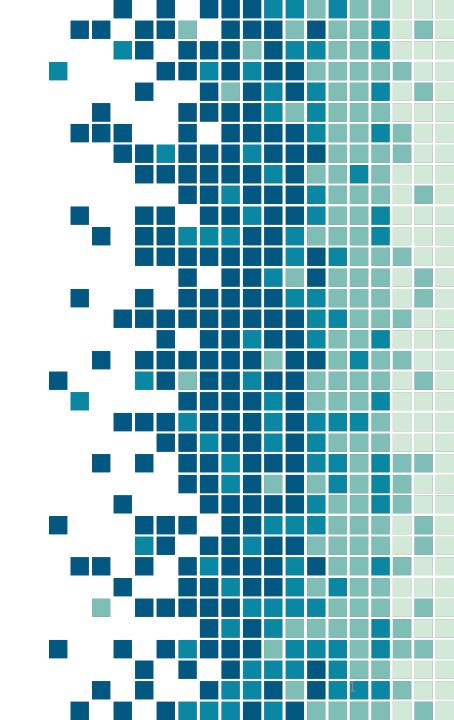
Al in Medicine: the Test Case of Ophthalmology

Prof. Itay Chowers, MD
Chairman, Department of Ophthalmology
Hadassah Medical Center



Take-Homes – Al and Medicine

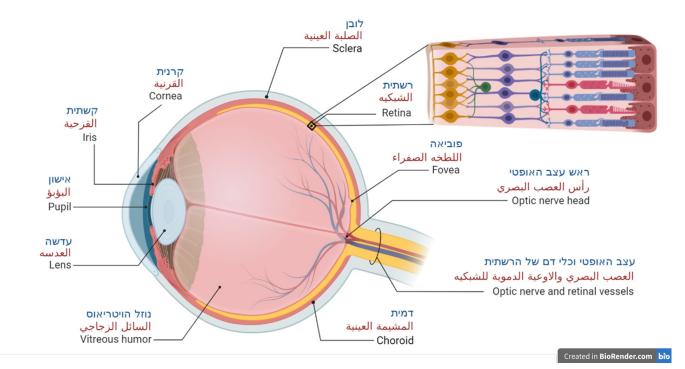
- New era
- Challenges for AI system development and integration
- Opportunities for:
 - Research
 - Entrepreneurship
 - Bringing value for our patients
- You can do it!

