Finiteness for Hecke algebras of p-adic groups.

A theorem by Jean-Francois Dat, David Helm, Robert Kurinczuk, and Gilbert Moss

 $R \supset \mathbb{Z}_{\ell}$ is a ring.

 $R \supset \mathbb{Z}_{\ell}$ is a ring. F is a local field of char. $\neq \ell$.

 $R \supset \mathbb{Z}_{\ell}$ is a ring. F is a local field of char. $\neq \ell$. G is an F-reductive group.

 $R \supset \mathbb{Z}_{\ell}$ is a ring. F is a local field of char. $\neq \ell$. G is an F-reductive group. K < G is an open compact.

 $R \supset \mathbb{Z}_{\ell}$ is a ring. F is a local field of char. $\neq \ell$. G is an F-reductive group. K < G is an open compact.

Definition

$$\mathcal{H}_R(G,K) = End(R[G/K]) \cong R[K \backslash G/K]$$

 $R \supset \mathbb{Z}_{\ell}$ is a ring. F is a local field of char. $\neq \ell$. G is an F-reductive group. K < G is an open compact.

Definition

$$\mathcal{H}_R(G,K) = End(R[G/K]) \cong R[K\backslash G/K]$$

Theorem ([DHKM])

 $\mathcal{H}_R(G,K)$ is finite over its center which is R-f.g.

 $R \supset \mathbb{Z}_{\ell}$ is a ring. F is a local field of char. $\neq \ell$. G is an F-reductive group. K < G is an open compact.

Definition

$$\mathcal{H}_R(G,K) = End(R[G/K]) \cong R[K\backslash G/K]$$

Theorem ([DHKM])

 $\mathcal{H}_R(G,K)$ is finite over its center which is R-f.g.

• We can assume $R = \mathbb{Z}_{\ell} \langle \sqrt{p} \rangle$.

Definition

Let a (com. unital) ring C act on an object $V \in \mathcal{M}(G) := \mathcal{M}_R(G)$. We say that V is C-finite if

Definition

Let a (com. unital) ring C act on an object $V \in \mathcal{M}(G) := \mathcal{M}_R(G)$. We say that V is C-finite if

• the image of C in End(V) is finitely generated over R.

Definition

Let a (com. unital) ring C act on an object $V \in \mathcal{M}(G) := \mathcal{M}_R(G)$. We say that V is C-finite if

- the image of C in End(V) is finitely generated over R.
- For any compact open K < G, the module V^K is f.g over C.

Definition

Let a (com. unital) ring C act on an object $V \in \mathcal{M}(G) := \mathcal{M}_R(G)$. We say that V is C-finite if

- the image of C in End(V) is finitely generated over R.
- For any compact open K < G, the module V^K is f.g over C.

The above implies that End(V) is finite over C.

Definition

Let a (com. unital) ring C act on an object $V \in \mathcal{M}(G) := \mathcal{M}_R(G)$. We say that V is C-finite if

- the image of C in End(V) is finitely generated over R.
- For any compact open K < G, the module V^K is f.g over C.

The above implies that End(V) is finite over C.

Proposition

Let C act on objects $W \subset V \in \mathcal{M}_R(G)$, and let $D \to C$.

Definition

Let a (com. unital) ring C act on an object $V \in \mathcal{M}(G) := \mathcal{M}_R(G)$. We say that V is C-finite if

- the image of C in End(V) is finitely generated over R.
- For any compact open K < G, the module V^K is f.g over C.

The above implies that End(V) is finite over C.

Proposition

Let C act on objects $W \subset V \in \mathcal{M}_R(G)$, and let $D \to C$.

V is D-finite then V is C-finite

Definition

Let a (com. unital) ring C act on an object $V \in \mathcal{M}(G) := \mathcal{M}_R(G)$. We say that V is C-finite if

- the image of C in End(V) is finitely generated over R.
- For any compact open K < G, the module V^K is f.g over C.

The above implies that End(V) is finite over C.

Proposition

Let C act on objects $W \subset V \in \mathcal{M}_R(G)$, and let $D \to C$.

- V is D-finite then V is C-finite
- ② If $D \rightarrow C$ is finite and V is C-finite then V is D-finite

Definition

Let a (com. unital) ring C act on an object $V \in \mathcal{M}(G) := \mathcal{M}_R(G)$. We say that V is C-finite if

- the image of C in End(V) is finitely generated over R.
- For any compact open K < G, the module V^K is f.g over C.

The above implies that End(V) is finite over C.

Proposition

Let C act on objects $W \subset V \in \mathcal{M}_R(G)$, and let $D \to C$.

- V is D-finite then V is C-finite
- ② If $D \rightarrow C$ is finite and V is C-finite then V is D-finite
- V is D-finite then so is W.

Definition

Let a (com. unital) ring C act on an object $V \in \mathcal{M}(G) := \mathcal{M}_R(G)$. We say that V is C-finite if

- the image of C in End(V) is finitely generated over R.
- For any compact open K < G, the module V^K is f.g over C.

The above implies that End(V) is finite over C.

Proposition

Let C act on objects $W \subset V \in \mathcal{M}_R(G)$, and let $D \to C$.

- V is D-finite then V is C-finite
- ② If $D \rightarrow C$ is finite and V is C-finite then V is D-finite
- V is D-finite then so is W.

The main Theorem is equivalent to the following one:

Theorem ([DHKM])

Any f.g. $V \in \mathcal{M}_R(G)$ is $\mathfrak{Z}(G) := \mathfrak{Z}_R(G) := \mathfrak{Z}(\mathcal{M}_R(G))$ -finite.

Theorem (Bernstein*)

any $V \in \mathcal{M}_{R}^{f.g.}(G)$ can be embedded

$$V \subset \bigoplus i_{M_i}^G(W_i),$$

for some $M_i \stackrel{Levi}{<} G$ and $\mathfrak{Z}(Z(M_i))$ -finite (cusp.) $W_i \in \mathcal{M}(M_i)$.

Theorem (Bernstein*)

any $V \in \mathcal{M}_{R}^{f.g.}(G)$ can be embedded

$$V \subset \bigoplus i_{M_i}^G(W_i),$$

for some $M_i \stackrel{\text{Levi}}{<} G$ and $\mathfrak{Z}(Z(M_i))$ -finite (cusp.) $W_i \in \mathcal{M}(M_i)$.

So, it is enough to show

Theorem ([DHKM])

Let M < G be a Levi.

Theorem (Bernstein*)

any $V \in \mathcal{M}_{R}^{f.g.}(G)$ can be embedded

$$V \subset \bigoplus i_{M_i}^G(W_i),$$

for some $M_i \stackrel{Levi}{<} G$ and $\mathfrak{Z}(Z(M_i))$ -finite (cusp.) $W_i \in \mathcal{M}(M_i)$.

