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BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 5, 1943

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

FroM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,

DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE,

AND THE UNIVERSITY OF CHICAGO

Because of the “all-or-none” character of nervous activity, neural
events and the relations among them can be treated by means of propo-
sitional logic. It is found that the behavior of every net can be described
in these terms, with the addition of more complicated logical means for
nets containing circles; and that for any logical expression satisfying
certain conditions, one can find a net behaving in the fashion it describes.
It is shown that many particular choices among possible neurophysiologi-
cal assumptions are equivalent, in the sense that for every net behav-
ing under one assumption, there exists another net which behaves un-
der the other and gives the same results, although perhaps not in the
same time. Various applications of the calculus are discussed.

J. Physiol. (1959) 148, 574591
RECEPTIVE FIELDS OF SINGLE NEURONES IN
THE CAT’S STRIATE CORTEX

By D. H. HUBEL* axp T. N. WIESEL*

From the Welmer Institute, The Johns Hopkins Hospital and
University, Baltimore, Maryland, U.S.A.
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J. Physiol. (1962), 160, pp. 106-154

RECEPTIVE FIELDS, BINOCULAR INTERACTION
AND FUNCTIONAL ARCHITECTURE IN
THE CAT’S VISUAL CORTEX

By D. H. HUBEL axp T. N. WIESEL

From the Neurophysiolojy Laboratory, Department of Pharmacology
Harvard Medical School, Boston, Massachusetts, U.S.A.
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“Neuron” =

linear classifier

Linear classifier

if 2*size + 5*round > 100 then
“orange”

else
“Yapple”
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Fully connected network

output layer
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Convolutional neural network

Few changes from fully connected networks

1. A neuron is not connected to all neurons (in prev. layer)

2. Keep it local
3. Use the same filter across all regions

Filter
Output

map




Convolutional neural network - filters
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Convolutional neural network - filters

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

Convolution filter
(Sobel Gx)



Convolutional neural network

Few changes from fully connected networks

1. A neuron is not connected to all neurons (in prev. layer)

2. Keep it local
3. Use the same filter across all regions

4. Use more than one filter

Filter
Output

map




Convolutional neural network - architecture
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From engineering to learning to deep learning

SRS MOLORS:

Manual modeling Machine learning Deep learning
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Stochastic Gradient Ascent

e |teratively, approximate the direction at
each optimization step using a small
subset of samples (mini-batch)

e Epoch: a series of steps, using all
training data

e |Learning rate = step size
e Too large and you're over the mountain
e Too small and you won’t get far

16

12

low learning rate

high learning rate

good learning rate




Revisiting our assumptions

Learning

—P (optimization)

Samples

Features

Training set

e Training set - Samples X Features

—

e Every sample has value for all the features




Missing Data

Training set contains 7~

115 ? 23 ?
12/ 7 8 ? 10
5 4 1220 12

Samples

1?2 1021 8

Features



Missing Data

Example:

e Basic parameters & blood works of patients in ER

Histogram of number of measured values
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https://lwww.biosymetrics.com/blog/missing-values-healthcare-data



Missing Data

Why is that a problem?

Complete data - (10, 24) Missing data - (10, ?)

! )




Sources of Missing Data

e Missing completely at random
Random “mechanism” removes values

o Patients miss ~5-10% of questions on the form, each
person different ones

o Measurement device is flaky and not all results are
measured



Sources of Missing Data

e Missing completely at random

e Missing specific values
Hiding mechanism depends on actual value

o Overweight people often do not report their weight

o Only abnormal temperatures are recorded



Sources of Missing Data

Missing completely at random
Missing specific values

Missing specific cases
Other aspects of the sample determine whether the
value is observed

o Pathology report only when colonoscopy had positive
findings



Sources of Missing Data

Missing completely at random
Missing specific values
Missing specific cases
Complex mechanism

o Creatinine is typically measured for patients with potential
Kidney problems

o Employees who fear their manager do not report their job
satisfaction



Issues to consider

e Observed/missing status - is it informative?

o Should we count it as another feature?

e Distribution of “missing values” - different than
observed?



Approaches to Missing Data

New value that stands for “missing” or “unknown”

e Enables reasoning about the implications of not
observing the values

e (Can complicates the learning procedure



Approaches to Missing Data

Special value: Danger of artifacts
o Missing weight value denoted as 0
o Mean / variance estimates are skewed
o Regression model treats it as another number

=0

5 2 23 2 1.5 2 230
127 810 ? 127 8 10 0
S 5 4 1220 ? S5 41220 0
] )
1?10218), 1.2 10 21 8

Features 4 Features

10 1S 20 25 30 35 40 45 0O S 10 15 20 25 30 35 40 45

ALT(IU/L) ALT(IU/L)




Approaches to Missing Data

Fill in missing values

e Use existing algorithms and procedures

e “Shields” the learning procedure from missing data

e Ignores information in observed/missing status

Issue - what values to fill in?



