^G$ is finite over $O(G)^G$

Moreover, we will prove:

Theorem (DHKM)

 $O(Z^1(W^0(F)/P_n,G))^G$ is finite over $O(Z^1(\langle Fr \rangle, O(G)))^G$ for any action of $W^0(F)/P_n$ on G, that factors through a finite group.

Proposition

Let a f.g. group Γ act on G through a (finite) quotient Δ ,

Proposition

Let a f.g. group Γ act on G through a (finite) quotient Δ , then

$$Z^1(\Gamma,G) \cong \{\phi: \Gamma \to G \rtimes \Delta | \textit{pr}_{\Delta}^{G \rtimes \Delta} \circ \phi = \textit{pr}_{\Delta}^{\Gamma} \}$$

Proposition

Let a f.g. group Γ act on G through a (finite) quotient Δ , then

$$Z^1(\Gamma,G) \cong \{\phi: \Gamma \to G \rtimes \Delta | pr_{\Delta}^{G \rtimes \Delta} \circ \phi = pr_{\Delta}^{\Gamma} \}$$

So it is enough to show:

Proposition

Let a f.g. group Γ act on G through a (finite) quotient Δ , then

$$Z^{1}(\Gamma,G)\cong\{\phi:\Gamma\rightarrow G\rtimes\Delta|pr_{\Delta}^{G\rtimes\Delta}\circ\phi=pr_{\Delta}^{\Gamma}\}$$

So it is enough to show:

Theorem (DHKM)

Let G be a, not necessarily connected, reductive algebraic group scheme over R. Then

$$Hom(W^0(F)/P_n,G)//G^\circ \xrightarrow{\phi \mapsto \phi(Fr)} G//G^\circ$$
 is finite.

Proposition

Let a f.g. group Γ act on G through a (finite) quotient Δ , then

$$Z^{1}(\Gamma,G)\cong\{\phi:\Gamma\rightarrow G\rtimes\Delta|pr_{\Delta}^{G\rtimes\Delta}\circ\phi=pr_{\Delta}^{\Gamma}\}$$

So it is enough to show:

Theorem (DHKM)

Let G be a, not necessarily connected, reductive algebraic group scheme over R. Then

$$Hom(W^0(F)/P_n,G)//G^{\circ} \xrightarrow{\phi \mapsto \phi(Fr)} G//G^{\circ}$$
 is finite.

In fact we will prove a more general statement

Theorem (DHKM)

Let $\Gamma \supset P$ s.t. $\Gamma/P = \langle f, s | fsf^{-1} = s^q \rangle$ and P is a p-group. Lift f to Γ .

Proposition

Let a f.g. group Γ act on G through a (finite) quotient Δ , then

$$Z^{1}(\Gamma,G) \cong \{\phi: \Gamma \to G \rtimes \Delta | pr_{\Delta}^{G \rtimes \Delta} \circ \phi = pr_{\Delta}^{\Gamma} \}$$

So it is enough to show:

Theorem (DHKM)

Let G be a, not necessarily connected, reductive algebraic group scheme over R. Then

$$Hom(W^0(F)/P_n,G)//G^\circ \xrightarrow{\phi \mapsto \phi(Fr)} G//G^\circ$$
 is finite.

In fact we will prove a more general statement

Theorem (DHKM)

Let $\Gamma \supset P$ s.t. $\Gamma/P = \langle f, s | fsf^{-1} = s^q \rangle$ and P is a p-group. Lift f to Γ . Let G be as above.

Then
$$\operatorname{Hom}(\Gamma,G)//G^{\circ} \xrightarrow{\phi \mapsto \phi(f)} G//G^{\circ}$$
 is finite.

• Analyze Hom(P, G):

• Analyze Hom(P, G): it is a finite union of clopen G° -orbits with reductive stabilizers.

- Analyze Hom(P, G): it is a finite union of clopen G°-orbits with reductive stabilizers.
 - Oase $P = C_p := \mathbb{Z}/p$.

- Analyze Hom(P, G): it is a finite union of clopen G°-orbits with reductive stabilizers.
 - Oase $P = C_p := \mathbb{Z}/p$.
 - Oase $G = GL_n$

 Analyze Hom(P, G): it is a finite union of clopen G°-orbits with reductive stabilizers.

- Oase $P = C_p := \mathbb{Z}/p$.
 - Oase $G = GL_n$
 - Case G° is a torus

 Analyze Hom(P, G): it is a finite union of clopen G°-orbits with reductive stabilizers.

- Oase $P = C_p := \mathbb{Z}/p$.
 - Oase $G = GL_n$
 - \bigcirc Case G° is a torus
 - General G

- Analyze Hom(P, G): it is a finite union of clopen G°-orbits with reductive stabilizers.
 - Oase $P = C_p := \mathbb{Z}/p$.
 - Oase $G = GL_n$
 - Case G° is a torus
 - General G
 - General P.

- Analyze Hom(P, G): it is a finite union of clopen G°-orbits with reductive stabilizers.
 - Oase $P = C_p := \mathbb{Z}/p$.
 - Oase $G = GL_n$
 - Case G° is a torus
 - General G
 - General P.
- 2 The case when P = 1:

- Analyze Hom(P, G): it is a finite union of clopen G°-orbits with reductive stabilizers.
 - Oase $P = C_p := \mathbb{Z}/p$.
 - Oase $G = GL_n$
 - Case G° is a torus
 - General G
 - General P.
- 2 The case when P = 1: $Hom(\Gamma, G)//G^{\circ} \rightarrow G//G^{\circ}$ is finite.

- Analyze Hom(P, G): it is a finite union of clopen G°-orbits with reductive stabilizers.
 - Oase $P = C_p := \mathbb{Z}/p$.
 - Oase $G = GL_n$
 - Case G° is a torus
 - General G
 - General P.
- ② The case when P = 1: $Hom(\Gamma, G)//G^{\circ} \rightarrow G//G^{\circ}$ is finite.
 - **a** The case when G° is a torus.

- Analyze Hom(P, G): it is a finite union of clopen G°-orbits with reductive stabilizers.
 - Oase $P = C_p := \mathbb{Z}/p$.
 - Oase $G = GL_n$
 - Case G° is a torus
 - General G
 - General P.
- 2 The case when P = 1: $Hom(\Gamma, G)//G^{\circ} \rightarrow G//G^{\circ}$ is finite.
 - 1 The case when G° is a torus.
 - General G.