So, it is enough to show

Theorem ([DHKM])

Let M < G be a Levi. Let $W \in \mathcal{M}_R(M)$ be $\mathfrak{Z}(Z(M))$ -finite representation.

Theorem (Bernstein*)

any $V \in \mathcal{M}_{R}^{f.g.}(G)$ can be embedded

$$V \subset \bigoplus i_{M_i}^G(W_i),$$

for some $M_i \stackrel{Levi}{<} G$ and $\mathfrak{Z}(Z(M_i))$ -finite (cusp.) $W_i \in \mathcal{M}(M_i)$.

So, it is enough to show

Theorem ([DHKM])

Let M < G be a Levi. Let $W \in \mathcal{M}_R(M)$ be $\mathfrak{Z}(Z(M))$ -finite representation. Then $i_M^G(W) \in \mathcal{M}_R(G)$ is $\mathfrak{Z}(G)$ -finite.

Theorem (Bernstein*)

any $V \in \mathcal{M}_{R}^{f.g.}(G)$ can be embedded

$$V \subset \bigoplus i_{M_i}^G(W_i),$$

for some $M_i \stackrel{Levi}{<} G$ and $\mathfrak{Z}(Z(M_i))$ -finite (cusp.) $W_i \in \mathcal{M}(M_i)$.

So, it is enough to show

Theorem ([DHKM])

Let M < G be a Levi. Let $W \in \mathcal{M}_R(M)$ be $\mathfrak{Z}(Z(M))$ -finite representation. Then $i_M^G(W) \in \mathcal{M}_R(G)$ is $\mathfrak{Z}(G)$ -finite.

Proposition

In the situation above.

Theorem (Bernstein*)

any $V \in \mathcal{M}_{R}^{f.g.}(G)$ can be embedded

$$V \subset \bigoplus i_{M_i}^G(W_i),$$

for some $M_i \stackrel{\text{Levi}}{<} G$ and $\mathfrak{Z}(Z(M_i))$ -finite (cusp.) $W_i \in \mathcal{M}(M_i)$.

So, it is enough to show

Theorem ([DHKM])

Let M < G be a Levi. Let $W \in \mathcal{M}_R(M)$ be $\mathfrak{Z}(Z(M))$ -finite representation. Then $i_M^G(W) \in \mathcal{M}_R(G)$ is $\mathfrak{Z}(G)$ -finite.

Proposition

In the situation above, $i_M^G(W)$ is $\mathfrak{Z}(Z(M))$ -finite.

Theorem (Bernstein*)

any $V \in \mathcal{M}_{R}^{f.g.}(G)$ can be embedded

$$V \subset \bigoplus i_{M_i}^G(W_i),$$

for some $M_i \stackrel{Levi}{<} G$ and $\mathfrak{Z}(Z(M_i))$ -finite (cusp.) $W_i \in \mathcal{M}(M_i)$.

So, it is enough to show

Theorem ([DHKM])

Let M < G be a Levi. Let $W \in \mathcal{M}_R(M)$ be $\mathfrak{Z}(Z(M))$ -finite representation. Then $i_M^G(W) \in \mathcal{M}_R(G)$ is $\mathfrak{Z}(G)$ -finite.

Proposition

In the situation above, $i_M^G(W)$ is $\mathfrak{Z}(Z(M))$ -finite.

Proof.

$$i_M^G(W)^K = \bigoplus_{\{x\} \in K \setminus G/P} W^{xKx^{-1} \cap F}$$

Let \mathcal{G} be an R-group scheme

•
$$1 \rightarrow P \rightarrow W^0(F) \rightarrow \langle f, s | fsf^{-1} = s^q \rangle \rightarrow 1$$

• 1
$$\rightarrow$$
 $P \rightarrow W^0(F) \rightarrow \langle f, s | fsf^{-1} = s^q \rangle \rightarrow 1$

•
$$P = P_0 \triangleright P_1 \cdots \triangleright P_n \triangleright \cdots$$

• 1
$$\rightarrow$$
 $P \rightarrow W^0(F) \rightarrow \langle f, s | fsf^{-1} = s^q \rangle \rightarrow 1$

•
$$P = P_0 \triangleright P_1 \cdots \triangleright P_n \triangleright \cdots$$

$$\bullet \ \Gamma_n \coloneqq W^0(F)/P_n.$$

• 1
$$\rightarrow$$
 $P \rightarrow W^0(F) \rightarrow \langle f, s | fsf^{-1} = s^q \rangle \rightarrow 1$

•
$$P = P_0 \triangleright P_1 \cdots \triangleright P_n \triangleright \cdots$$

$$\bullet \ \Gamma_n \coloneqq W^0(F)/P_n.$$

•
$$E_n(\mathcal{G})$$
 " = " $O(Z^1(\Gamma_n, \mathcal{G})//\mathcal{G})$

• 1
$$\rightarrow$$
 $P \rightarrow W^0(F) \rightarrow \langle f, s | fsf^{-1} = s^q \rangle \rightarrow 1$

•
$$P = P_0 \triangleright P_1 \cdots \triangleright P_n \triangleright \cdots$$

$$\bullet \ \Gamma_n \coloneqq W^0(F)/P_n.$$

•
$$E_n(\mathcal{G})$$
 " = " $O(Z^1(\Gamma_n, \mathcal{G})//\mathcal{G})$

•
$$E_{n,k} = O(Z^1(F_k, \mathcal{G})^{\mathcal{G}}) = O(\mathcal{G}^k)^{\mathcal{G}} = O(\mathcal{G}^k//\mathcal{G})$$

•
$$1 \rightarrow P \rightarrow W^0(F) \rightarrow \langle f, s | fsf^{-1} = s^q \rangle \rightarrow 1$$

•
$$P = P_0 \triangleright P_1 \cdots \triangleright P_n \triangleright \cdots$$

$$\bullet \ \Gamma_n \coloneqq W^0(F)/P_n.$$

•
$$E_n(\mathcal{G})$$
 " = " $O(Z^1(\Gamma_n, \mathcal{G})//\mathcal{G})$

•
$$E_{n,k} = O(Z^1(F_k, \mathcal{G})^{\mathcal{G}}) = O(\mathcal{G}^k)^{\mathcal{G}} = O(\mathcal{G}^k//\mathcal{G})$$

•
$$E_n(\mathcal{G}) = \lim_{\substack{\to \ \phi: F_k \to \Gamma_n}} E_{n,k}$$

• 1
$$\rightarrow$$
 $P \rightarrow W^0(F) \rightarrow \langle f, s | fsf^{-1} = s^q \rangle \rightarrow 1$

