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A cancer derives from a clone of somatic cells that has escaped 
from the built-in constraints governing healthy cellular function, leading to 
uncontrolled proliferation, tissue invasion, immune evasion, and the reshap-

ing of the local tissue microenvironment.1 Many of these cellular properties arise 
from somatic mutations that accumulated in the cancer clone throughout life. Mod-
ern DNA sequencing methods have enabled complete genomic characterization of 
cancers on an unprecedented scale, leading initially to an improved understanding 
of cancer biology and, more recently, to clinical applications. These include im-
provements in cancer diagnosis and prognosis, identification of new therapeutic 
targets, decision support for therapeutic choices, and applications in disease moni-
toring. In this review, we explore what we have learned from systematic sequencing 
of cancer genomes. We discuss the current and potential future clinical applications 
of genome sequencing and reflect on both the promise and challenges around large-
scale integration of genome sequencing into precision cancer medicine (see video).

Massively parallel DNA sequencing methods, also called “next-generation sequenc-
ing,” enable the simultaneous analysis of millions of fragments of DNA. A sample 
from a patient’s tumor can be sequenced alongside a sample of normal tissue, 
usually blood, from the same patient, allowing genetic variants to be identified and 
classified as either somatic mutations, found only in the tumor sample, or inherited 
(germline) polymorphisms, also present in the normal sample. Proof-of-principle 
studies showed the feasibility of identifying all somatic mutations acquired by the 
cancer clone.2-4 These studies have now been followed by analyses of data from tens 
of thousands of patients,5 generating wide-ranging insights into cancer biology 
(Fig. 1).

Initial clinical implementation of massively parallel sequencing has typically in-
volved so-called targeted sequencing, selecting either for the approximately 300 to 
600 genes known to cause cancer or for all protein-coding genes, which account 
for approximately 1% of the genome. The main advantages of targeted sequencing 
are lower costs and deeper analysis of specific regions of the genome known to be 
most important for cancer biology. However, as costs of sequencing further de-
crease, sequencing of the entire 3 billion base pairs of the genome will probably 
emerge as the standard, since this would make it possible to identify all types of 
mutation in all regions of the genome.6

Biol o gic a nd Clinic a l Insigh t s from C a ncer Genomes

Somatic Mutations That Drive Cancer

Among the thousands of somatic mutations acquired by a cancer cell, growing evi-
dence suggests that only a handful actually instruct the cell to function as an autono-
mous clone — these we call driver mutations. The remaining mutations are termed 
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“passenger” mutations, acquired by the clone be-
fore the first driver mutations arose or during or 
after its subsequent transformation. Driver mu-
tations can take many forms, including substitu-
tions of one base of DNA for another, insertions 
or deletions of small numbers of DNA bases, gains 
or losses of large chromosomal regions or even 
whole chromosomes, and rearrangements that 
fuse one gene to another or juxtapose one gene 
with the regulatory apparatus of another. Even 
though the protein-coding content of the human 
genome is only 1%, the vast majority of driver mu-
tations fall within this portion, with approximately 
300 to 600 of the more than 20,000 protein-
coding genes being targets for driver muta-
tions.7-11 A few driver point mutations in non–pro-
tein-coding regions of the genome have been 
identified,12-16 but with less frequency than pro-
tein-coding drivers.17,18

Although we have an increasingly complete 
catalogue of cancer genes affected by driver point 
mutations, gene fusions, and simple chromosomal 
rearrangements, understanding how to interpret 
large-scale complex chromosome rearrangements 
is more difficult. Such changes can affect multi-
ple genes simultaneously, and it is likely that 
their oncogenicity arises from an aggregate ex-
cess of cancer-promoting over cancer-suppress-
ing alterations.11,19 Driver mutations tend to ac-
cumulate gradually over time, with a cancer often 
requiring decades to acquire the full complement 
of cooperating events.

Because driver mutations are causative, drugs 
that target the function of resulting proteins can 
be therapeutic. For example, imatinib targets 
the BCR–ABL fusion protein in chronic myeloid 
leukemias.20 The development of imatinib was 
followed by the development of BRAF inhibitors 
for BRAF-mutant melanoma,21 EGFR inhibitors for 
non–small-cell lung cancers,22,23 anaplastic lym-

Figure 1. Insights from Studying the Cancer Genome.