- Analyze Hom(P, G): it is a finite union of clopen G°-orbits with reductive stabilizers.
 - Oase $P = C_p := \mathbb{Z}/p$.
 - Oase $G = GL_n$
 - Case G° is a torus
 - General G
 - General P.
- 2 The case when P = 1: $Hom(\Gamma, G)//G^{\circ} \rightarrow G//G^{\circ}$ is finite.
 - **1** The case when G° is a torus.
 - General G.
- The general case.

Lemma (Cancellation)

Assume:

Lemma (Cancellation)

Assume: Then:

Lemma (Cancellation)

Assume: Then:

$$X \stackrel{dominant}{\longrightarrow} Y \stackrel{finite}{\longrightarrow} Z \longrightarrow W$$

Proof.

$$O(X) \leftarrow O(Y) \leftarrow O(Z) \leftarrow O(W)$$
.

Lemma (Cancellation)

Assume: Then:

$$X \stackrel{\text{dominant}}{\longrightarrow} Y \stackrel{\text{finite}}{\longrightarrow} Z \longrightarrow W$$

Proof.

$$O(X) \leftarrow O(Y) \leftarrow O(Z) \leftarrow O(W)$$
. Noetherianity.

Lemma (Cancellation)

Assume: Then:

$$X \stackrel{\text{dominant}}{>} Y \stackrel{\text{finite}}{=} Z \longrightarrow W$$

Proof.

$$O(X) \leftarrow O(Y) \leftarrow O(Z) \leftarrow O(W)$$
. Noetherianity.

Lemma (dominance criterion)

Let $X \subset Y$ be a closed embedding of affine schemes and let a reductive group scheme G act on Y.

Lemma (Cancellation)

Assume: Then:

$$X \stackrel{dominant}{\longrightarrow} Y \stackrel{finite}{\longrightarrow} Z \longrightarrow W$$

Proof.

$$O(X) \leftarrow O(Y) \leftarrow O(Z) \leftarrow O(W)$$
. Noetherianity.

Lemma (dominance criterion)

Let $X \subset Y$ be a closed embedding of affine schemes and let a reductive group scheme G act on Y. Then, $X \to Y//G$ is dominant, if

Lemma (Cancellation)

Assume: Then:

$$X \stackrel{dominant}{\longrightarrow} Y \stackrel{finite}{\longrightarrow} Z \longrightarrow W$$

Proof.

$$O(X) \leftarrow O(Y) \leftarrow O(Z) \leftarrow O(W)$$
. Noetherianity.

Lemma (dominance criterion)

Let $X \subset Y$ be a closed embedding of affine schemes and let a reductive group scheme G act on Y. Then, $X \to Y//G$ is dominant, if for any field k the set $X(\bar{k})$ intersects any closed orbit in $Y(\bar{k})$.

Lemma (Cancellation)

Assume: Then:

$$X \stackrel{\text{dominant}}{\longrightarrow} Y \stackrel{\text{finite}}{\longrightarrow} Z \stackrel{}{\longrightarrow} W$$

Proof.

$$O(X) \leftarrow O(Y) \leftarrow O(Z) \leftarrow O(W)$$
. Noetherianity.

Lemma (dominance criterion)

Let $X \subset Y$ be a closed embedding of affine schemes and let a reductive group scheme G act on Y. Then, $X \to Y//G$ is dominant, if for any field k the set $X(\bar{k})$ intersects any closed orbit in $Y(\bar{k})$.

Proof.

Any fiber of $Y \rightarrow Y//G$ includes a closed orbit

Lemma (Cancellation)

Assume: Then:

$$X \stackrel{dominant}{\longrightarrow} Y \stackrel{finite}{\longrightarrow} Z \longrightarrow W$$

Proof.

$$O(X) \leftarrow O(Y) \leftarrow O(Z) \leftarrow O(W)$$
. Noetherianity.

Lemma (dominance criterion)

Let $X \subset Y$ be a closed embedding of affine schemes and let a reductive group scheme G act on Y. Then, $X \to Y//G$ is dominant, if for any field k the set $X(\bar{k})$ intersects any closed orbit in $Y(\bar{k})$.

Proof.

Any fiber of $Y \to Y//G$ includes a closed orbit $\Rightarrow X(\bar{k}) \twoheadrightarrow (Y//G)(\bar{k})$

Methods to prove finiteness

Lemma (Cancellation)

Assume: Then:

$$X \stackrel{dominant}{\longrightarrow} Y \stackrel{finite}{\longrightarrow} Z \stackrel{}{\longrightarrow} W$$

Proof.

$$O(X) \leftarrow O(Y) \leftarrow O(Z) \leftarrow O(W)$$
. Noetherianity.

Lemma (dominance criterion)

Let $X \subset Y$ be a closed embedding of affine schemes and let a reductive group scheme G act on Y. Then, $X \to Y//G$ is dominant, if for any field k the set $X(\bar{k})$ intersects any closed orbit in $Y(\bar{k})$.

Proof.

Any fiber of $Y \to Y//G$ includes a closed orbit $\Rightarrow X(\bar{k}) \twoheadrightarrow (Y//G)(\bar{k})$ $\Rightarrow X \xrightarrow{\text{dominant}} Y//G$.

Theorem (Gantmacher)

Fix a pinning $(T_G(\bar{k}),...)$ of $G^{\circ}(\bar{k})$.

Theorem (Gantmacher)

Fix a pinning $(T_G(\bar{k}),...)$ of $G^{\circ}(\bar{k})$. Let

 $S = \{x \in G(\bar{k}) | Ad(x) \text{ comes from automorphism of the root datum} \}.$

Theorem (Gantmacher)

Fix a pinning $(T_G(\bar{k}),...)$ of $G^{\circ}(\bar{k})$. Let

 $S = \{x \in G(\bar{k}) | Ad(x) \text{ comes from automorphism of the root datum} \}.$

Then $S \cdot T_G(\bar{k})$ intersects any closed $G^{\circ}(\bar{k})$ orbit in $G(\bar{k})$.

Theorem (Gantmacher)

Fix a pinning $(T_G(\bar{k}),...)$ of $G^{\circ}(\bar{k})$. Let

 $S = \{x \in G(\bar{k}) | Ad(x) \text{ comes from automorphism of the root datum} \}.$

Then $S \cdot T_G(\bar{k})$ intersects any closed $G^{\circ}(\bar{k})$ orbit in $G(\bar{k})$.

