Finiteness for Hecke algebras of p-adic
groups.

A theorem by Jean-Francois Dat, David Helm, Robert
Kurinczuk, and Gilbert Moss
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R>Zyis aring. Fis alocal field of char. # /. Gis an
F-reductive group. K < G is an open compact.

Definition
HRr(G,K) = End(R[G/K]) 2 R[K\G/K]

Theorem ([DHKM])
Hr(G, K) is finite over its center which is R-f.g.

@ We can assume R = Z,(./p).
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The main Theorem is equivalent to the following one:
Theorem ([DHKM])

Any fg. Ve Mg(G) is 3(G) = 3r(G) := 3(MRg(Q))-finite.
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Let G be an R-group scheme
with a (finite) action of Galr.

1> P WO(F) - (f,s|fsf! = s9) > 1
P=Py> P> Py
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En(G) "=" O(Z'(Tn,9)//9)

Enk = O(Z'(Fk.6)%) = O(G")? = O(6"//9)
En(g) = ||_r)n En,k

®:Fg—Tn
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E(G) = lim En(G)

En(G)red = O(Z' (T, 6))9 = O(Z'(T1,6)//G)

Finiteness S/Al5!
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Theorem ([DHKM])

The natural map Z'(T',G)//G — G//Ad(G) is finite

Corollary ((DHKM])
The natural map O(G//Ad(G)) = En(G)red Is finite

Corollary ([DHKM])
ForH < G the map En(G)req = En(H) req IS finite.

En(G)red —— En(H)rea

T Tfinite

O(G//Ad(G)) ™, O(#//Ad(H))

O

= g - - =
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We hal\:/Se
E(G) =° 3(G) s.t. for any Levi M < G and V € M(M): @
E(@) —° 5 3(G) — End(iS(V)) f

En(M)

l / T~

E(M) — 3(M) —— End(V)
E(M3b) F&ﬁ) 3(Z(M)°)

For large enough n.
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@ f.g. compact = admissible.
3(G) = {¢e C=(G)™ P 1k« £ e CT(G)}
ri is exact and preserves f.g. (KoP = G)
meirr(G) = 7 = i3(p), p € irr.cusp(G)
cuspidal < compact modulo the center.
separation lemma: H(G) < I cin(g) ENA()
a compact representation splits the category
a cuspidal component splits the category
uniform admissibility
@ description iS(p)¥
@ irreducible = admissible
@ Hg= HK(K())BHK(K())
@ Bounds on the dim. of a boundedly gen. com. sub-algebra of Mat,
finitely many compact reps with K-fixed vectors.
M = Meusp @ Meysp
cusp(r) = {(M. p) € Q(G)|p « JH(r§(p))}
geometric lemma = |cusp(r)| = 1
if = admits Bernstein decomposition then so does any 7 c 7.
m c I(R(m)) = Decomposition
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second adjointness

@ (uniform) stabilization for adm. reps:
™™ = Im(ay) @ Ker(ay)
o (iG(iM (p)))Kis f.g. free over C[M/M°]
e i8(px) is irr. for generic x
@ (uniform) stabilization for (iG(iM.(p)))
@ (uniform) stabilization for M9
@ Jacquet's lemma for M"9-: Section for p: VK — rG(v)Mnk
@ Casselman’s pairing: % = 7G(7)
@ 2nd adj. for duals: Hom(iS(7),#)) = Hom(r,75(%))
@ 2nd adj.
e (iS(iM (p))) are projective generators
@ description of the center (in particular no nilpotents)
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Models of representations

@ Models of cuspidal representations — using matrix
coefitients

@ Models of projective generators
@ embeding ™ - @ iﬁi(indﬂépi)
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Galois finithess

want to show: Hom(r, G)//G TN, G//G
Twisted Chevalley (Gerstenhaber theorem): N(T) - G//G

cancelation of dominant maps: X M Y->Z

dominance criterion: onto on level of k-points.
x//G(k) = closed orbits

H//H - G//Gis finite

handling extension.

Hom(P, G)/G is finite and discrete

reduction to the case P =1

reduction to the toric case (dominance statement)
toric case

Corrollary: Hom(I',H)//H — Hom(T', G)//G is finite
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Excursion Algebra E, vs. O(Hom(T ,, G)//G)

@ computation of k-points E,(k) and (Hom(T ', G)//G)(k)

@ surjection (in fact bijection) on the level of k-points:
(Hom(Tn, G)//G)(K) — En(k)
@ reduced Excursion Algebra imbeds into O(Hom(T", G)//G)
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FS Theory

@ Want to construct E(G) - 3(C)

@ enogh to construct rep(G”) — End(C)rJ functoriali on J
@ geometric Satake: rep(G) = Prevg, Gr

@ geometrize M using FF curve
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