Sequencing a patient’s cancer provides insights into 
many facets of tumor biology. These include features 
acquired as somatic alterations by the cancer clone, 
such as driver mutations, large-scale chromosomal ab-
normalities, and mutations recognized by the immune 
system (neoantigens). In addition, inherited factors 
can also be assessed, such as familial cancer risk and 
variants affecting the metabolism of therapeutic 
agents used to treat cancers.
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phoma kinase (ALK) inhibitors for lung cancers 
with ALK fusions,24 and anti–human epidermal 
growth factor receptor 2 (HER2) antibodies for 
HER2-amplified breast cancers.25 All these thera-
pies can block the impetus of a cancer at its source.

Mutational Processes in Cancer

Somatic mutation can arise from both endoge-
nous and exogenous mutational processes. Exog-
enous mutagens include chemicals (e.g., tobacco, 
aflatoxin B1, and chemotherapeutic agents), ion-
izing radiation, and ultraviolet light, all of which 
damage DNA, generating mutations when dam-
aged bases are incorrectly repaired or copied. 
Mutations can also arise from cell-intrinsic pro-
cesses, such as errors that occur during DNA 
replication, reactive oxygen species, impaired DNA 
repair, and the activity of viruses. Many of these 
cell-intrinsic processes occur at a constant rate 
throughout life, leading to linear accumulation 
of mutations with increasing age.26,27

DNA damage arising from mutational pro-
cesses often enriches in particular DNA sequenc-
es, creating distinctive signatures in the cancer 
genome.28,29 More than 30 such signatures have 
been identified — some understood, some mys-
terious.29 These mutational signatures can spec-
ify whether a lung cancer came from a tobacco 
smoker or nonsmoker,30 whether a hepatocellular 
carcinoma arose through exposure to the car-
cinogen aflatoxin B1,

31 how ultraviolet light has 
shaped a melanoma,32 and whether mutations in 
BRCA1 or BRCA2 caused an ovarian cancer.33,34 Be-
yond point mutations, there are also many signa-
tures of large-scale chromosomal abnormalities, 
again arising from a mix of external and endog-
enous processes.35-40

Clinically, mutational signatures can aid ther-
apeutic decision making. A deficiency in mis-
match repair massively increases mutation rates, 
generating variants recognized by the immune 
system. As a result, these tumors, which have 
characteristic mutational signatures,29 can have 
impressive responses to immunotherapy.41 A defi-
ciency in homologous recombination through loss 
of BRCA1 or BRCA2 causes cancer cells to become 
dependent on other DNA repair pathways, lead-
ing to distinctive mutational signatures33,34 and 
vulnerability to inhibition of those other repair 
pathways.42 Poly(adenosine diphosphate–ribose) 
polymerase (PARP) inhibitors, which kill cells 

with DNA breaks, have activity in breast, ovarian, 
and pancreatic cancers among carriers of BRCA1 
or BRCA2 mutations.43-45 Mutational signatures of 
homologous recombination deficiency are seen 
in these tumor types beyond those with loss of 
BRCA1 or BRCA2,33,34,46 which suggests that other 
patients may also benefit from such therapy.

Tumor History and Intratumor 
Heterogeneity

Within individual tumors, substantial genomic 
diversity exists among the cells, resulting from 
ongoing mutational processes and Darwinian 
selection for fitter subclones of tumor cells. 
Clonal structures of tumors can be reconstruct-
ed with the use of genome sequencing.47-51 Some 
tumor types, such as clear-cell renal cancer48,52-54 
and colorectal cancer,55,56 acquire driver muta-
tions in a particular order, whereas others, such 
as breast57,58 and lung59,60 cancers, show multiple 
routes of evolution. Metastasis, when it occurs, 
typically arises through dissemination late in 
the evolution of the primary tumor.49,53,61-63

How to use information about the clonal di-
versity of a cancer in clinical practice remains 
uncertain. Different regions of a primary tumor 
— or, indeed, metastatic deposits — may harbor 
different driver mutations, which complicates 
therapeutic decision making.48,61 Proof-of-princi-
ple studies have shown that tumors with higher 
subclonal diversity are associated with a worse 
prognosis,54,59,64 and driver mutations can change 
the prognosis even when they represent a small 
proportion of tumor cells.65 An important ap-
plication will be the prediction of the likelihood 
that a cancer harbors a drug-resistant subclone; 
such predictions would be facilitated by serial 
monitoring of tumors. Mutations conferring drug 
resistance often predate targeted therapy.66-68 For 
example, minor clones in blood with TP53 driver 
mutations can expand after chemotherapy to 
seed therapy-related leukemia.68