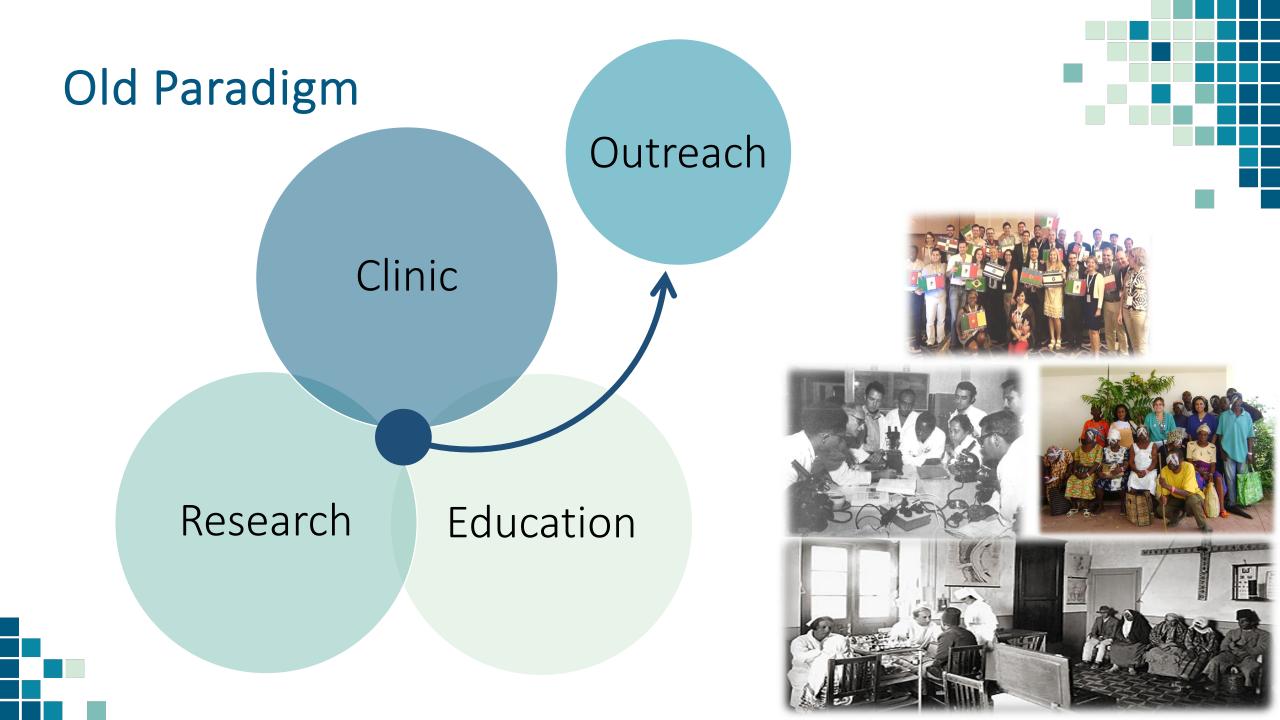
Talk Outline

- Introduction
- What is Ophthalmology
- "Classical ophthalmology"
- "The Times They Are A-Changin"
- Al tools in the clinic
- Development of new AI tools in Ophthalmology

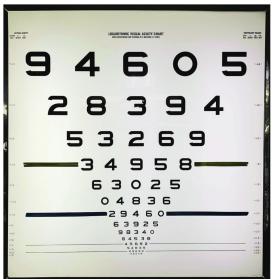
Ophthalmology

- Common diseases
- High impact (QUALY)
- Cutting-edge technologies (gene therapy, stem cells, AI)





"Classical Ophthalmology"



COMMENT

Deskilling in ophthalmology is the inevitable controllable?

Jaime Levy 101 · Alan Jotkowitz 2 · Itay Chowers 1

Received: 28 August 2018 / Accepted: 6 September 2018 / Published online: 24 October 2018 © The Royal College of Ophthalmologists 2018

The evolving art of medicine and the "problem" with technology

Medicine is an ever-changing art. The rate of change and its consequences bare important implications to patients and physicians alike. Ophthalmology is not an exception in that sense. Up until around the turn of the Millennium, an ophthalmologist had to develop diagnostic skills which were heavily dependent upon one's ability to identify correctly pathological findings. The ophthalmologist had then to determine the diagnosis and develop a treatment plan. These characteristics of the profession were similar in developed or developing countries. While major differences among such countries were availability of professionals and treatment equipment.

During the last few years, we have witnessed the increasing use of technology in the field of ophthalmology. Advances such as optical coherence tomography (OCT) and OCT-angiography, as well as sophisticated biometry and comea photography, have and are revolutionizing daily practice in ophthalmology clinics worldwide.

For example, OCT surrogate end-points and biomarkers are displacing other historical measurements such as visual acuity and clinical examination in clinical trials and it routine practice. The use of this new technology has busted the diagnostic accuracy of retinal diseases, but, it also created a whole host of new challenges, such as data storage, interpretation, learning, cost and maintenance. An additional problem is the fact that ophthalmologists in training who begin to examine patients and learn various pathologies, may be prone to diagnose, treat or

make decisions based solely on OCT and similar sophisticated technologies even without thoroughly examining the patient. In a short time, the "physical examination" of the patient can pass to the background or even to the dustbin history.

Deep learning

Deep learning algorithms applied to the field of the ophthalmology are bearing fruit. In the field of retina, deep learning builds upon the data generated by modern imaging modalities. Research on automatic detection of diabetes retinopathy, age-related macular degeneration (AMD), glaucoma, decision on whether to inject or not an eye with neovascular AMD, and many more, are appearing in the ophthalmological literature in recent years. The first system which autonomously screens diabetic patients for retinopathy was recently approved by the FDA. In other fields of medicine, such as radiology and pathology, which bear much resemblance to ophthalmology in which the diagnosis is visual and a large number of images must be reviewed to see if there is for example, a pulmonary embolus on computed tomography, an abnormal cell on the histological slide on minimal subretinal fluid on OCT, voices are emerging that advise specialists to become an "information specialist" to captain artificial intelligence and provide a better medical service [1].