Corollary (1)

 $N_G(T_G) \rightarrow G//G^{\circ}$ is dominant

Theorem (Gantmacher)

Fix a pinning $(T_G(\bar{k}),...)$ of $G^{\circ}(\bar{k})$. Let

 $S = \{x \in G(\bar{k}) | Ad(x) \text{ comes from automorphism of the root datum} \}.$

Then $S \cdot T_G(\bar{k})$ intersects any closed $G^{\circ}(\bar{k})$ orbit in $G(\bar{k})$.

Corollary (1)

 $N_G(T_G) \rightarrow G//G^{\circ}$ is dominant

Corollary (2)

for any $x \in G(\overline{k})$ with a closed G° -orbit, the group $C_G(T_{G_x})^{\circ}$ is a maximal torus in G° .

Theorem (Gantmacher)

Fix a pinning $(T_G(\bar{k}),...)$ of $G^{\circ}(\bar{k})$. Let

 $S = \{x \in G(\bar{k}) | Ad(x) \text{ comes from automorphism of the root datum} \}.$

Then $S \cdot T_G(\bar{k})$ intersects any closed $G^{\circ}(\bar{k})$ orbit in $G(\bar{k})$.

Corollary (1)

 $N_G(T_G) \rightarrow G//G^{\circ}$ is dominant

Corollary (2)

for any $x \in G(\bar{k})$ with a closed G° -orbit, the group $C_G(T_{G_x})^{\circ}$ is a maximal torus in G° .

Proof.

By induction, it is enough to show that $(G_x)^{\circ} \notin Z(G)$.

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

Proof

• The GL_n case

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

Proof

• The GL_n case – computation.

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

- The GL_n case computation.
- The case when G° is a torus

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

- The GL_n case computation.
- The case when G° is a torus a torus has a unique integral model.

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

- The GL_n case computation.
- The case when G° is a torus a torus has a unique integral model.
- General case:

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

- The GL_n case computation.
- The case when G° is a torus a torus has a unique integral model.
- General case:
 - G_p ⊂ G^{ss}

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

- The GL_n case computation.
- The case when G° is a torus a torus has a unique integral model.
- General case:
 - $G_p \subset G^{ss}$ by GL_n

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

- The GL_n case computation.
- The case when G° is a torus a torus has a unique integral model.
- General case:
 - $G_p \subset G^{ss}$ by GL_n
 - orbits are closed

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

- The GL_n case computation.
- The case when G° is a torus a torus has a unique integral model.
- General case:
 - $G_p \subset G^{ss}$ by GL_n
 - orbits are closed
 - finitely many orbits

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

- The GL_n case computation.
- The case when G° is a torus a torus has a unique integral model.
- General case:
 - $G_p \subset G^{ss}$ by GL_n
 - orbits are closed
 - finitely many orbits Reduction to $N_G(T_G)$

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

- The GL_n case computation.
- The case when G° is a torus a torus has a unique integral model.
- General case:
 - $G_p \subset G^{ss}$ by GL_n
 - orbits are closed
 - finitely many orbits Reduction to $N_G(T_G)$
 - orbits are clopen

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

- The GL_n case computation.
- The case when G° is a torus a torus has a unique integral model.
- General case:
 - $G_p \subset G^{ss}$ by GL_n
 - orbits are closed
 - finitely many orbits Reduction to $N_G(T_G)$
 - orbits are clopen
 - orbits have points

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

- The GL_n case computation.
- The case when G° is a torus a torus has a unique integral model.
- General case:
 - $G_p \subset G^{ss}$ by GL_n
 - orbits are closed
 - finitely many orbits Reduction to $N_G(T_G)$
 - orbits are clopen
 - orbits have points Reduction to $N_G(T_G)$

Lemma

 $G_p := \{x \in G | x^p = 1\}$ is a finite union of clopen G° -orbits (having points) with reductive stabilizers.

Proof

- The GL_n case computation.
- The case when G° is a torus a torus has a unique integral model.
- General case:
 - $G_p \subset G^{ss}$ by GL_n
 - orbits are closed
 - finitely many orbits Reduction to $N_G(T_G)$
 - orbits are clopen
 - orbits have points Reduction to $N_G(T_G)$

Corollary

 $Hom(C_n, G)$ is a finite union of clopen G° orbits with reductive stabilizers. 4□ > ←回 > ← 直 > ← 直 > 一直 → り へ ○

Proposition

Let $1 \to \Omega \to \Gamma \to \Delta \to 1$ be an exact sequence of f.g. groups.

Proposition

Let $1 \to \Omega \to \Gamma \to \Delta \to 1$ be an exact sequence of f.g. groups. Assume that Ω is finite.

Proposition

Let $1 \to \Omega \to \Gamma \to \Delta \to 1$ be an exact sequence of f.g. groups. Assume that Ω is finite. Let $\tilde{\phi} : \Gamma \to G$ and $\phi = \tilde{\phi}|_{\Omega}$.

Proposition

Let $1 \to \Omega \to \Gamma \to \Delta \to 1$ be an exact sequence of f.g. groups.

Assume that Ω is finite. Let $\tilde{\phi}: \Gamma \to G$ and $\phi = \tilde{\phi}|_{\Omega}$.

Then we have a Cartesian square:

$$Hom(\Gamma, G) \longleftarrow Z^1(\Delta, G_{\phi})$$

$$\downarrow \qquad \qquad \downarrow$$
 $Hom(\Omega, G) \longleftarrow \{\phi\}$

Proposition

Let $1 \to \Omega \to \Gamma \to \Delta \to 1$ be an exact sequence of f.g. groups.

Assume that Ω is finite. Let $\tilde{\phi}: \Gamma \to G$ and $\phi = \tilde{\phi}|_{\Omega}$.

Then we have a Cartesian square:

$$Hom(\Gamma,G) \longleftarrow Z^1(\Delta,G_{\phi})$$

$$\downarrow \qquad \qquad \downarrow$$
 $Hom(\Omega,G) \longleftarrow \{\phi\}$

Where \triangle acts on G_{ϕ} by:

Proposition

Let $1 \to \Omega \to \Gamma \to \Delta \to 1$ be an exact sequence of f.g. groups.

Assume that Ω is finite. Let $\tilde{\phi}: \Gamma \to G$ and $\phi = \tilde{\phi}|_{\Omega}$.