Neoantigens in Cancer

Our immune system is actively engaged in sur-
veillance to protect against tumor development. 
Somatic mutations within a cancer result in the 
generation of new peptides, termed neoantigens, 
that can be recognized as “nonself” by the im-
mune system. As might be expected, the neoanti-
gen load is higher in tumors with a higher mu-
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tational burden,69,70 and evidence is increasing that 
tumors with an elevated neoantigen load respond 
better to immunotherapy.41,69,71 Improved charac-
terization of neoantigens in cancer is shaping 
how we use immune-checkpoint inhibitors and 
is refining other forms of immunotherapy, such 
as chimeric antigen receptor T cells72 and cancer 
vaccines that explicitly target neoantigens.73

 Opport uni ties for Genome 
Sequencing ov er a Patien t ’s 

Life time

The causal role that mutation plays in cancer biol-
ogy means that sequencing the genome offers op-

portunities to shape cancer therapy at multiple 
time points during a patient’s care pathway (Fig. 2).

 Predicting Future Risk of Cancer from the 
Germline Genome

The inherited (germline) genome can be inter-
rogated at any stage of life, enabling prediction 
of a person’s risk of having a cancer in the future. 
Currently, screening for high-penetrance inher-
ited variants is undertaken in families with clus-
ters of particular tumor types, with more than 
100 high-penetrance cancer-predisposition genes 
known.74 Many cause specific tumor syndromes, 
such as VHL mutations driving hemangioblasto-
mas and renal cancers,75 but many high-penetrance 

Figure 2. Genome Sequencing Opportunities for Cancer Management.

A cancer can trace its lineage back through a series of cell divisions to the fertilized egg. Genome sequencing has the potential to influ-
ence cancer-management strategies at many stages of this gradual process of transformation to cancer. These include public health ini-
tiatives to prevent cancer, early intervention before a cancer becomes invasive, and strategies for the diagnosis, classification, treatment 
decision support, and monitoring of established cancers.
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germline variants increase the risk of a broader 
range of cancers than classically described.76

High-penetrance pathogenic variants are 
found in 5 to 10% of unselected patients with 
cancer,76 but most inherited predisposition can 
be attributed to thousands of alleles commonly 
present within the population that individually 
provide only a slightly increased risk of cancer. 
The best-characterized cancers now have more 
than 100 genomic regions associated with risk, 
accounting for more than 15 to 20% of familial 
relative risk.77,78 Polygenic risk scores for a given 
cancer can be calculated by aggregating these 
many low-penetrance variants, with persons in 
the top percentiles of risk nearing the relative 
risks associated with single high-penetrance 
genes.78 The germline genome can also be used 
to identify patients at risk for toxic effects from 
chemotherapy because of variation in drug-me-
tabolizing enzymes.79

Knowing that a patient has a high-penetrance 
variant will typically trigger intensive screening 
programs, prophylactic surgery, or both — such 
strategies have improved outcomes in patients 
with Li–Fraumeni syndrome or inherited BRCA1 
or BRCA2, for example.80,81 The way in which 
polygenic risk scores should be incorporated 
into individualized cancer screening programs is 
less clear but will become increasingly impor-
tant to determine as direct-to-consumer germ-
line testing becomes widespread.

Epidemiology and Public Health

That mutational signatures can act as a finger-
print for exogenous carcinogens82 heralds a new 
wave of “molecular epidemiology.” Incidence 
rates for many cancer types vary globally by or-
ders of magnitude, although the cause of this 
variability is unclear. Genomes of tumors from 
high-incidence and low-incidence regions may 
reveal occupational or lifestyle exposures respon-
sible for this variation. This potential is exempli-
fied by emerging data showing the effect of the 
mutagen aristolochic acid in regions with high 
incidences of renal tract and hepatic cancers. 
The aristolochia plant, from which aristolochic 
acid derives, is used as an herbal medicine, es-
pecially in East Asia, and grows wild along the 
Danube basin, where it contaminates wheat har-
vests.83 Most renal tumors in Romania84 and a 
large minority of liver and urinary tract cancers 
in East Asia85-87 have thousands of mutations 

with a mutational signature exactly replicated by 
exposing cells to aristolochic acid in vitro.82 Cou-
pled with epidemiologic data, the case for aristolo-
chic acid being a major causal agent of cancers 
in these regions is spurring public health initia-
tives to reduce exposure.