Deskilling

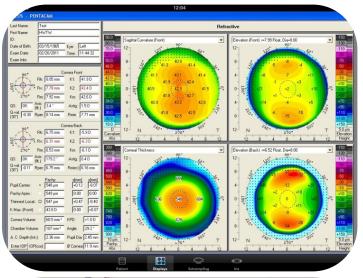
The origin of the term deskilling comes from Marx in the 19th century and the escalating labor force in factories, the decline of craft skills and its replacement with technological means [2]. Deskilling is the reduction of the level of skill required to complete a task when some or all components of the task are partly automated [3]. This process can affect physicians' ability to derive informed opinions on the basis of detectable signs, symptoms, and available data. Deskilling itself is rarely a problem; however, it becomes one if the technology fails or

[☑] Jaime Levy leviaime@gmail.com

Department of Ophthalmology, Hadassah Medical Center, and the Hebrew University-Hadassah School of Medicine, Jerusalem, Israel

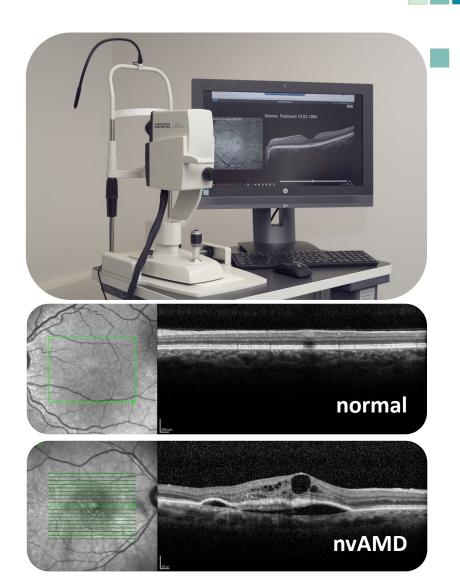
Department of Internal Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Current Practice



Optical Coherence Tomography

- Use light reflectance to illustrate structure
- Common use in Ophthalmology for retinal and anterior segment diseases
- Typical exam: 37-49 sections/eye
- Pt. often perform several OCT exams/year
- ~30 Million OCT exams performed worldwide every year (2017)



From: Foreword: 25 Years of Optical Coherence Tomography

Invest. Ophthalmol. Vis. Sci.. 2016;57(9):OCTi-OCTii. doi:10.1167/iovs.16-20269

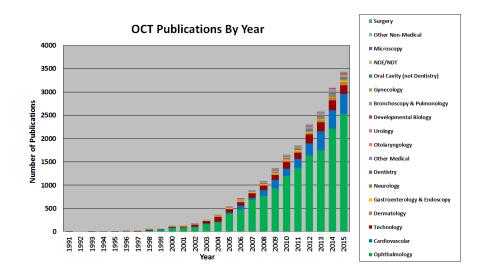
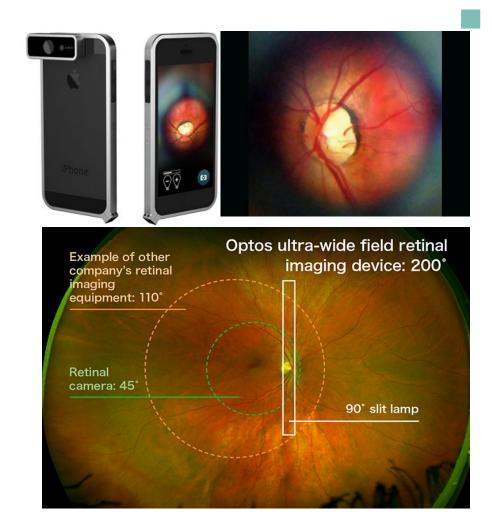


Figure Legend:

OCT publication volume according to research area. Ophthalmology has the largest volume of publications, attesting to the wide acceptance and impact of OCT in our field. OCT technology continues to make advances and applications in many medical specialities are being developed. Compiled from PubMed abstract search. Image courtesy of Eric Swanson, www.OCTNews.org.