•
$$P = P_0 \triangleright P_1 \cdots \triangleright P_n \triangleright \cdots$$

$$\bullet \ \Gamma_n \coloneqq W^0(F)/P_n.$$

•
$$E_n(\mathcal{G})$$
 " = " $O(Z^1(\Gamma_n, \mathcal{G})//\mathcal{G})$

•
$$E_{n,k} = O(Z^1(F_k, \mathcal{G})^{\mathcal{G}}) = O(\mathcal{G}^k)^{\mathcal{G}} = O(\mathcal{G}^k//\mathcal{G})$$

$$\bullet \ E_n(\mathcal{G}) = \lim_{\stackrel{\rightarrow}{\phi: F_k \to \Gamma_n}} E_{n,k}$$

•
$$\mathcal{H} \to \mathcal{G} \Rightarrow E_n(\mathcal{G}) \to E_n(\mathcal{H})$$

•
$$1 \rightarrow P \rightarrow W^0(F) \rightarrow \langle f, s | fsf^{-1} = s^q \rangle \rightarrow 1$$

•
$$P = P_0 \triangleright P_1 \cdots \triangleright P_n \triangleright \cdots$$

$$\bullet \ \Gamma_n \coloneqq W^0(F)/P_n.$$

•
$$E_n(\mathcal{G})$$
 " = " $O(Z^1(\Gamma_n, \mathcal{G})//\mathcal{G})$

•
$$E_{n,k} = O(Z^1(F_k, \mathcal{G})^{\mathcal{G}}) = O(\mathcal{G}^k)^{\mathcal{G}} = O(\mathcal{G}^k//\mathcal{G})$$

•
$$E_n(\mathcal{G}) = \lim_{\substack{\to \ \phi: F_k \to \Gamma_n}} E_{n,k}$$

•
$$\mathcal{H} \to \mathcal{G} \Rightarrow E_n(\mathcal{G}) \to E_n(\mathcal{H})$$

•
$$E(\mathcal{G}) = \lim_{\leftarrow} E_n(\mathcal{G})$$

• 1
$$\rightarrow$$
 $P \rightarrow W^0(F) \rightarrow \langle f, s | fsf^{-1} = s^q \rangle \rightarrow 1$

•
$$P = P_0 \triangleright P_1 \cdots \triangleright P_n \triangleright \cdots$$

$$\bullet \ \Gamma_n \coloneqq W^0(F)/P_n.$$

•
$$E_n(\mathcal{G})$$
 " = " $O(Z^1(\Gamma_n, \mathcal{G})//\mathcal{G})$

•
$$E_{n,k} = O(Z^1(F_k, \mathcal{G})^{\mathcal{G}}) = O(\mathcal{G}^k)^{\mathcal{G}} = O(\mathcal{G}^k//\mathcal{G})$$

•
$$E_n(\mathcal{G}) = \lim_{\substack{\to \ \phi: F_k \to \Gamma_n}} E_{n,k}$$

•
$$\mathcal{H} \to \mathcal{G} \Rightarrow E_n(\mathcal{G}) \to E_n(\mathcal{H})$$

•
$$E(\mathcal{G}) = \lim_{n \to \infty} E_n(\mathcal{G})$$

•
$$E_n(\mathcal{G})_{red} \hookrightarrow O(Z^1(\Gamma_n, \mathcal{G}))^{\mathcal{G}} = O(Z^1(\Gamma_n, \mathcal{G})//\mathcal{G})$$

Finiteness on the Galois side

Theorem ([DHKM])

The natural map $Z^1(\Gamma_n,\mathcal{G})//\mathcal{G} \to \mathcal{G}//\widetilde{Ad}(\mathcal{G})$ is finite

Finiteness on the Galois side

Theorem ([DHKM])

The natural map $Z^1(\Gamma_n,\mathcal{G})//\mathcal{G} \to \mathcal{G}//\widetilde{Ad}(\mathcal{G})$ is finite

Corollary ([DHKM])

The natural map $O(\mathcal{G}/|\widetilde{Ad}(\mathcal{G})) \to E_n(\mathcal{G})_{red}$ is finite

Finiteness on the Galois side

Theorem ([DHKM])

The natural map $Z^1(\Gamma_n,\mathcal{G})//\mathcal{G} \to \mathcal{G}//\widetilde{Ad}(\mathcal{G})$ is finite

Corollary ([DHKM])

The natural map $O(\mathcal{G}//\widetilde{Ad}(\mathcal{G})) \to E_n(\mathcal{G})_{red}$ is finite

Corollary ([DHKM])

For $\mathcal{H} < \mathcal{G}$ the map $E_n(\mathcal{G})_{red} \to E_n(\mathcal{H})_{red}$ is finite.

Finiteness on the Galois side

Theorem ([DHKM])

The natural map $Z^1(\Gamma_n,\mathcal{G})//\mathcal{G} \to \mathcal{G}//\widetilde{Ad}(\mathcal{G})$ is finite

Corollary ([DHKM])

The natural map $O(\mathcal{G}//\widetilde{Ad}(\mathcal{G})) \to E_n(\mathcal{G})_{red}$ is finite

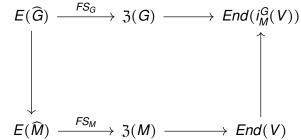
Corollary ([DHKM])

For $\mathcal{H} < \mathcal{G}$ the map $E_n(\mathcal{G})_{red} \to E_n(\mathcal{H})_{red}$ is finite.

$$\begin{array}{ccc} E_n(\mathcal{G})_{red} & \longrightarrow & E_n(\mathcal{H})_{red} \\ & & & \uparrow & \text{finite} \\ O(\mathcal{G}//\widetilde{Ad}(\mathcal{G})) & \xrightarrow{\textit{finite}} & O(\mathcal{H}//\widetilde{Ad}(\mathcal{H})) \end{array}$$

We have $E(\widehat{G}) \overset{FS_G}{\to} \mathfrak{Z}(G)$ s.t.