Stratification for Intervention  
at Premalignant Stages

Many cancers pass through recognizable early 
stages of disease — the aim of screening pro-
grams is to identify and treat such cancers be-
fore they become incurable. However, not all 
early-stage lesions will shorten a patient’s life, 
so there is a risk of overtreatment. Genome se-
quencing of early cancer lesions may help strat-
ify which lesions are likely to progress and 
which could be safely monitored without initial 
intervention. For example, approximately half of 
high-grade squamous dysplasias and carcinomas 
in situ of the bronchus progress to invasive carci-
noma, but a third spontaneously regress. Those 
that progress carry a higher mutation burden, 
more copy-number changes, and more driver 
mutations than those that regress,88 which sug-
gests that it may be possible to identify which 
lesions need early intervention. Similarly, ap-
proximately 10 to 20% of healthy persons older 
than 70 years of age have clones in their blood 
that have the first driver mutations of a myeloid 
cancer89-92 — integration of clinical, laboratory, 
and genomic features can suggest which of these 
patients are most likely to have progression to 
acute myeloid leukemia.93 Large-scale studies are 
under way to assess the predictive value of the 
genomic changes seen in other early neoplasms, 
such as Barrett’s esophagus,94 intermediate-risk 
prostate cancer,95 and breast ductal carcinoma in 
situ.57 These proof-of-principle studies, although 
not yet ready for clinical implementation, pres-
age an era of more personalized early interven-
tion for cancer.

Cancer Diagnosis

Certain somatic mutations are pathognomonic 
for specific cancers, which suggests that they can 
be used for diagnostic purposes. Clinical testing 
for such mutations is best exemplified in hemato-
oncology, in which identification of mutations 
such as the JAK2 V617F mutation or a BCR–ABL 
translocation in blood tests confirms an under-
lying myeloid neoplasm,96 thus simplifying diag-
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nostic pathways and often avoiding invasive bi-
opsy. For solid tumors, genome sequencing may 
facilitate interpretation of small presurgical biop-
sies, especially fine-needle aspirations in which 
histologic analysis may be inconclusive. For ex-
ample, gene sequencing of thyroid nodule speci-
mens obtained by fine-needle aspiration can 
distinguish benign from malignant nodules.97 
Genome sequencing may also identify the tissue 
of origin and potential therapeutic targets in 
carcinomas of unknown primary site,98 and algo-
rithms that incorporate patterns of driver muta-
tions and mutational signatures are increasingly 
accurate for this application.99

Tumor Classification

Classification systems strive to group cancers 
into categories, such that clear distinctions are 
defined between, and similarities are defined 
within, individual subgroups. In current clinical 
practice, tumors are classified according to tis-
sue of origin, histologic category, and stage — 
these classifications provide a universal lan-
guage for describing both an individual patient’s 
cancer and cohorts in clinical trials. As the cata-
logue of mutations driving common cancers reach-
es completion,5 we anticipate that cancers will re-
ceive a categorization according to their genomic 
features, alongside their histologic type and tu-
mor–node–metastasis stage.

Driver mutations do not assort randomly 
among patients with a particular tumor type, 
with some pairs of cancer genes tending to be 
comutated in the same samples and others almost 
never mutated together in the same patient.100 As a 
result, a tumor type can be compartmentalized 
such that driver mutations are most concordant 
among patients within each subgroup and dif-
ferent among subgroups. Such schemes are well 
advanced in blood cancers, such as acute myeloid 
leukemia65 and myeloproliferative neoplasms,101 
but are also emerging in solid tumors, such as 
breast cancer,102,103 medulloblastoma,104 and pan-
creatic cancer.46

A genomic classification has the advantage 
that it groups tumors on the basis of disease-
causing driver mutations and is thus inherently 
linked to disease biology, ensuring long-term 
stability and reproducibility of the classification. 
Patients with similar genomic features tend to 
have similar clinical features and therapeutic re-
sponses, evidenced by improved outcomes for 

PML–RARA–positive acute myeloid leukemia and 
HER2-positive breast cancer with therapies tar-
geting their defining driver mutations.105,106