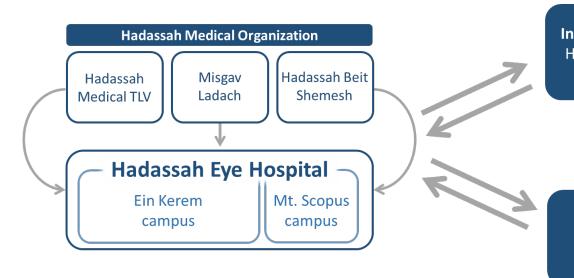
Color Fundus Photography

- Identify/document retinal findings-DR, AMD, retinal detachment, ROP
- Performed using variety of techniques
 - Conventional (30-60 degree)
 - Ultrawide field (200 degree)
 - Cell phone



Hadassah Ophthalmology

- Since 1918
- Time to modernize paradigms



Health maintenance organizations

and outreach

New Paradigm

Outreach

Innovation, tele-ophthalmology

Clinic

Al-based care

Research

Digital health, gene therapy

Education

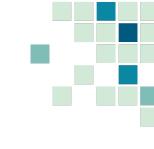
Online, simulators

Why We Need Al

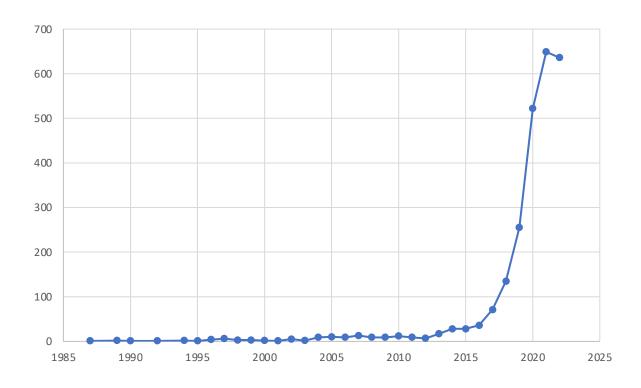
• Pt/MDs ratio

Changing Paradigms

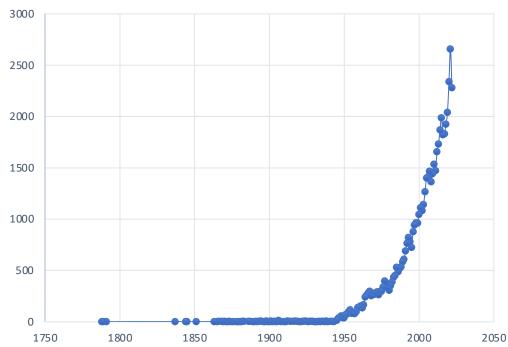
Publication in Ophthalmology Per Year



ΑI



Cataract Surgery



Al in Ophthalmology

Two main categories:

- Ophthalmic data analysis
- Ophthalmic image analysis
 - →Detection and grading of disease
 - → Automated image segmentation

Goals: Identify and predict

The AAO IRIS® Registry (Intelligent Research in Sight)

- World's largest specialty clinical data registry (Sept. 2020)
- De-identified data on over 349.37 million patient visits from 59.99 million unique patients
- Enables big-data studies

Al for Ophthalmic Image Analysis

- Input: color fundus images (Poplin et al., 2018)
- Predicted characteristics:
 - Age, gender, smoker/non-smoker,
 HbA1c, BMI, BP

nature biomedical engineering

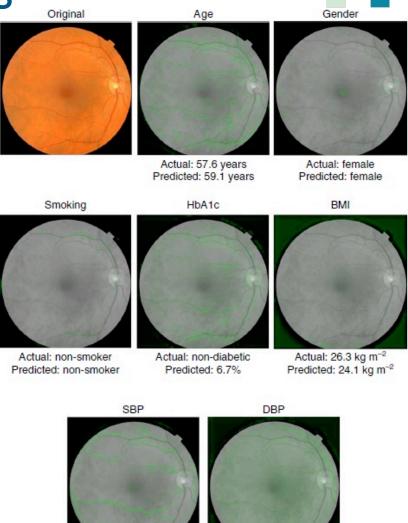
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning

Ryan Poplin^{1,4}, Avinash V. Varadarajan^{1,4}, Katy Blumer¹, Yun Liu¹, Michael V. McConnell^{2,3}, Greg S. Corrado¹, Lily Peng^{1,4*} and Dale R. Webster^{1,4}

Traditionally, medical discoveries are made by observing associations, making hypotheses from them and then designing and running experiments to test the hypotheses. However, with medical images, observing and quantifying associations can often be difficult because of the wide variety of features, patterns, colours, values and shapes that are present in real data. Here, we show that deep learning can extract new knowledge from retinal fundus images. Using deep-learning models trained on data from 284,335 patients and validated on two independent datasets of 12,026 and 999 patients, we predicted cardiovascular risk factors not previously thought to be present or quantifiable in retinal images, such as age (mean absolute error within 3.26 years), gender (area under the receiver operating characteristic curve (AUC) = 0.97), smoking status (AUC = 0.71), systolic blood pressure (mean absolute error within 11.23 mmHg) and major adverse cardiac events (AUC = 0.70). We also show that the trained deep-learning models used anatomical features, such as the optic disc or blood vessels, to generate each prediction.

Al for Ophthalmic Image Analysis

Characteristics	Development set		Clinical validation set		
	UK Biobank	EyePACS	UK Biobank	EyePACS-2K	
Number of patients	48,101	236,234	12,026	999	
Number of images	96,082	1,682,938	24,008	1,958	
Age: mean, years (s.d.)	56.8 (8.2), n=48,101	53.6 (11.6), n = 234,140	56.9 (8.2), n=12,026	54.9 (10.9), n=998	
Gender (% male)	44.9, n = 48,101	39.2, n=236,212	44.9, n=12,026	39.2, n=999	
Ethnicity	1.2% Black, 3.4% Asian/Pl, 90.6% White, 4.1% Other <i>n</i> = 47,785	4.9% Black, 5.5% Asian/Pl, 7.7% White, 58.1% Hispanic, 1.2% Native American, 1.7% Other n=186,816	1.3% Black, 3.6% Asian/Pl, 90.1% White, 4.2% Other n=11,926	6.4% Black, 5.7% Asian/Pl, 11.3% White, 57.2% Hispanic 0.7% Native American, 2% Other <i>n</i> =832	
BMI: mean (s.d.)	27.31 (4.78), n = 47,847	n/a	27.37 (4.79), n=11,966	n/a	
Systolic BP: Mean, mmHg (s.d.)	136.82 (18.41), n = 47,918	n/a	136.89 (18.3), n=11,990	n/a	
Diastolic BP: Mean, mmHg (s.d.)	81.78 (10.08), n = 47,918	n/a	81.76 (9.87), <i>n</i> = 11,990	n/a	
HbA1c: mean, % (s.d.)	n/a	8.23 (2.14), n=141,715	n/a	8.2 (2.13), n=737	
Current Smoker: %	9.53%, n=47,942	n/a	9.87%, n=11,990	n/a	



Actual: 148.5 mmHg

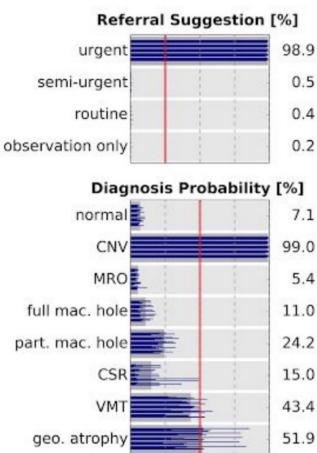
Predicted: 148.0 mmHg

Actual: 78.5 mmHg

Predicted: 86.6 mmHg

DeepMind (Google)

- Developing an AI product capable of diagnosing 50 retinal pathologies based on OCT scans
- Identify retinal diseases with 94% accuracy
- Referral suggestions on par with retinal experts
- Explanation of how decision was made no 'black box'