$$E(\widehat{G}) \overset{FS_G}{\to} \mathfrak{Z}(G)$$
 s.t. for any Levi $M < G$ and $V \in \mathcal{M}(M)$:



$$E(\widehat{G}) \stackrel{FS_G}{\to} \mathfrak{Z}(G)$$
 s.t. for any Levi $M < G$ and $V \in \mathcal{M}(M)$:

$$E(\widehat{G}) \xrightarrow{FS_G} \mathfrak{Z}(G) \longrightarrow End(i_M^G(V))$$

$$E(\widehat{M}) \xrightarrow{FS_M} \mathfrak{Z}(M) \xrightarrow{} End(V)$$

$$\uparrow \qquad \qquad \uparrow$$

$$E(\widehat{M}^{ab}) \xrightarrow{FS} \mathfrak{Z}(Z(M)^{\circ})$$

$$E(\widehat{G}) \overset{FS_G}{\to} \mathfrak{Z}(G)$$
 s.t. for any Levi $M < G$ and $V \in \mathcal{M}(M)$:

$$E(\widehat{G}) \xrightarrow{FS_G} \mathfrak{Z}(G) \longrightarrow End(i_M^G(V))$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$E(\widehat{M}) \xrightarrow{FS_M} \mathfrak{Z}(M) \longrightarrow End(V)$$

$$\uparrow \qquad \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$E(\widehat{M}^{ab}) \xrightarrow{\widetilde{FS_{Z(M)^\circ}}} \mathfrak{Z}(Z(M)^\circ)$$

$$E(\widehat{G}) \overset{FS_G}{\to} \mathfrak{Z}(G)$$
 s.t. for any Levi $M < G$ and $V \in \mathcal{M}(M)$:

$$E_{n}(\widehat{M})$$

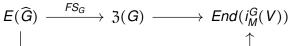
$$E(\widehat{M}) \xrightarrow{FS_{M}} 3(M) \longrightarrow End(V)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$E(\widehat{M}^{ab}) \xrightarrow{S} 3(Z(M)^{\circ})$$

We have

$$E(\widehat{G}) \overset{FS_G}{\to} \mathfrak{Z}(G)$$
 s.t. for any Levi $M < G$ and $V \in \mathcal{M}(M)$:



$$E_{n}(\widehat{M})$$

$$E(\widehat{M}) \xrightarrow{FS_{M}} 3(M) \longrightarrow End(V)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$E(\widehat{M}^{ab}) \xrightarrow{\widetilde{FS_{Z(M)^{\circ}}}} 3(Z(M)^{\circ})$$

For large enough n.

Theorem (Bernstein)

 $\mathfrak{Z}_{\mathbb{C}}(G)\cong\prod_{\beta\in\mathcal{B}}O_{\mathbb{C}}(T_{\beta}//W_{\beta})$

Theorem (Bernstein)

$$\mathfrak{Z}_{\mathbb{C}}(G)\cong\prod_{eta\in\mathcal{B}}O_{\mathbb{C}}(T_{eta}//W_{eta})$$

Corollary

 $\mathfrak{Z}_{\mathbb{C}}(\textit{G})$ is nilpotent free

Theorem (Bernstein)

$$\mathfrak{Z}_{\mathbb{C}}(G)\cong\prod_{\beta\in\mathcal{B}}O_{\mathbb{C}}(T_{\beta}//W_{\beta})$$

Corollary

 $\mathfrak{Z}_{\mathbb{C}}(\textit{G})$ is nilpotent free

Lemma

the natural map $i:\mathfrak{Z}_R(G) \to \mathfrak{Z}_{\bar{\mathbb{Q}}_\ell}(G)$ is an embeding

Theorem (Bernstein)

$$\mathfrak{Z}_{\mathbb{C}}(G)\cong\prod_{eta\in\mathcal{B}}O_{\mathbb{C}}(T_{eta}//W_{eta})$$

Corollary

 $\mathfrak{Z}_{\mathbb{C}}(\textit{G})$ is nilpotent free

Lemma

the natural map $i: \mathfrak{Z}_R(G) \to \mathfrak{Z}_{\bar{\mathbb{Q}}_\ell}(G)$ is an embeding

$$i(z) = 0$$

Theorem (Bernstein)

$$\mathfrak{Z}_{\mathbb{C}}(G)\cong\prod_{\beta\in\mathcal{B}}O_{\mathbb{C}}(T_{\beta}//W_{\beta})$$

Corollary

 $\mathfrak{Z}_{\mathbb{C}}(\textit{G})$ is nilpotent free

Lemma

the natural map $i:\mathfrak{Z}_R(G) o \mathfrak{Z}_{\bar{\mathbb{Q}}_\ell}(G)$ is an embeding

$$i(z) = 0 \Rightarrow z|_P = 0$$
 for projective P

Theorem (Bernstein)

$$\mathfrak{Z}_{\mathbb{C}}(G)\cong\prod_{\beta\in\mathcal{B}}O_{\mathbb{C}}(T_{\beta}//W_{\beta})$$

Corollary

 $\mathfrak{Z}_{\mathbb{C}}(\textit{G})$ is nilpotent free

Lemma

the natural map $i:\mathfrak{Z}_R(G) o \mathfrak{Z}_{\bar{\mathbb{Q}}_\ell}(G)$ is an embeding

$$i(z) = 0 \Rightarrow z|_P = 0$$
 for projective $P \Rightarrow z = 0$

Theorem (Bernstein)

$$\mathfrak{Z}_{\mathbb{C}}(G)\cong\prod_{eta\in\mathcal{B}}O_{\mathbb{C}}(T_{eta}//W_{eta})$$

Corollary

 $\mathfrak{Z}_{\mathbb{C}}(\textit{G})$ is nilpotent free

Lemma

the natural map $i: \mathfrak{Z}_R(G) \to \mathfrak{Z}_{\bar{\mathbb{Q}}_\ell}(G)$ is an embeding

Proof.

$$i(z) = 0 \Rightarrow z|_P = 0$$
 for projective $P \Rightarrow z = 0$

Corollary

 $\mathfrak{Z}_R(G)$ is nilpotent free

Theorem (Bernstein)

$$\mathfrak{Z}_{\mathbb{C}}(G)\cong\prod_{eta\in\mathcal{B}}O_{\mathbb{C}}(T_{eta}//W_{eta})$$

Corollary

 $\mathfrak{Z}_{\mathbb{C}}(G)$ is nilpotent free

Lemma

the natural map $i: \mathfrak{Z}_R(G) \to \mathfrak{Z}_{\bar{\mathbb{Q}}_\ell}(G)$ is an embeding

Proof.

