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Today’s Goal
We fix a non-Arch. local field F .

Let R = Z̄ℓ for ℓ ≠ res.char(F).

Theorem (DHKM)
Let G be a reductive algebraic group scheme over R. Then
red(Excn(G)) is finite over O(G)G

“Recall” that red(Excn(G)) ⊂ O(Hom(W 0(F)/Pn,G))G, so it is
enough to prove:

Theorem (DHKM)

O(Hom(W 0(F)/Pn,G))G is finite over O(G)G

Moreover, we will prove:

Theorem (DHKM)

O(Z 1(W 0(F)/Pn,G))G is finite over O(Z 1(⟨Fr⟩,O(G)))G for
any action of W 0(F)/Pn on G, that factors through a finite
group.
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Reformulations

Proposition
Let a f.g. group Γ act on G through a (finite) quotient ∆,

then

Z 1(Γ,G) ≅ {ϕ ∶ Γ→ G ⋊∆∣prG⋊∆
∆ ○ ϕ = prΓ∆}

So it is enough to show:

Theorem (DHKM)
Let G be a, not necessarily connected, reductive algebraic
group scheme over R. Then

Hom(W 0(F)/Pn,G)//G○
ϕ↦ ϕ(Fr)
ÐÐÐÐÐÐÐ→ G//G○ is finite.

In fact we will prove a more general statement

Theorem (DHKM)

Let Γ ⊃ P s.t. Γ/P = ⟨f ,s∣fsf−1 = sq⟩ and P is a p-group.
Lift f to Γ. Let G be as above.

Then Hom(Γ,G)//G○
ϕ↦ ϕ(f )
ÐÐÐÐÐÐ→ G//G○ is finite.
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Strategy

1 Analyze Hom(P,G):
it is a finite union of clopen G○-orbits with reductive
stabilizers.

a Case P = Cp ∶= Z/p.
i Case G = GLn
ii Case G○ is a torus
iii General G

b General P.
2 The case when P = 1:

Hom(Γ,G)//G○ → G//G○ is finite.
a The case when G○ is a torus.
b General G.

3 The general case.
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Methods to prove finiteness

Lemma (Cancellation)
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X dominant//

finite

55Y // Z // W
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finite

55Y finite // Z // W

Proof.

O(X) ↩ O(Y ) ← O(Z) ← O(W ). Noetherianity.

Lemma (dominance criterion)

Let X ⊂ Y be a closed embedding of affine schemes and let a
reductive group scheme G act on Y . Then, X → Y //G is dominant, if
for any field k the set X(k̄) intersects any closed orbit in Y (k̄).

Proof.

Any fiber of Y → Y //G includes a closed orbit⇒ X(k̄) ↠ (Y //G)(k̄)
⇒ X

dominantÐÐÐÐÐ→ Y //G.
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non-connected Chevalley (iso)morphism

Theorem (Gantmacher)

Fix a pinning (TG(k̄), . . . ) of G○(k̄).

Let

S = {x ∈ G(k̄)∣Ad(x) comes from automorphism of the root datum}.

Then S ⋅ TG(k̄) intersects any closed G○(k̄) orbit in G(k̄).

Corollary (1)

NG(TG) → G//G○ is dominant

Corollary (2)

for any x ∈ G(k̄) with a closed G○-orbit, the group CG(TGx )○ is a
maximal torus in G○.

Proof.

By induction, it is enough to show that (Gx)○ ⊄ Z(G).
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Understanding Extension

Proposition
Let 1→ Ω→ Γ→∆→ 1 be an exact sequence of f.g. groups.

Assume that Ω is finite. Let ϕ̃ ∶ Γ→ G and ϕ = ϕ̃∣Ω.
Then we have a Cartesian square:

Hom(Γ,G) Z 1(∆,Gϕ)

Hom(Ω,G) {ϕ}
Where ∆ acts on Gϕ by: [γ] ⋅ g = ϕ̃(γ)gϕ̃(γ)−1
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The case Γ = P

Corollary

For any p-group P the scheme Hom(P,G) is a finite union of clopen
G○ orbits with reductive stabilizers.