Then we have a Cartesian square:

$$Hom(\Gamma,G) \longleftarrow Z^1(\Delta,G_{\phi})$$

$$\downarrow \qquad \qquad \downarrow$$
 $Hom(\Omega,G) \longleftarrow \{\phi\}$

Where \triangle acts on G_{ϕ} by: $[\gamma] \cdot g = \tilde{\phi}(\gamma)g\tilde{\phi}(\gamma)^{-1}$

Proposition

Let $1 \to \Omega \to \Gamma \to \Delta \to 1$ be an exact sequence of f.g. groups.

Assume that Ω is finite. Let $\tilde{\phi}: \Gamma \to G$ and $\phi = \tilde{\phi}|_{\Omega}$.

Where \triangle acts on G_{ϕ} by: $[\gamma] \cdot g = \tilde{\phi}(\gamma)g\tilde{\phi}(\gamma)^{-1}$

Then we have a Cartesian square:

$$Hom(\Gamma, G) \longleftarrow Z^1(\Delta, G_{\phi}) \stackrel{clopen}{\longleftrightarrow} Hom(\Delta, N_G(\phi(\Omega)))$$

$$\downarrow \qquad \qquad \downarrow$$
 $Hom(\Omega, G) \longleftarrow \{\phi\}$

Proposition

Let $1 \to \Omega \to \Gamma \to \Delta \to 1$ be an exact sequence of f.g. groups.

Assume that Ω is finite. Let $\tilde{\phi}: \Gamma \to G$ and $\phi = \tilde{\phi}|_{\Omega}$.

Then we have a Cartesian square:

$$Hom(\Gamma, G) \longleftarrow Z^1(\Delta, G_{\phi}) \xrightarrow{clopen} Hom(\Delta, N_G(\phi(\Omega)))$$

$$\downarrow \qquad \qquad \downarrow$$
 $Hom(\Omega, G) \longleftarrow \{\phi\}$

Where \triangle acts on G_{ϕ} by: $[\gamma] \cdot g = \tilde{\phi}(\gamma)g\tilde{\phi}(\gamma)^{-1}$

Proposition

Let $1 \to \Omega \to \Gamma \to \Delta \to 1$ be an exact sequence of f.g. groups.

Assume that Ω is finite. Let $\tilde{\phi}: \Gamma \to G$ and $\phi = \tilde{\phi}|_{\Omega}$.

Then we have a Cartesian square:

$$Hom(\Gamma, G) \longleftarrow Z^1(\Delta, G_{\phi}) \stackrel{clopen}{\longleftrightarrow} Hom(\Delta, N_G(\phi(\Omega)))$$

$$\downarrow \qquad \qquad \downarrow$$
 $Hom(\Omega, G) \longleftarrow \{\phi\}$

Where \triangle acts on G_{ϕ} by: $[\gamma] \cdot g = \tilde{\phi}(\gamma)g\tilde{\phi}(\gamma)^{-1}$

•
$$\cdot: Z^1(\Delta, G_{\phi}) \times Hom(\Gamma, G) \xrightarrow{a \cdot b(\gamma) = a([\gamma])b(\gamma)} Hom(\Gamma, G)$$

Proposition

Let $1 \to \Omega \to \Gamma \to \Delta \to 1$ be an exact sequence of f.g. groups.

Assume that Ω is finite. Let $\tilde{\phi}: \Gamma \to G$ and $\phi = \tilde{\phi}|_{\Omega}$.

Then we have a Cartesian square:

$$Hom(\Gamma, G) \longleftarrow Z^1(\Delta, G_{\phi}) \stackrel{clopen}{\longleftrightarrow} Hom(\Delta, N_G(\phi(\Omega)))$$

$$\downarrow \qquad \qquad \downarrow$$
 $Hom(\Omega, G) \longleftarrow \{\phi\}$

Where Δ acts on G_{ϕ} by: $[\gamma] \cdot g = \tilde{\phi}(\gamma)g\tilde{\phi}(\gamma)^{-1}$

- $: Z^1(\Delta, G_{\phi}) \times Hom(\Gamma, G) \xrightarrow{a \cdot b(\gamma) = a([\gamma])b(\gamma)} Hom(\Gamma, G)$
- 1 \rightarrow $G_{\phi} \rightarrow N_{G}(\phi(\Omega)) \rightarrow Aut(\Omega)$

Proposition

Let $1 \to \Omega \to \Gamma \to \Delta \to 1$ be an exact sequence of f.g. groups.

Assume that Ω is finite. Let $\tilde{\phi}: \Gamma \to G$ and $\phi = \tilde{\phi}|_{\Omega}$.

Then we have a Cartesian square:

Where \triangle acts on G_{ϕ} by: $[\gamma] \cdot g = \tilde{\phi}(\gamma)g\tilde{\phi}(\gamma)^{-1}$

- $: Z^1(\Delta, G_{\phi}) \times Hom(\Gamma, G) \xrightarrow{a \cdot b(\gamma) = a([\gamma])b(\gamma)} Hom(\Gamma, G)$
- 1 \rightarrow $G_{\phi} \rightarrow N_{G}(\phi(\Omega)) \rightarrow Aut(\Omega)$

Proposition

Let $1 \to \Omega \to \Gamma \to \Delta \to 1$ be an exact sequence of f.g. groups.

Assume that Ω is finite. Let $\tilde{\phi}: \Gamma \to G$ and $\phi = \tilde{\phi}|_{\Omega}$.

Then we have a Cartesian square:

$$Hom(\Gamma,G)/G^{\circ} \longleftarrow Z^{1}(\Delta,G_{\phi})/(G^{\circ})_{\phi} \stackrel{clopen}{\longleftrightarrow} Hom(\Delta,N_{G}(\phi(\Omega)))/(G^{\circ})_{\phi}$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$Hom(\Omega,G)/G^{\circ} \longleftarrow \qquad \{\phi\} \qquad \qquad Hom(\Delta,N_{G}(\phi(\Omega)))/(G_{\phi})^{\circ}$$

Where Δ acts on G_{ϕ} by: $[\gamma] \cdot g = \tilde{\phi}(\gamma)g\tilde{\phi}(\gamma)^{-1}$

- $\cdot: Z^1(\Delta, G_{\phi}) \times Hom(\Gamma, G) \xrightarrow{a \cdot b(\gamma) = a([\gamma])b(\gamma)} Hom(\Gamma, G)$
- 1 \rightarrow $G_{\phi} \rightarrow N_{G}(\phi(\Omega)) \rightarrow Aut(\Omega)$

The case $\Gamma = P$

Corollary

For any p-group P the scheme Hom(P,G) is a finite union of clopen G° orbits with reductive stabilizers.