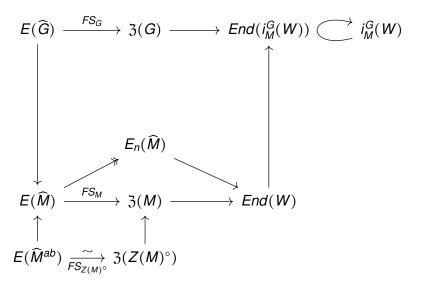
$$i(z) = 0 \Rightarrow z|_P = 0$$
 for projective $P \Rightarrow z = 0$

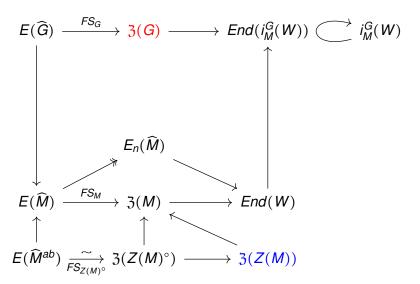
Corollary

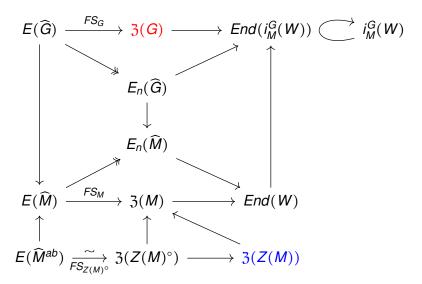
 $\mathfrak{Z}_{R}(G)$ is nilpotent free

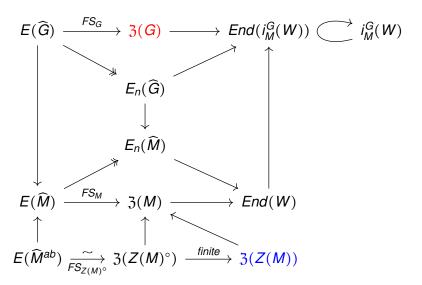
Corollary

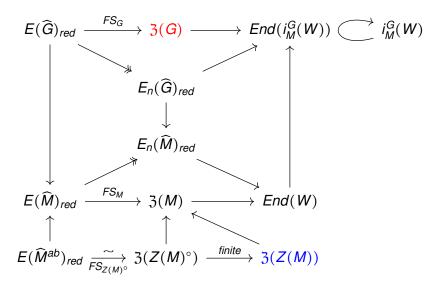
$$E(\widehat{G}) \xrightarrow{FS_R} \mathfrak{Z}_R(G)$$

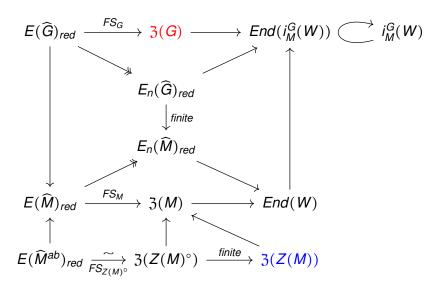


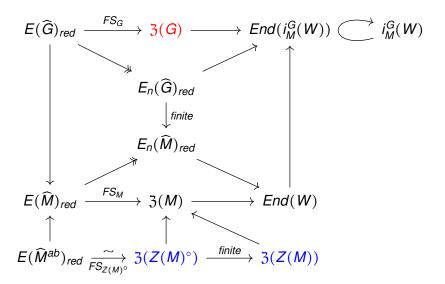


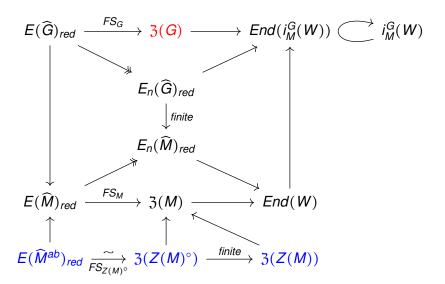


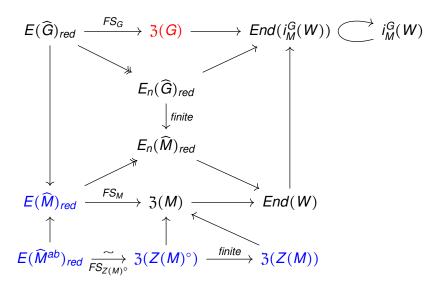


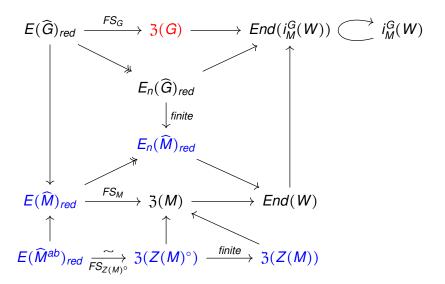


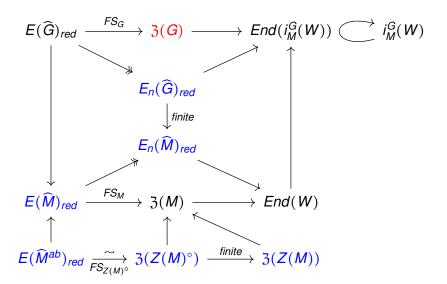


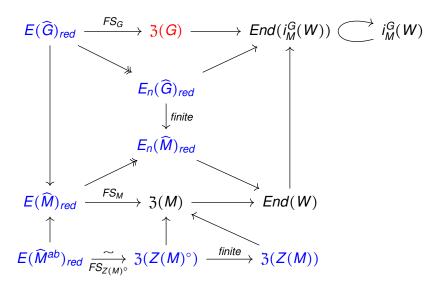


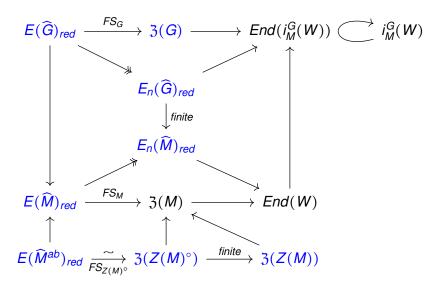












• f.g. compact \Rightarrow admissible.

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$

- f.g. compact ⇒ admissible.
- $\bullet \ \mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_M^G(\rho), \ \rho \in \operatorname{irr.cusp}(G)$

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_M^G(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- lacktriangle cuspidal \Leftrightarrow compact modulo the center.

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_M^G(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_M^G(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$
- a compact representation splits the category

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_{M}^{G}(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$
- a compact representation splits the category
- a cuspidal component splits the category

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_M^G(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$
- a compact representation splits the category
- a cuspidal component splits the category
- uniform admissibility

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_M^G(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$
- a compact representation splits the category
- a cuspidal component splits the category
- uniform admissibility
 - description $i_M^G(\rho)^K$

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_{M}^{G}(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$
- a compact representation splits the category
- a cuspidal component splits the category
- uniform admissibility
 - description $i_M^G(\rho)^K$
 - irreducible ⇒ admissible

- f.g. compact \Rightarrow admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_{M}^{G}(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$
- a compact representation splits the category
- a cuspidal component splits the category
- uniform admissibility
 - description $i_M^G(\rho)^K$
 - irreducible ⇒ admissible
 - $\mathcal{H}_K = \mathcal{H}_K(K_0)B\mathcal{H}_K(K_0)$

- f.g. compact \Rightarrow admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_M^G(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$
- a compact representation splits the category
- a cuspidal component splits the category
- uniform admissibility
 - description $i_M^G(\rho)^K$
 - irreducible ⇒ admissible
 - $\mathcal{H}_K = \mathcal{H}_K(K_0)B\mathcal{H}_K(K_0)$
 - Bounds on the dim. of a boundedly gen. com. sub-algebra of Mat_n

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_M^G(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$
- a compact representation splits the category
- a cuspidal component splits the category
- uniform admissibility
 - description $i_M^G(\rho)^K$
 - irreducible ⇒ admissible
 - $\mathcal{H}_K = \mathcal{H}_K(K_0)B\mathcal{H}_K(K_0)$
 - Bounds on the dim. of a boundedly gen. com. sub-algebra of Mat_n
- finitely many compact reps with K-fixed vectors.