Predicting Patient Outcome

Given their causative role in disease biology and 
the considerable variability in distribution among 
patients, driver mutations contain much informa-
tion about the future clinical course of a cancer. 
Much of this information is orthogonal to clini-
cal variables,65,101,103,107 and prognostic accuracy is 
therefore increased by combining clinical and 
genomic data. The prognostic associations of 
individual genes tend to be specific to particular 
tumor types, such as SF3B1 mutations conferring 
a good prognosis in myelodysplasia108 but a poor 
prognosis in chronic lymphocytic leukemia.14 
However, some general principles do emerge — 
for example, TP53 mutations typically worsen 
prognosis, genomic instability and extensive co-
py-number variation are usually associated with 
more aggressive or treatment-resistant tumors, 
and survival generally deteriorates with increas-
ing numbers of driver mutations.14,64,65,101,102,109-112

In current clinical practice, many treatment 
decisions are based on patients’ predicted out-
comes, whether that is judged according to 
stage, grade, or genetics: for example, decisions 
about whether to use adjuvant chemotherapy for 
colorectal cancer depending on stage, active sur-
veillance or surgery for localized prostate cancer 
depending on Gleason score, and stem-cell trans-
plantation or intensive chemotherapy for acute 
myeloid leukemia depending on whether high-
risk driver mutations are present. Estimating prog-
nosis underpins these therapeutic choices because 
of the implicit calculation about whether the im-
provement in prognosis justifies the increased risks 
of toxic effects from more intensive treatment.

Genome sequencing facilitates prognostic es-
timates that are personally tailored to the indi-
vidual patient. Such estimates will depend on 
building “knowledge banks” comprising individ-
ual patient data from large cohorts and encom-
passing molecular profiling, clinical variables, 
histologic analysis, and staging, coupled with 
treatment and outcome data.65,93,101,103,107 Beyond 
a one-dimensional prediction of survival proba-
bility, such personally tailored predictions can 
assign probabilities to different clinical jour-
neys, such as distant relapse, locoregional re-
lapse, or disease-free survival in patients with 
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breast cancer103 and leukemic transformation or 
long-term survival in patients with myeloprolif-
erative neoplasms.101 Such information is par-
ticularly useful in decisions about treatment in-
tensity — allogeneic stem-cell transplantation in 
acute myeloid leukemia, for example, can be of-
fered more cost-efficiently to those most likely to 
benefit if genomics-based precision prognoses 
are used.107

Precision Cancer Treatment

The identification of specific genetic alterations 
in tumors has helped develop and guide therapy. 
Tyrosine kinase inhibitors targeting the BCR–
ABL1 fusion protein dramatically improve sur-
vival in patients with chronic myeloid leukemia.20 
Vemurafenib, an inhibitor of BRAF, frequently 
mutated in melanoma, has shown impressive re-
sponses in patients with metastatic melanoma,21 
although the responses are often transient ow-
ing to the emergence of resistant subclones. 
Resistance is a theme that emerges repeatedly in 
the field of targeted therapeutics and is medi-
ated by a range of mechanisms, including muta-
tions that abrogate binding of the small-mole-
cule inhibitor,113 acquired mutations in the same 
signaling pathway that bypass the drugged pro-
tein,114,115 mutations that activate alternative pro-
liferative signaling pathways,116 and maintenance 
of a population of quiescent cells with epige-
netically determined drug tolerance.117 Knowing 
the likely mechanisms of resistance can enable 
preemptive therapy, evidenced by more durable 
responses of metastatic melanoma to combination 
therapy with BRAF inhibitors and inhibitors of 
MEK1 and MEK2.118

Despite the promise of targeted therapies, 
most cancer genomes do not have driver muta-
tions for which a molecularly targeted agent is 
licensed.10 Some tumor types, such as mesothe-
lioma119 and clear-cell renal carcinoma,120 are 
dominated by driver mutations that inactivate 
genes, a notoriously difficult scenario for develop-
ing targeted therapeutics. Attacking such tumors 
relies on finding their specific vulnerabilities: 
high-throughput in vitro screens of drug libraries 
and genome editing are revealing unsuspected 
dependencies of cancers on particular genes that 
could be exploited therapeutically.121-123

New approaches in clinical-trial design — such 
as basket and umbrella studies, in which patients 
are directed to different therapies by virtue of 

the driver mutations of their cancers — have 
shown some occasional successes but overall have 
been disappointing.124 However, thus far, such 
studies have involved relatively small cohorts,125-128 
and the clinical usefulness of genome-guided 
therapeutic choices remains unproven beyond 
specific indications such as those described above.