Corollary

For any p-group P the scheme Hom(P,G) is a finite union of clopen G° orbits with reductive stabilizers.

Proof: Embed $C_p \triangleleft Z(P) \triangleleft P$.

Corollary

For any p-group P the scheme Hom(P,G) is a finite union of clopen G° orbits with reductive stabilizers.

Proof: Embed $C_p \triangleleft Z(P) \triangleleft P$. Let $Q = P/C_p$.

Corollary

For any p-group P the scheme Hom(P,G) is a finite union of clopen G° orbits with reductive stabilizers.

Proof: Embed $C_p \triangleleft Z(P) \triangleleft P$. Let $Q = P/C_p$. We get:

Corollary

For any p-group P the scheme Hom(P,G) is a finite union of clopen G° orbits with reductive stabilizers.

Proof: Embed $C_p \triangleleft Z(P) \triangleleft P$. Let $Q = P/C_p$. We get:

So, we can decompose:

$$\mathit{Hom}(P,G)/G^{\circ} = \bigsqcup_{\phi} Z^{1}(Q,G_{\phi})/(G^{\circ})_{\phi} \overset{\mathit{clopen}}{\subseteq} \bigsqcup_{\phi} \mathit{Hom}(Q,N_{G}(\phi(C_{p})))/(G^{\circ})_{\phi}$$

Corollary

For any p-group P the scheme Hom(P,G) is a finite union of clopen G° orbits with reductive stabilizers.

Proof: Embed $C_p \triangleleft Z(P) \triangleleft P$. Let $Q = P/C_p$. We get:

So, we can decompose:

$$\mathit{Hom}(P,G)/G^\circ = \bigsqcup_{\phi} Z^1(Q,G_\phi)/(G^\circ)_\phi \overset{\mathit{clopen}}{\subset} \bigsqcup_{\phi} \mathit{Hom}(Q,N_G(\phi(C_p)))/(G^\circ)_\phi$$

Denote $M := N_G(\phi(C_p))$.

Corollary

For any p-group P the scheme Hom(P,G) is a finite union of clopen G° orbits with reductive stabilizers.

Proof: Embed $C_p \triangleleft Z(P) \triangleleft P$. Let $Q = P/C_p$. We get:

So, we can decompose:

$$\mathit{Hom}(P,G)/\mathit{G}^{\circ} = \bigsqcup_{\phi} Z^{1}(Q,G_{\phi})/(\mathit{G}^{\circ})_{\phi} \overset{\mathit{clopen}}{\subseteq} \bigsqcup_{\phi} \mathit{Hom}(Q,N_{G}(\phi(\mathit{C}_{p})))/(\mathit{G}^{\circ})_{\phi}$$

Denote $M := N_G(\phi(C_p))$. We get:

$$Hom(Q, M)/M^{\circ} = Hom(Q, M)/(G_{\phi})^{\circ} \twoheadrightarrow Hom(Q, M)/(G^{\circ})_{\phi}$$

Corollary

For any p-group P the scheme Hom(P,G) is a finite union of clopen G° orbits with reductive stabilizers.

Proof: Embed $C_p \triangleleft Z(P) \triangleleft P$. Let $Q = P/C_p$. We get:

So, we can decompose:

$$\mathit{Hom}(P,G)/\mathit{G}^{\circ} = \bigsqcup_{\phi} Z^{1}(Q,G_{\phi})/(\mathit{G}^{\circ})_{\phi} \overset{\mathit{clopen}}{\subseteq} \bigsqcup_{\phi} \mathit{Hom}(Q,N_{G}(\phi(\mathit{C}_{p})))/(\mathit{G}^{\circ})_{\phi}$$

Denote $M := N_G(\phi(C_p))$. We get:

$$Hom(Q,M)/M^{\circ} = Hom(Q,M)/(G_{\phi})^{\circ} \twoheadrightarrow Hom(Q,M)/(G^{\circ})_{\phi}$$

and the statement follows by induction.

Corollary

For any p-group P the scheme Hom(P,G) is a finite union of clopen G° orbits with reductive stabilizers.

Proof: Embed $C_p \triangleleft Z(P) \triangleleft P$. Let $Q = P/C_p$. We get:

So, we can decompose:

$$\mathit{Hom}(P,G)/\mathit{G}^{\circ} = \bigsqcup_{\phi} Z^{1}(Q,G_{\phi})/(\mathit{G}^{\circ})_{\phi} \overset{\mathit{clopen}}{\subseteq} \bigsqcup_{\phi} \mathit{Hom}(Q,N_{G}(\phi(\mathit{C}_{p})))/(\mathit{G}^{\circ})_{\phi}$$

Denote $M := N_G(\phi(C_p))$. We get:

$$Hom(Q, M)/M^{\circ} = Hom(Q, M)/(G_{\phi})^{\circ} \twoheadrightarrow Hom(Q, M)/(G^{\circ})_{\phi}$$

and the statement follows by induction.

Question to the audience: What happens for general finite P with $(|P|, \ell) = 1$?

Lemma (Embedding of a subgroup)

If H ⊂ G are reductive, then

$$H//H^{\circ} \xrightarrow{finite} G//G^{\circ}.$$

Lemma (Embedding of a subgroup)

If H ⊂ G are reductive, then

$$H//H^{\circ} \xrightarrow{finite} G//G^{\circ}.$$

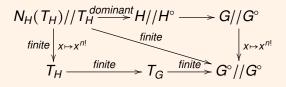
Proof.

Lemma (Embedding of a subgroup)

If H ⊂ G are reductive, then

$$H//H^{\circ} \xrightarrow{finite} G//G^{\circ}.$$

Proof.

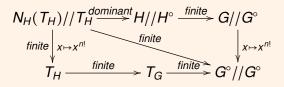


Lemma (Embedding of a subgroup)

If H ⊂ G are reductive, then

$$H//H^{\circ} \xrightarrow{finite} G//G^{\circ}.$$

Proof.