- f.g. compact \Rightarrow admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_M^G(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$
- a compact representation splits the category
- a cuspidal component splits the category
- uniform admissibility
 - description $i_M^G(\rho)^K$
 - irreducible ⇒ admissible
 - $\mathcal{H}_K = \mathcal{H}_K(K_0)B\mathcal{H}_K(K_0)$
 - Bounds on the dim. of a boundedly gen. com. sub-algebra of Mat_n
- finitely many compact reps with *K*-fixed vectors.
- $\qquad \mathbf{\mathcal{M}} = \mathcal{M}_{\textit{cusp}} \oplus \mathcal{M}_{\textit{cusp}}^{\perp}$

- f.g. compact \Rightarrow admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_M^G(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$
- a compact representation splits the category
- a cuspidal component splits the category
- uniform admissibility
 - description $i_M^G(\rho)^K$
 - irreducible ⇒ admissible
 - $\mathcal{H}_K = \mathcal{H}_K(K_0)B\mathcal{H}_K(K_0)$
 - Bounds on the dim. of a boundedly gen. com. sub-algebra of Mat_n
- finitely many compact reps with K-fixed vectors.
- $\qquad \mathcal{M} = \mathcal{M}_{\textit{cusp}} \oplus \mathcal{M}_{\textit{cusp}}^{\perp}$
- $cusp(\pi) = \{(M, \rho) \in \Omega(G) | \rho \in JH(r_M^G(\rho))\}$

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_M^G(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$
- a compact representation splits the category
- a cuspidal component splits the category
- uniform admissibility
 - description $i_M^G(\rho)^K$
 - irreducible ⇒ admissible
 - $\bullet \ \mathcal{H}_K = \mathcal{H}_K(K_0)B\mathcal{H}_K(K_0)$
 - Bounds on the dim. of a boundedly gen. com. sub-algebra of Mat_n
- finitely many compact reps with K-fixed vectors.
- $cusp(\pi) = \{(M, \rho) \in \Omega(G) | \rho \in JH(r_M^G(\rho))\}$
- geometric lemma $\Rightarrow |cusp(\pi)| = 1$

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_M^G(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$
- a compact representation splits the category
- a cuspidal component splits the category
- uniform admissibility
 - description $i_M^G(\rho)^K$
 - irreducible ⇒ admissible
 - $\bullet \ \mathcal{H}_K = \mathcal{H}_K(K_0)B\mathcal{H}_K(K_0)$
 - Bounds on the dim. of a boundedly gen. com. sub-algebra of Mat_n
- finitely many compact reps with K-fixed vectors.
- $cusp(\pi) = \{(M, \rho) \in \Omega(G) | \rho \in JH(r_M^G(\rho))\}$
- geometric lemma $\Rightarrow |cusp(\pi)| = 1$
- if π admits Bernstein decomposition then so does any $\tau \subset \pi$.

- f.g. compact ⇒ admissible.
- $\mathfrak{Z}(G) = \{ \xi \in C^{-\infty}(G)^{ad(G)} : 1_K * \xi \in C_c^{\infty}(G) \}$
- r_M^G is exact and preserves f.g. $(K_0P = G)$
- $\pi \in \operatorname{irr}(G) \Rightarrow \pi \hookrightarrow i_M^G(\rho), \ \rho \in \operatorname{irr.cusp}(G)$
- cuspidal ⇔ compact modulo the center.
- separation lemma: $\mathcal{H}(G) \hookrightarrow \prod_{\pi \in irr(G)} End(\pi)$
- a compact representation splits the category
- a cuspidal component splits the category
- uniform admissibility
 - description $i_M^G(\rho)^K$
 - irreducible ⇒ admissible
 - $\bullet \ \mathcal{H}_K = \mathcal{H}_K(K_0)B\mathcal{H}_K(K_0)$
 - Bounds on the dim. of a boundedly gen. com. sub-algebra of Mat_n
- finitely many compact reps with K-fixed vectors.
- $cusp(\pi) = \{(M, \rho) \in \Omega(G) | \rho \in JH(r_M^G(\rho))\}$
- geometric lemma $\Rightarrow |cusp(\pi)| = 1$
- if π admits Bernstein decomposition then so does any $\tau \subset \pi$.
- $\pi \subset I(R(\pi)) \Rightarrow \text{Decomposition}$

• (uniform) stabilization for adm. reps: $\pi^K = Im(a_{\lambda}^{\infty}) \oplus Ker(a_{\lambda}^{\infty})$

- (uniform) stabilization for adm. reps: $\pi^K = Im(a_{\lambda}^{\infty}) \oplus Ker(a_{\lambda}^{\infty})$
- $(i_M^G(i_{M^{\circ}}^M(\rho)))^K$ is f.g. free over $\mathbb{C}[M/M^{\circ}]$

- (uniform) stabilization for adm. reps: $\pi^K = Im(a_{\lambda}^{\infty}) \oplus Ker(a_{\lambda}^{\infty})$
- $(i_M^G(i_{M^{\circ}}^M(\rho)))^K$ is f.g. free over $\mathbb{C}[M/M^{\circ}]$
- $i_M^G(\rho\chi)$ is irr. for generic χ

- (uniform) stabilization for adm. reps: $\pi^K = Im(a_{\lambda}^{\infty}) \oplus Ker(a_{\lambda}^{\infty})$
- $(i_M^G(i_{M^{\circ}}^M(\rho)))^K$ is f.g. free over $\mathbb{C}[M/M^{\circ}]$
- $i_M^G(\rho\chi)$ is irr. for generic χ
- (uniform) stabilization for $(i_M^G(i_{M^o}^M(\rho)))$

- (uniform) stabilization for adm. reps: $\pi^K = Im(a_{\lambda}^{\infty}) \oplus Ker(a_{\lambda}^{\infty})$
- $(i_M^G(i_{M^{\circ}}^M(\rho)))^K$ is f.g. free over $\mathbb{C}[M/M^{\circ}]$
- $i_M^G(\rho\chi)$ is irr. for generic χ
- (uniform) stabilization for $(i_M^G(i_{M^o}^M(\rho)))$
- (uniform) stabilization for $\mathcal{M}^{f.g.}$