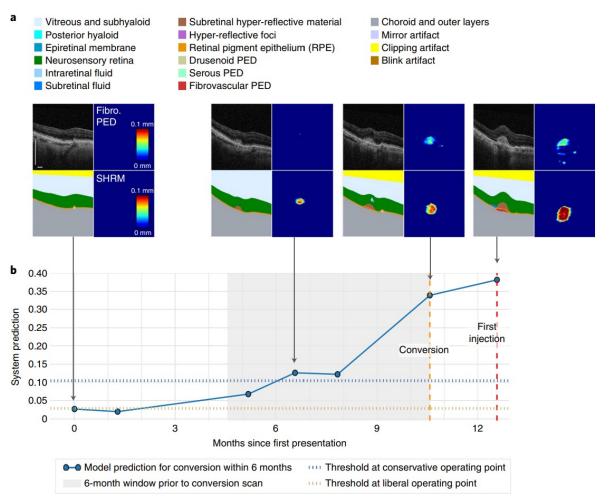


DeepMind (Google)

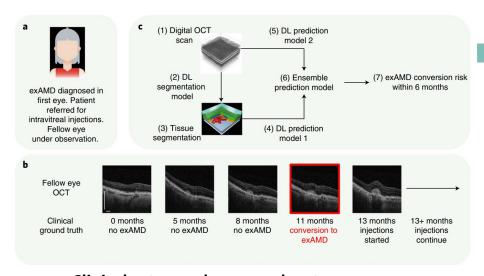
- Early warning system for conversion to nvAMD: OCT
 - → risk for nvAMD within 6 months
- Combined models based on 3D OCT and corresponding automatic tissue segmentation
- Automatic tissue segmentation identified anatomical changes before conversion
- Predicted better than five out of six experts

Predicting conversion to wet age-related macular degeneration using deep learning

DeepMind (Google)



Example of a correct prediction by the AI system



Clinical setup and proposed system

Predicting conversion to wet age-related macular degeneration using deep learning

Quantification of Atrophy

- Objective quantification of retinal atrophy associated with AMD
- Based on the classification of light scattering patterns with a custom column-based convolutional neural network (CNN)

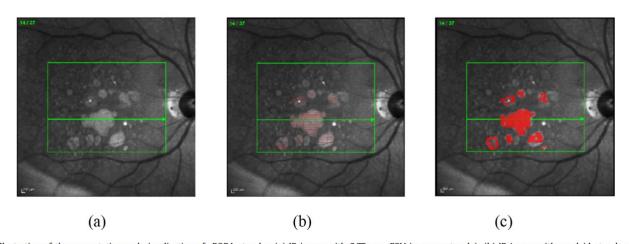
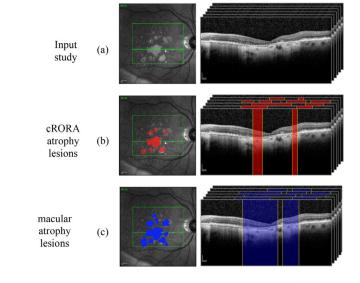


Fig. 3. Illustration of the computation and visualization of cRORA atrophy: (a) IR image with OCT scan FOV (green rectangle); (b) IR image with overlaid atrophy segments (red) identified in the OCT slices; (c) IR image with overlaid atrophy lesions segmentations (red).