We have to show: $Hom(\Gamma,G)//G^{\circ} \xrightarrow{finite} G//G^{\circ}$.

We have to show: $Hom(\Gamma, G)//G^{\circ} \xrightarrow{finite} G//G^{\circ}$. Set $\Delta := \Gamma/P$.

We have to show: $Hom(\Gamma, G)//G^{\circ} \xrightarrow{finite} G//G^{\circ}$. Set $\Delta := \Gamma/P$. As before:

$$\mathit{Hom}(\Gamma,G)//\mathit{G}^{\circ} \overset{\mathit{clopen}}{\subseteq} \underset{\phi}{\bigsqcup} \mathit{Hom}(\Delta, N_{G}(\phi(P)))//(\mathit{G}^{\circ})_{\phi}.$$

We have to show: $Hom(\Gamma, G)//G^{\circ} \xrightarrow{finite} G//G^{\circ}$. Set $\Delta := \Gamma/P$. As before:

$$Hom(\Gamma,G)//G^{\circ} \stackrel{clopen}{\subseteq} \underset{\phi}{\bigsqcup} Hom(\Delta,N_G(\phi(P)))//(G^{\circ})_{\phi}.$$

Fix ϕ .

We have to show: $Hom(\Gamma, G)//G^{\circ} \xrightarrow{finite} G//G^{\circ}$. Set $\Delta := \Gamma/P$. As before:

$$Hom(\Gamma, G)//G^{\circ} \stackrel{clopen}{\subset} \underset{\phi}{\bigsqcup} Hom(\Delta, N_G(\phi(P)))//(G^{\circ})_{\phi}.$$

Fix ϕ . Set $M := N_G(\phi(P))$.

We have to show: $Hom(\Gamma, G)//G^{\circ} \xrightarrow{finite} G//G^{\circ}$. Set $\Delta := \Gamma/P$. As before:

$$Hom(\Gamma,G)//G^{\circ} \subseteq \coprod_{\phi} Hom(\Delta,N_{G}(\phi(P)))//(G^{\circ})_{\phi}.$$

Fix ϕ . Set $M := N_G(\phi(P))$. Note that $M^{\circ} = (G_{\phi})^{\circ}$.

We have to show: $Hom(\Gamma, G)//G^{\circ} \xrightarrow{finite} G//G^{\circ}$. Set $\Delta := \Gamma/P$. As before:

$$Hom(\Gamma,G)//G^{\circ} \stackrel{clopen}{\subseteq} \underset{\phi}{\bigsqcup} Hom(\Delta,N_G(\phi(P)))//(G^{\circ})_{\phi}.$$

Fix ϕ . Set $M := N_G(\phi(P))$. Note that $M^{\circ} = (G_{\phi})^{\circ}$. Now,

$$Hom(\Delta, M)//M^{\circ} \xrightarrow{finite} M//M^{\circ} \xrightarrow{finite} G//G^{\circ}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Hom(\Delta, M)//(G^{\circ})_{\phi}$$

We have to show: $Hom(\Gamma, G)//G^{\circ} \xrightarrow{finite} G//G^{\circ}$. Set $\Delta := \Gamma/P$. As before:

$$\mathit{Hom}(\Gamma,G)//\mathit{G}^{\circ} \overset{\mathit{clopen}}{\subset} \underset{\phi}{\bigsqcup} \mathit{Hom}(\Delta, \mathit{N}_{G}(\phi(P)))//(\mathit{G}^{\circ})_{\phi}.$$

Fix ϕ . Set $M := N_G(\phi(P))$. Note that $M^{\circ} = (G_{\phi})^{\circ}$. Now,

$$Hom(\Delta, M)//M^{\circ} \xrightarrow{finite} M//M^{\circ} \xrightarrow{finite} G//G^{\circ}$$

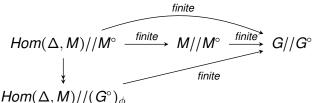
$$\downarrow \qquad \qquad \downarrow$$

$$Hom(\Delta, M)//(G^{\circ})_{\phi}$$

We have to show: $Hom(\Gamma, G)//G^{\circ} \xrightarrow{finite} G//G^{\circ}$. Set $\Delta := \Gamma/P$. As before:

$$\mathit{Hom}(\Gamma,G)//\mathit{G}^{\circ} \overset{\mathit{clopen}}{\subset} \underset{\phi}{\bigsqcup} \mathit{Hom}(\Delta, \mathit{N}_{G}(\phi(P)))//(\mathit{G}^{\circ})_{\phi}.$$

Fix ϕ . Set $M := N_G(\phi(P))$. Note that $M^{\circ} = (G_{\phi})^{\circ}$. Now,



From now on, $\Gamma = \langle f, s | fsf^{-1} = s^p \rangle$.

From now on, $\Gamma = \langle f, s | fsf^{-1} = s^p \rangle$. Let $N := N_G(T_G)$.

From now on, $\Gamma = \langle f, s | fsf^{-1} = s^p \rangle$. Let $N := N_G(T_G)$.

Theorem (dominance statement)

$$\textit{Hom}(\Gamma,N) \xrightarrow{\textit{dominant}} \textit{Hom}(\Gamma,G)//G^{\circ},$$

From now on, $\Gamma = \langle f, s | fsf^{-1} = s^p \rangle$. Let $N := N_G(T_G)$.

Theorem (dominance statement)

$$Hom(\Gamma, N) \xrightarrow{dominant} Hom(\Gamma, G)//G^{\circ},$$

Lemma

If G° is a torus, then $\text{Hom}(\Gamma,G)//G^{\circ} \to G//G^{\circ}$ is finite.

From now on, $\Gamma = \langle f, s | fsf^{-1} = s^p \rangle$. Let $N := N_G(T_G)$.

Theorem (dominance statement)

$$Hom(\Gamma, N) \xrightarrow{dominant} Hom(\Gamma, G)//G^{\circ},$$

Lemma

If G° is a torus, then $Hom(\Gamma,G)//G^{\circ} \to G//G^{\circ}$ is finite.

Proof.

computation with latices for each pair of components.

From now on, $\Gamma = \langle f, s | fsf^{-1} = s^p \rangle$. Let $N := N_G(T_G)$.

Theorem (dominance statement)

$$Hom(\Gamma, N) \xrightarrow{dominant} Hom(\Gamma, G)//G^{\circ},$$

Lemma

If G° is a torus, then $\text{Hom}(\Gamma,G)//G^{\circ} \to G//G^{\circ}$ is finite.