- (uniform) stabilization for adm. reps: $\pi^K = Im(a_{\lambda}^{\infty}) \oplus Ker(a_{\lambda}^{\infty})$
- $(i_{M}^{G}(i_{M^{\circ}}^{M}(\rho)))^{K}$ is f.g. free over $\mathbb{C}[M/M^{\circ}]$
- $i_M^G(\rho\chi)$ is irr. for generic χ
- (uniform) stabilization for $(i_M^G(i_{M^o}^M(\rho)))$
- (uniform) stabilization for $\mathcal{M}^{f.g.}$
- Jacquet's lemma for $\mathcal{M}^{f.g.}$: Section for $p: V^K \to r_M^G(V)^{M \cap K}$

- (uniform) stabilization for adm. reps: $\pi^K = Im(a_{\lambda}^{\infty}) \oplus Ker(a_{\lambda}^{\infty})$
- $(i_M^G(i_{M^{\circ}}^M(\rho)))^K$ is f.g. free over $\mathbb{C}[M/M^{\circ}]$
- $i_M^G(\rho\chi)$ is irr. for generic χ
- (uniform) stabilization for $(i_M^G(i_{M^o}^M(\rho)))$
- (uniform) stabilization for $\mathcal{M}^{f.g.}$
- Jacquet's lemma for $\mathcal{M}^{f.g.}$: Section for $p: V^K \to r_M^G(V)^{M \cap K}$
- Casselman's pairing: $\widetilde{r_M^G(\pi)} \cong \overline{r_M^G(\tilde{\pi})}$

- (uniform) stabilization for adm. reps: $\pi^K = Im(a_{\lambda}^{\infty}) \oplus Ker(a_{\lambda}^{\infty})$
- $(i_M^G(i_{M^{\circ}}^M(\rho)))^K$ is f.g. free over $\mathbb{C}[M/M^{\circ}]$
- $i_M^G(\rho\chi)$ is irr. for generic χ
- (uniform) stabilization for $(i_M^G(i_{M^o}^M(\rho)))$
- (uniform) stabilization for $\mathcal{M}^{f.g.}$
- Jacquet's lemma for $\mathcal{M}^{f.g.}$: Section for $p: V^K \to r_M^G(V)^{M \cap K}$
- Casselman's pairing: $\widetilde{r_M^G(\pi)} \cong \overline{r_M^G(\tilde{\pi})}$
- 2nd adj. for duals: $Hom(i_M^G(\tau), \tilde{\pi})) \cong Hom(\tau, \bar{r}_M^G(\tilde{\pi}))$

- (uniform) stabilization for adm. reps: $\pi^K = Im(a_{\lambda}^{\infty}) \oplus Ker(a_{\lambda}^{\infty})$
- $(i_M^G(i_{M^{\circ}}^M(\rho)))^K$ is f.g. free over $\mathbb{C}[M/M^{\circ}]$
- $i_M^G(\rho\chi)$ is irr. for generic χ
- (uniform) stabilization for $(i_M^G(i_{M^o}^M(\rho)))$
- (uniform) stabilization for $\mathcal{M}^{f.g.}$
- Jacquet's lemma for $\mathcal{M}^{f.g.}$: Section for $p: V^K \to r_M^G(V)^{M \cap K}$
- Casselman's pairing: $\widetilde{r_M^G(\pi)} \cong \overline{r_M^G(\tilde{\pi})}$
- 2nd adj. for duals: $Hom(i_M^G(\tau), \tilde{\pi})) \cong Hom(\tau, \bar{r}_M^G(\tilde{\pi}))$
- 2nd adj.

- (uniform) stabilization for adm. reps: $\pi^K = Im(a_{\lambda}^{\infty}) \oplus Ker(a_{\lambda}^{\infty})$
- $(i_M^G(i_{M^{\circ}}^M(\rho)))^K$ is f.g. free over $\mathbb{C}[M/M^{\circ}]$
- $i_M^G(\rho\chi)$ is irr. for generic χ
- (uniform) stabilization for $(i_M^G(i_{M^o}^M(\rho)))$
- (uniform) stabilization for $\mathcal{M}^{f.g.}$
- Jacquet's lemma for $\mathcal{M}^{f.g.}$: Section for $p: V^K \to r_M^G(V)^{M \cap K}$
- Casselman's pairing: $\widetilde{r_M^G(\pi)} \cong \overline{r_M^G(\tilde{\pi})}$
- 2nd adj. for duals: $Hom(i_M^G(\tau), \tilde{\pi})) \cong Hom(\tau, \bar{r}_M^G(\tilde{\pi}))$
- 2nd adj.
- $(i_M^G(i_{M^{\circ}}^M(\rho)))$ are projective generators

- (uniform) stabilization for adm. reps: $\pi^K = Im(a_{\lambda}^{\infty}) \oplus Ker(a_{\lambda}^{\infty})$
- $(i_{M}^{G}(i_{M^{\circ}}^{M}(\rho)))^{K}$ is f.g. free over $\mathbb{C}[M/M^{\circ}]$
- $i_M^G(\rho\chi)$ is irr. for generic χ
- (uniform) stabilization for $(i_M^G(i_{M^o}^M(\rho)))$
- (uniform) stabilization for $\mathcal{M}^{f.g.}$
- Jacquet's lemma for $\mathcal{M}^{f.g.}$: Section for $p: V^K \to r_M^G(V)^{M \cap K}$
- Casselman's pairing: $\widetilde{r_M^G(\pi)} \cong \overline{r_M^G(\tilde{\pi})}$
- 2nd adj. for duals: $Hom(i_M^G(\tau), \tilde{\pi})) \cong Hom(\tau, \bar{r}_M^G(\tilde{\pi}))$
- 2nd adj.
- $(i_{M}^{G}(i_{M^{\circ}}^{M}(\rho)))$ are projective generators
- description of the center (in particular no nilpotents)

Models of cuspidal representations

Models of cuspidal representations – using matrix coefitients

- Models of cuspidal representations using matrix coefitients
- Models of projective generators

- Models of cuspidal representations using matrix coefitients
- Models of projective generators
- embeding $\pi \to \oplus i_{M_i}^G(ind_{M_i^\circ}^{M_i}\rho_i)$

• want to show: $Hom(\Gamma, G)//G \xrightarrow{finite} G//G$

- want to show: $Hom(\Gamma, G)//G \xrightarrow{finite} G//G$
- Twisted Chevalley (Gerstenhaber theorem): $N(T) \rightarrow G//G$

- want to show: $Hom(\Gamma, G)//G \xrightarrow{finite} G//G$
- Twisted Chevalley (Gerstenhaber theorem): $N(T) \rightarrow G//G$
- cancelation of dominant maps: $X \xrightarrow{\text{dominant}} Y \rightarrow Z$

- want to show: $Hom(\Gamma, G)//G \xrightarrow{finite} G//G$
- Twisted Chevalley (Gerstenhaber theorem): $N(T) \rightarrow G//G$
- cancelation of dominant maps: $X \xrightarrow{\text{dominant}} Y \rightarrow Z$
- dominance criterion: onto on level of \bar{k} -points.