Cancer Monitoring

Of course, hematopoietic tumors can be detect-
ed directly in blood. In addition, many solid tu-
mors shed fragments of their genome into the 
bloodstream,129,130 as so-called circulating tumor 
DNA. This shedding is roughly proportional to 
tumor bulk, allowing both detection and quan-
tification of tumor-specific mutations in plasma 
samples. Methods for quantifying known point 
mutations131-133 and genomic rearrangements134,135 
present in the cancer enable early detection of 
relapsing clones, often months before clinical 
detection. Direct sequencing of plasma DNA 
may also identify clonal evolution and the emer-
gence of resistance mutations while tumors are 
still in a state of minimal residual disease.66,67

Monitoring of tumor-specific genomic rear-
rangements is a cornerstone of precision therapy 
for hematologic cancers, enabling early intensi-
fication of therapy in patients with acute lym-
phoblastic leukemia that responds poorly to 
treatment136 or the switching of therapy for ris-
ing BCR–ABL levels in patients with chronic my-
eloid leukemia.137 Clinical trials have established 
the appropriate treatment paradigms with this 
molecular monitoring, and analogous trials will 
clarify the role of plasma DNA monitoring in the 
care of patients with solid tumors.

Per sona liz ation  
of C a ncer C a r e Path wa ys

Currently, patient access to modern genomics is 
patchy across regions and countries, but as pro-
tocols for sample processing and data analysis 
become established, access will broaden. The 
debate about testing of gene panels as compared 
with whole-genome sequencing is transient and 
distracting — ultimately, there is little doubt 
that we will be sequencing whole genomes, and 
we should be building the logistic infrastructure 
to handle this in our health systems. This would 
have the added benefit of replacing many stand-
alone tests used across cancer diagnostics that 
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Figure 3. Future Cancer Genomics Report.
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acute myeloid leukemia (AML) at 10 years.
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are separately developed, maintained, and stan-
dardized.

Imagining this empyrean of genomics in clini-
cal oncology, we have mocked up a future diag-
nostic report of the genome from one of our pa-
tients with a myeloproliferative neoplasm (Fig. 3). 
Such reports will probably have an overall sum-
mary page with high-level interpretative content, 
linking out to supporting data and evidence. 
Maximizing the usefulness of these reports will 
require much supporting infrastructure, includ-
ing the following:

A new generation of genomics scientists. These diag-
nostic laboratory scientists will understand tech-
nical aspects of genome sequencing and have 
fingertip access to databases containing genomic 
information.

Comprehensive quality-assurance and quality-improve-
ment programs. Sequencing, analyzing, and inter-
preting cancer genomes is hard, and there is 
considerable variability in outputs among current 
providers — variability that can be ameliorated 
with national quality-assessment programs.138

Phase 4 clinical trials. Pivotal, phase 3 random-
ized trials are not powered to detect gene-specif-
ic benefits of experimental therapeutics, and we 
should develop systems for collecting detailed 
genomic and clinical-outcome data from patients 
receiving drugs after licensing.

Frameworks for building and maintaining knowledge 
banks. The collection, aggregation, and sharing of 
data will require national or international initia-
tives to amass patient data from clinical care and 
innovation in data storage and access.

Development, testing, and continuous improvement 
of decision-support algorithms. Physicians intuitively 
integrate performance status, prognosis, and ther-
apeutic options for a given patient, a process that 
could be supported by accurate, up-to-date predic-
tions from knowledge banks containing data 
from similar patients.

An ethical framework for the sharing and protection of 
genomic data. Engagement with the public and 
patients will be required to ensure that data 
management occurs in a transparent and re-
sponsible manner that protects patients’ identity 
and respects individual wishes for privacy.

Nothing on this wish list is unachievable; 
indeed, state-of-the-art prototype programs are 
already operating on a regional or national scale 
and putting these building blocks in place. These 
programs have begun the process of transitioning 
cancer genomics from academia to a sustainable, 
routine, and, with time, universally accessible 
diagnostic test underpinning cancer care.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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