Proof.

computation with latices for each pair of components.

Proof of the main theorem.

$$\begin{array}{ccc} \textit{Hom}(\Gamma,N)//N^{\circ} & \xrightarrow{\textit{finite}} & N//N^{\circ} \\ \textit{dominant} & & & & \downarrow \textit{finite} \\ \textit{Hom}(\Gamma,G)//G^{\circ} & \longrightarrow & G//G^{\circ} \end{array}$$

From now on, $\Gamma = \langle f, s | fsf^{-1} = s^p \rangle$. Let $N := N_G(T_G)$.

Theorem (dominance statement)

$$Hom(\Gamma, N) \xrightarrow{dominant} Hom(\Gamma, G)//G^{\circ},$$

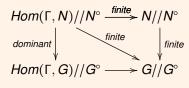
Lemma

If G° is a torus, then $Hom(\Gamma, G) \rightarrow G$ is finite.

Proof.

computation with latices for each pair of components.

Proof of the main theorem.



From now on, $\Gamma = \langle f, s | fsf^{-1} = s^p \rangle$. Let $N := N_G(T_G)$.

Theorem (dominance statement)

$$Hom(\Gamma, N) \xrightarrow{dominant} Hom(\Gamma, G)//G^{\circ},$$

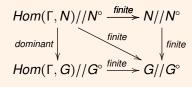
Lemma

If G° is a torus, then $Hom(\Gamma,G) \to G$ is finite.

Proof.

computation with latices for each pair of components.

Proof of the main theorem.



• From now on $G = G(\bar{k})$.

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

Lemma

 $s \in G^{ss}$.

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p \}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

Lemma

 $s \in G^{ss}$.

Proof.

Write $s = s^{ss}s^{un}$.

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p \}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

Lemma

 $s \in G^{ss}$.

Proof.

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

Lemma

 $s \in G^{ss}$.

Proof.

•
$$(f, s^{ss}), (f, s^{un}) \in Hom(\Gamma, G).$$

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

Lemma

 $s \in G^{ss}$.

Proof.

- $(f, s^{ss}), (f, s^{un}) \in Hom(\Gamma, G).$
- for some n we have $ad(f^n)(s^{ss}) = s^{ss}$.

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

Lemma

 $s \in G^{ss}$.

Proof.

- $(f, s^{ss}), (f, s^{un}) \in Hom(\Gamma, G).$
- for some n we have $ad(f^n)(s^{ss}) = s^{ss}$. (By the GL_N case)

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

Lemma

 $s \in G^{ss}$.

Proof.

- $(f, s^{ss}), (f, s^{un}) \in Hom(\Gamma, G).$
- for some n we have $ad(f^n)(s^{ss}) = s^{ss}$. (By the GL_N case)
- $\overline{ad(f^{n\mathbb{N}})(s^{un})} = \overline{(s^{un})^{p^{n\mathbb{N}}}}$

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

Lemma

 $s \in G^{ss}$.

Proof.

- $(f, s^{ss}), (f, s^{un}) \in Hom(\Gamma, G).$
- for some n we have $ad(f^n)(s^{ss}) = s^{ss}$. (By the GL_N case)
- $\overline{ad(f^{n\mathbb{N}})(s^{un})} = \overline{(s^{un})^{p^{n\mathbb{N}}}} \ni 1$

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

Lemma

 $s \in G^{ss}$.

Proof.

- $(f, s^{ss}), (f, s^{un}) \in Hom(\Gamma, G).$
- for some n we have $ad(f^n)(s^{ss}) = s^{ss}$. (By the GL_N case)
- $\overline{ad(f^{n\mathbb{N}})(s^{un})} = \overline{(s^{un})^{p^{n\mathbb{N}}}} \ni 1$ (By the GL_N case)

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

Lemma

 $s \in G^{ss}$.

Proof.

- $(f, s^{ss}), (f, s^{un}) \in Hom(\Gamma, G).$
- for some n we have $ad(f^n)(s^{ss}) = s^{ss}$. (By the GL_N case)
- $\overline{ad(f^{n\mathbb{N}})(s^{un})} = (s^{un})^{p^{n\mathbb{N}}} \ni 1$ (By the GL_N case)
- $\overline{ad(f^{n\mathbb{N}})(s)} = \overline{s^{ss}ad(f^{n\mathbb{N}})(s^{un})}$

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

Lemma

 $s \in G^{ss}$.

Proof.

- $(f, s^{ss}), (f, s^{un}) \in Hom(\Gamma, G).$
- for some n we have $ad(f^n)(s^{ss}) = s^{ss}$. (By the GL_N case)
- $\overline{ad(f^{n\mathbb{N}})(s^{un})} = (s^{un})^{p^{n\mathbb{N}}} \ni 1$ (By the GL_N case)
- $\overline{ad(f^{n\mathbb{N}})(s)} = \overline{s^{ss}ad(f^{n\mathbb{N}})(s^{un})} \ni s^{ss}$

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

Lemma

 $s \in G^{ss}$.

Proof.

- $(f, s^{ss}), (f, s^{un}) \in Hom(\Gamma, G).$
- for some n we have $ad(f^n)(s^{ss}) = s^{ss}$. (By the GL_N case)
- $\overline{ad(f^{n\mathbb{N}})(s^{un})} = (s^{un})^{p^{n\mathbb{N}}} \ni 1$ (By the GL_N case)
- $\overline{ad(f^{n\mathbb{N}})(s)} = \overline{s^{ss}ad(f^{n\mathbb{N}})(s^{un})} \ni s^{ss}$
- $\overline{ad(f^{n\mathbb{Z}})((f,s))} \ni (f,s^{ss})$

- From now on $G = G(\bar{k})$.
- Identify $Hom(\Gamma, G) \cong \{f, s \in G | fsf^{-1} = s^p\}$
- Fix $(f, s) \in Hom(\Gamma, G)$ with closed orbit.
- We need to $G^{\circ}(\bar{k})$ -conjugate it to a pair in $Hom(\Gamma, N)$.

Lemma

 $s \in G^{ss}$.

Proof.