Proof: Embed Cp � Z(P)� P. Let Q = P/Cp. We get:

Hom(P,G)/G○ Z 1
(Q,Gϕ)/(G○)ϕ Hom(Q,NG(ϕ(Cp)))/(G○)ϕ

Hom(Cp,G)/G○ {ϕ} Hom(∆,NG(ϕ(Cp)))/(Gϕ)
○

clopen

So, we can decompose:

Hom(P,G)/G○ = ⊔
ϕ

Z 1(Q,Gϕ)/(G○)ϕ
clopen⊂ ⊔

ϕ

Hom(Q,NG(ϕ(Cp)))/(G○)ϕ

Denote M ∶= NG(ϕ(Cp)). We get:

Hom(Q,M)/M○ = Hom(Q,M)/(Gϕ)○↠ Hom(Q,M)/(G○)ϕ
and the statement follows by induction.
Question to the audience: What happens for general finite P with
(∣P ∣, ℓ) = 1?
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Proof: Embed Cp � Z(P)� P. Let Q = P/Cp. We get:

Hom(P,G)/G○ Z 1
(Q,Gϕ)/(G○)ϕ Hom(Q,NG(ϕ(Cp)))/(G○)ϕ

Hom(Cp,G)/G○ {ϕ} Hom(∆,NG(ϕ(Cp)))/(Gϕ)
○

clopen

So, we can decompose:

Hom(P,G)/G○ = ⊔
ϕ

Z 1(Q,Gϕ)/(G○)ϕ
clopen⊂ ⊔

ϕ

Hom(Q,NG(ϕ(Cp)))/(G○)ϕ

Denote M ∶= NG(ϕ(Cp)). We get:

Hom(Q,M)/M○ = Hom(Q,M)/(Gϕ)○↠ Hom(Q,M)/(G○)ϕ
and the statement follows by induction.
Question to the audience: What happens for general finite P with
(∣P ∣, ℓ) = 1?



Embedding of a subgroup

Lemma (Embedding of a subgroup)

If H ⊂ G are reductive, then

H//H○ finiteÐÐÐÐÐ→ G//G○.

Proof.

NH(TH)//TH

finite x↦xn!

��

dominant// H//H○ // G//G○

x↦xn!

��
TH

finite // TG
finite // G○//G○
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Reduction to the case P = 1

We have to show: Hom(Γ,G)//G○ finiteÐÐÐÐÐ→ G//G○.

Set
∆ ∶= Γ/P. As before:

Hom(Γ,G)//G○ clopen⊂ ⊔
ϕ

Hom(∆,NG(ϕ(P)))//(G○)ϕ.

Fix ϕ. Set M ∶= NG(ϕ(P)). Note that M○ = (Gϕ)○. Now,

Hom(∆,M)//M○ M//M○ G//G○

Hom(∆,M)//(G○)ϕ

finite finite
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Reduction to dominance statement
From now on, Γ = ⟨f ,s∣fsf −1 = sp⟩.

Let N ∶= NG(TG).

Theorem (dominance statement)

Hom(Γ,N) dominantÐÐÐÐÐÐÐÐ→ Hom(Γ,G)//G○,

Lemma

If G○ is a torus, then Hom(Γ,G)//G○ → G//G○ is finite.

Proof.
computation with latices for each pair of components.

Proof of the main theorem.

Hom(Γ,N)//N○

dominant
��

finite // N//N○

finite
��

Hom(Γ,G)//G○ // G//G○
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If G○ is a torus, then Hom(Γ,G) → G is finite.
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Proof of the main theorem.

Hom(Γ,N)//N○

dominant
��

finite //

finite

''

finite // N//N○

finite
��

Hom(Γ,G)//G○ finite // G//G○



Proof of dominance

From now on G = G(k̄).
Identify Hom(Γ,G) ≅ {f ,s ∈ G∣fsf−1 = sp}
Fix (f ,s) ∈ Hom(Γ,G) with closed orbit.
We need to G○(k̄)-conjugate it to a pair in Hom(Γ,N).

Lemma
s ∈ Gss.

Proof.
Write s = ssssun. We have:

(f ,sss), (f ,sun) ∈ Hom(Γ,G).
for some n we have ad(f n)(sss) = sss. (By the GLN case)

ad(f nN)(sun) = (sun)pnN ∋ 1 (By the GLN case)

ad(f nN)(s) = sssad(f nN)(sun) ∋ sss

ad(f nZ)((f ,s)) ∋ (f ,sss)
s = sss ∈ Gss
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Proof of dominance (cont.)
Let M = NG(Gs).

We have:

f ∈ M.

M○
⊂ (G○)s ⊂ M. (M/Gs = M/CG(Gs)Gs ↪ Out(Gs) )

CG(TM)
○
= CG(TGs)

○
= TG (WLOG).

Lemma

Ad(M○
)(f ) is closed.

Proof

Ad(G○)((f , s)) ∩G × {s} = Ad((G○)s)(f ) × {s}.

Ad((G○)s)(f ) is closed.

Ad(M○
)(f ) is closed.

Now, we can conjugate f , by an element of x ∈ M○, into NM(TM).

M○
⊂ (G○)s

NM(TM) ⊂ NG(TM) ⊂ NG(CG(TM)
○
) = N

So x(f , s)x−1
= (xfx−1, s) ∈ Hom(Γ,N), as required.
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