- want to show: $Hom(\Gamma, G)//G \xrightarrow{finite} G//G$
- Twisted Chevalley (Gerstenhaber theorem): $N(T) \twoheadrightarrow G//G$
- cancelation of dominant maps: $X \xrightarrow{\text{dominant}} Y \rightarrow Z$
- dominance criterion: onto on level of \bar{k} -points.
- $x//G(\bar{k})$ = closed orbits

- want to show: $Hom(\Gamma, G)//G \xrightarrow{finite} G//G$
- Twisted Chevalley (Gerstenhaber theorem): $N(T) \rightarrow G//G$
- cancelation of dominant maps: $X \xrightarrow{\text{dominant}} Y \rightarrow Z$
- dominance criterion: onto on level of \bar{k} -points.
- $x//G(\bar{k})$ = closed orbits
- $H//H \rightarrow G//G$ is finite

- want to show: $Hom(\Gamma, G)//G \xrightarrow{finite} G//G$
- Twisted Chevalley (Gerstenhaber theorem): $N(T) \twoheadrightarrow G//G$
- cancelation of dominant maps: $X \xrightarrow{\text{dominant}} Y \rightarrow Z$
- dominance criterion: onto on level of \bar{k} -points.
- $x//G(\bar{k})$ = closed orbits
- $H//H \rightarrow G//G$ is finite
- handling extension.

- want to show: $Hom(\Gamma, G)//G \xrightarrow{finite} G//G$
- Twisted Chevalley (Gerstenhaber theorem): $N(T) \twoheadrightarrow G//G$
- cancelation of dominant maps: $X \xrightarrow{\text{dominant}} Y \rightarrow Z$
- dominance criterion: onto on level of \bar{k} -points.
- $x//G(\bar{k})$ = closed orbits
- $H//H \rightarrow G//G$ is finite
- handling extension.
- Hom(P, G)/G is finite and discrete

- want to show: $Hom(\Gamma, G)//G \xrightarrow{finite} G//G$
- Twisted Chevalley (Gerstenhaber theorem): $N(T) \twoheadrightarrow G//G$
- cancelation of dominant maps: $X \xrightarrow{\text{dominant}} Y \rightarrow Z$
- dominance criterion: onto on level of \bar{k} -points.
- $x//G(\bar{k})$ = closed orbits
- $H//H \rightarrow G//G$ is finite
- handling extension.
- Hom(P, G)/G is finite and discrete
- reduction to the case P = 1

- want to show: $Hom(\Gamma, G)//G \xrightarrow{finite} G//G$
- Twisted Chevalley (Gerstenhaber theorem): $N(T) \twoheadrightarrow G//G$
- cancelation of dominant maps: $X \xrightarrow{\text{dominant}} Y \rightarrow Z$
- dominance criterion: onto on level of \bar{k} -points.
- $x//G(\bar{k})$ = closed orbits
- $H//H \rightarrow G//G$ is finite
- handling extension.
- Hom(P, G)/G is finite and discrete
- reduction to the case P = 1
- reduction to the toric case (dominance statement)

- want to show: $Hom(\Gamma, G)//G \xrightarrow{finite} G//G$
- Twisted Chevalley (Gerstenhaber theorem): $N(T) \twoheadrightarrow G//G$
- cancelation of dominant maps: $X \xrightarrow{\text{dominant}} Y \rightarrow Z$
- dominance criterion: onto on level of \bar{k} -points.
- $x//G(\bar{k})$ = closed orbits
- $H//H \rightarrow G//G$ is finite
- handling extension.
- Hom(P, G)/G is finite and discrete
- reduction to the case P = 1
- reduction to the toric case (dominance statement)
- toric case

- want to show: $Hom(\Gamma, G)//G \xrightarrow{finite} G//G$
- Twisted Chevalley (Gerstenhaber theorem): $N(T) \twoheadrightarrow G//G$
- cancelation of dominant maps: $X \xrightarrow{\text{dominant}} Y \rightarrow Z$
- dominance criterion: onto on level of \bar{k} -points.
- $x//G(\bar{k})$ = closed orbits
- $H//H \rightarrow G//G$ is finite
- handling extension.
- Hom(P, G)/G is finite and discrete
- reduction to the case P = 1
- reduction to the toric case (dominance statement)
- toric case
- Corrollary: $Hom(\Gamma, H)//H \rightarrow Hom(\Gamma, G)//G$ is finite

• computation of \bar{k} -points $E_n(\bar{k})$ and $(Hom(\Gamma_n, G)//G)(\bar{k})$

- computation of \bar{k} -points $E_n(\bar{k})$ and $(Hom(\Gamma_n, G)//G)(\bar{k})$
- surjection (in fact bijection) on the level of \bar{k} -points: $(Hom(\Gamma_n, G)//G)(\bar{k}) \to E_n(\bar{k})$

- computation of \bar{k} -points $E_n(\bar{k})$ and $(Hom(\Gamma_n, G)//G)(\bar{k})$
- surjection (in fact bijection) on the level of \bar{k} -points: $(Hom(\Gamma_n, G)//G)(\bar{k}) \to E_n(\bar{k})$
- reduced Excursion Algebra imbeds into O(Hom(Γ, G)//G)

• Want to construct $E(\hat{G}) \rightarrow \mathfrak{Z}(\mathcal{C})$

- Want to construct $E(\hat{G}) \rightarrow \mathfrak{Z}(\mathcal{C})$
- enogh to construct $rep(\hat{G}^J) \to End(\mathcal{C})^{\Gamma^J}$ functoriali on J

- Want to construct $E(\hat{G}) \rightarrow \mathfrak{Z}(\mathcal{C})$
- enogh to construct $rep(\hat{G}^J) \to End(\mathcal{C})^{\Gamma^J}$ functoriali on J
- geometric Satake: $rep(\hat{G}) \cong Prev_{G_O}G_F$

- Want to construct $E(\hat{G}) \rightarrow \mathfrak{Z}(\mathcal{C})$
- enogh to construct $rep(\hat{G}^J) \to End(\mathcal{C})^{\Gamma^J}$ functoriali on J
- geometric Satake: $rep(\hat{G}) \cong Prev_{G_O}G_F$
- ullet geometrize ${\mathcal M}$ using FF curve