- $(f, s^{ss}), (f, s^{un}) \in Hom(\Gamma, G).$
- for some n we have $ad(f^n)(s^{ss}) = s^{ss}$. (By the GL_N case)
- $\overline{ad(f^{n\mathbb{N}})(s^{un})} = (s^{un})^{p^{n\mathbb{N}}} \ni 1$ (By the GL_N case)
- $ad(f^{n\mathbb{N}})(s) = s^{ss}ad(f^{n\mathbb{N}})(s^{un}) \ni s^{ss}$
- $\overline{ad(f^{n\mathbb{Z}})((f,s))} \ni (f,s^{ss})$
- $s = s^{ss} \in G^{ss}$

Let $M = N_G(G_s)$.

Let $M = N_G(G_s)$. We have:

• $f \in M$.

- $f \in M$.
- $M^{\circ} \subset (G^{\circ})_{s} \subset M.$

- \bullet $f \in M$.

- \bullet $f \in M$.

- \bullet $f \in M$.
- $\bullet \ \, C_G(T_M)^\circ = C_G(T_{G_s})^\circ$

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Let $M = N_G(G_s)$. We have:

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Lemma

 $Ad(M^{\circ})(f)$ is closed.

Let $M = N_G(G_s)$. We have:

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Lemma

 $Ad(M^{\circ})(f)$ is closed.

Proof

Let $M = N_G(G_s)$. We have:

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Lemma

 $Ad(M^{\circ})(f)$ is closed.

Proof

 $\bullet \ Ad(G^{\circ})((f,s)) \cap G \times \{s\} = Ad((G^{\circ})_{s})(f) \times \{s\}.$

Let $M = N_G(G_s)$. We have:

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Lemma

 $Ad(M^{\circ})(f)$ is closed.

Proof

- $Ad(G^{\circ})((f,s)) \cap G \times \{s\} = Ad((G^{\circ})_{s})(f) \times \{s\}.$
- $Ad((G^{\circ})_s)(f)$ is closed.

Let $M = N_G(G_s)$. We have:

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Lemma

 $Ad(M^{\circ})(f)$ is closed.

Proof

- $Ad(G^{\circ})((f,s)) \cap G \times \{s\} = Ad((G^{\circ})_s)(f) \times \{s\}.$
- Ad((G°)_s)(f) is closed.
- $Ad(M^{\circ})(f)$ is closed.

Let $M = N_G(G_s)$. We have:

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Lemma

 $Ad(M^{\circ})(f)$ is closed.

Proof

- $Ad(G^{\circ})((f,s)) \cap G \times \{s\} = Ad((G^{\circ})_s)(f) \times \{s\}.$
- $Ad((G^{\circ})_s)(f)$ is closed.
- Ad(M°)(f) is closed.

Let $M = N_G(G_s)$. We have:

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Lemma

 $Ad(M^{\circ})(f)$ is closed.

Proof

- $Ad(G^{\circ})((f,s)) \cap G \times \{s\} = Ad((G^{\circ})_s)(f) \times \{s\}.$
- $Ad((G^{\circ})_s)(f)$ is closed.
- Ad(M°)(f) is closed.

Now, we can conjugate f, by an element of $x \in M^{\circ}$, into $N_M(T_M)$.

M° ⊂ (G°)_s

Let $M = N_G(G_s)$. We have:

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Lemma

 $Ad(M^{\circ})(f)$ is closed.

Proof

- $Ad(G^{\circ})((f,s)) \cap G \times \{s\} = Ad((G^{\circ})_{s})(f) \times \{s\}.$
- $Ad((G^{\circ})_s)(f)$ is closed.
- Ad(M°)(f) is closed.

- $M^{\circ} \subset (G^{\circ})_{s}$
- $N_M(T_M) \subset N_G(T_M)$

Let $M = N_G(G_s)$. We have:

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Lemma

 $Ad(M^{\circ})(f)$ is closed.

Proof

- $Ad(G^{\circ})((f,s)) \cap G \times \{s\} = Ad((G^{\circ})_{s})(f) \times \{s\}.$
- $Ad((G^{\circ})_s)(f)$ is closed.
- Ad(M°)(f) is closed.

- $M^{\circ} \subset (G^{\circ})_s$

Let $M = N_G(G_s)$. We have:

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Lemma

 $Ad(M^{\circ})(f)$ is closed.

Proof

- $Ad(G^{\circ})((f,s)) \cap G \times \{s\} = Ad((G^{\circ})_{s})(f) \times \{s\}.$
- $Ad((G^{\circ})_s)(f)$ is closed.
- Ad(M°)(f) is closed.

- $M^{\circ} \subset (G^{\circ})_s$
- $N_M(T_M) \subset N_G(T_M) \subset N_G(C_G(T_M)^\circ) = N$

Let $M = N_G(G_s)$. We have:

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Lemma

 $Ad(M^{\circ})(f)$ is closed.

Proof

- $Ad(G^{\circ})((f,s)) \cap G \times \{s\} = Ad((G^{\circ})_{s})(f) \times \{s\}.$
- $Ad((G^{\circ})_s)(f)$ is closed.
- Ad(M°)(f) is closed.

- M° ⊂ (G°)s

So
$$x(f, s)x^{-1} = (xfx^{-1}, s)$$

Let $M = N_G(G_s)$. We have:

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Lemma

 $Ad(M^{\circ})(f)$ is closed.

Proof

- $Ad(G^{\circ})((f,s)) \cap G \times \{s\} = Ad((G^{\circ})_{s})(f) \times \{s\}.$
- $Ad((G^{\circ})_s)(f)$ is closed.
- Ad(M°)(f) is closed.

- M° ⊂ (G°)_s

So
$$x(f,s)x^{-1} = (xfx^{-1},s) \in Hom(\Gamma, N),$$

Let $M = N_G(G_s)$. We have:

- \bullet $f \in M$.
- $C_G(T_M)^\circ = C_G(T_{G_S})^\circ = T_G$ (WLOG).

Lemma

 $Ad(M^{\circ})(f)$ is closed.

Proof

- $Ad(G^{\circ})((f,s)) \cap G \times \{s\} = Ad((G^{\circ})_{s})(f) \times \{s\}.$
- $Ad((G^{\circ})_s)(f)$ is closed.
- Ad(M°)(f) is closed.

Now, we can conjugate f, by an element of $x \in M^{\circ}$, into $N_M(T_M)$.

- $M^{\circ} \subset (G^{\circ})_{s}$

So $x(f,s)x^{-1}=(xfx^{-1},s)\in Hom(\Gamma,N)$, as required.