Imputation - Fill in the blanks

Default value
e Skews the distribution of values

e Underestimation of variance

1.5 7?2 23 ? 175 7?7 2310
12/ 7 8 10 ? 12 7 8 10 10

5 4 12 20 ? I 514112 20 10

Samples
Samples

1?10218)_ 1. ? 10 21 8

Features 4 Features

S 10 15 20 25 30 35 40 45 0O S 10 15 20 25 30 35 40 45

ALT(IU/L) ALT(IU/L)




Imputation - Fill in the blanks

Use randomization
e Fixed distribution

e Empirical distribution

1.5 2 23 2 1.5 2 2310
127 8 10 ? 127 8 10 12
%541220? _>§5412209
3 g

1?10218): 1.2 1021 8

Features | . Features

10 1S 20 25 30 35 40 45 0O S 10 15 20 25 30 35 40 45

ALT(IU/L) ALT(IU/L)




Imputation - Fill in the blanks

More advanced methods

e Classifier to predict based on other examples
e Use nearest neighbors to predict missing values




Skewed and imbalanced data

Remind the iid assumption (graphically)

Situations where this might not hold:

e Skewed probability of classes (only 2% are positive)
— increased representation of rare cases

e Distribution in training cohort differs from test cohort

e Not all samples are independent of each other



Remember PCA?
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Remember PCA?
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Auto-encoders

“Compress” data to lower dimension
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then, “decompress” back to original dimension



Why?

e Learn hidden dependencies or patterns in data

e Denoise

encode > decode >
Inference Generative

=

Distribution



Why?

e Learn hidden dependencies or patterns in data
e Denoise

Original Images

.

Noisy Input

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798



Why?

e Learn hidden dependencies or patterns in data
e Denoise

Denoising of 3D Magnetic Resonance Images Using a Residual Encoder-Decoder

Wasserstein Generative Adversarial Network

Maosong Ran!, Jinrong Hu?, Yang Chen***, Hu Chen!, Huaiqiang Sun®, Jiliu Zhou!, Yi Zhang"7"

(b)



Why?

e Learn hidden dependencies or patterns in data

e Denoise
e Impute

Extracting and Composing Robust Features with
Denoising Autoencoders

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol

MISSING DATA IMPUTATION IN THE ELECTRONIC HEALTH RECORD USING

DEEPLY LEARNED AUTOENCODERS"

BRETT K. BEAULIEU-JONES

Genomics and Computational Biology Graduate Group, Computational Genetics Lab, Institute for Biomedical
Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia PA, 19104

Email: brettbe@med.upenn.edu

JASON H. MOORE

Computational Genetics Lab, Institute for Biomedical Informatics, University of Pennsylvania, 3700 Hamilton Walk,

Philadelphia PA, 19104
Email: jhmoore@exchange.upenn.edu
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Why?

Learn hidden dependencies or patterns in data
Denoise

Impute

Visualize / cluster data in latent space
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Why?

Learn hidden dependencies or patterns in data
Denoise

Impute

Visualize / cluster data in latent space
Anomaly detection (= reconstruction failures)

PC,
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Why?

Learn hidden dependencies or patterns in data
Denoise

Impute

Visualize / cluster data in latent space
Anomaly detection (= reconstruction failures)

Data generation
2 o 9 > ? > q
Compact
represen%v O 3 Y2

small () 8 O 8 O Art|f|C|aI 5 “
changes O O O images
O O 9 9 Linear morphing in
5\

the latent space,

Latent s&)\ 8 0 decompacted

https://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/



Transfer learning

e Re-use parts of a trained network

(e.q., early filters/features)
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Transfusion: Understanding Transfer Learning for
Medical Imaging

Chiyuan Zhang*
Google Brain
chiyuan@google.com

Maithra Raghu*
Cornell University and Google Brain
maithrar@gmail.com

Samy Bengio®
Google Brain
bengio@google.com

Jon Kleinberg!
Cornell University
kleinber@cs.cornell.edu
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Transfer learning

Transfusion: Understanding Transfer Learning for

e Re-use parts of a pre-trained network Medical Imaging

(early filters = basic visual features)

Maithra Raghu* Chiyuan Zhang*
- oy d Cornell University and Google Brain Google Brain
i > 3 maithrar@gmail.com chiyuan@google.com
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Transfer learning

Transfusion: Understanding Transfer Learning for
Medical Imaging

e Re-use parts of a pre-trained network

(early filters = basic visual features)
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Transfer learning

Transfusion: Understanding Transfer Learning for

e Re-use parts of a pre-trained network Medical Imaging

(early filters = basic visual features)
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What have we learned?

Convolutional neural networks
Missing data

Imputation

Auto-encoders

Learning latent representations
Multiple uses of latent representations

Transfer learning



Medical Al idea competition

Medical need

Impact on individual

Population size

Machine Learning technique

How will you get the data for the project?
Similar works (and how are you different?)
Supplementary material

Team members

Top projects to be presented in the last lesson
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Syllabus

Introduction

Classification

Learning 1

Al in ophthalmology (Prof. ltay Chowers)

Learning 2

Regression

Clustering

Visualization (and dimensionality reduction)

Deep learning in image analysis (Prof. Leo Joskowicz)
Missing data, statistical dependencies

Decisions (utility)

Natural language in medicine (Dr. Gabi Stanovsky)
Longitudinal Data / Projects