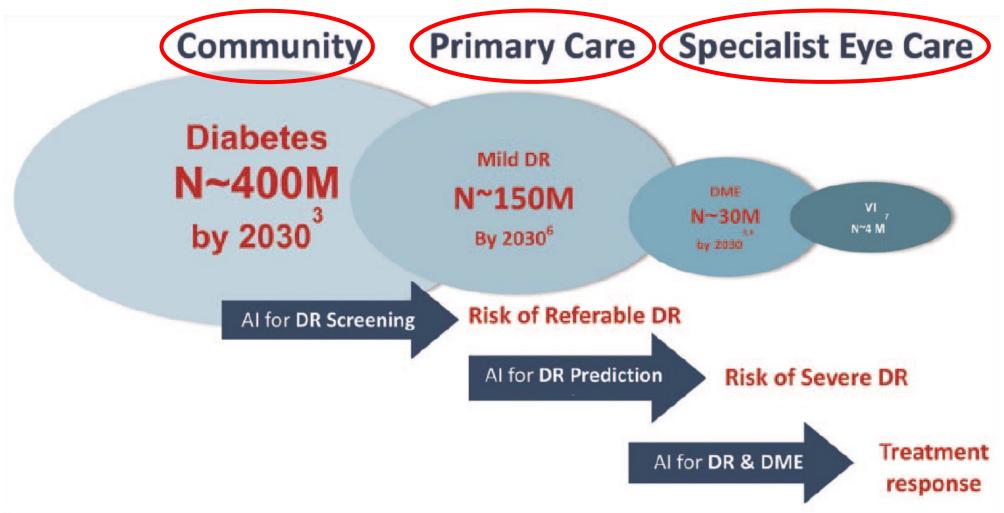
A column-based deep learning method for the detection and quantification of atrophy associated with AMD in OCT scans

Contents lists available at ScienceDirect

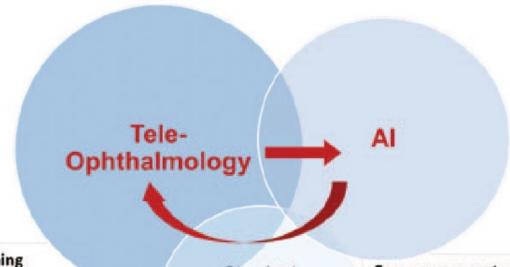
Medical Image Analysis
journal homepage: www.elsevier.com/locate/media

Adi Szeskin^a, Roei Yehuda^a, Or Shmueli^b, Jaime Levy^b, Leo Joskowicz^{a,*}

^aSchool of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel ^bDepartment of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel Al for DR screening, prediction and management



Key components for Al-assisted DR telescreening



Core components of DR tele-screening

- 1. Clearly defined public health gap
- Uses single modality fundus image with standard camera & IT infrastructure
- Diagnosis of DR requires no additional patient or clinical data
- 4. Robust outcome and cost-effective studies
- Impact of change: primary care providers, none for ophthalmologists

Standard fundus cameras

Simple IT architecture

Core components of AI assisted DR tele-screening

- Al is an incremental (not disruptive) technology if implemented as part of DR tele-screening model
- Single modality fundus image allows easier labelling and training of AI algorithm
- Availability of existing large and diverse "realworld" datasets to test AI algorithm
- 4. Clear pathway for regulatory (FDA, CE) approval
- 5. Impact of change: none for ophthalmologists

Curr Opin Ophthalmol 2020, 31:357–365

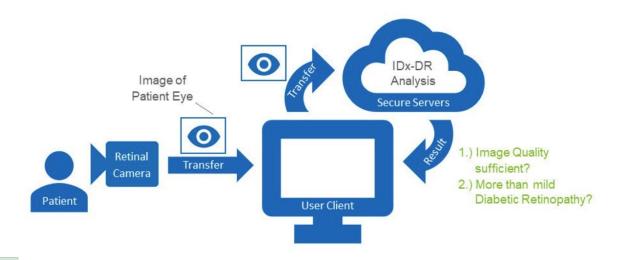
Summary of Al algorithms for DR screening

Study	Year	Al techniques	Dataset for development	Dataset for external test/validation	AUC	Sensitivity	Specificity
Abràmoff et al.	2016 [38] 2018 [21]	Ensemble of AlexNet & VGGNet	1748 Images	Primary care clinics: 819 patients Primary care clinics: 1616 patients	0.98 NR NR	96.8% 87.2% 100%	87.0% 90.7% 97.8%
Gulshan et al.	2016 [19] 2019 [42]	Inception-V3 Inception-V4	128 175 Images 103 634 Images	EyePACS-1: 9963 images Messidor-2: 1748 images South India: 3049 patients	99.1 99.0 96.3-98.0	97.5% 96.1% 88.9–92.1%	93.4% 93.9% 92.2–95.2%
Li et al.	2018 [37]	Inception V3	71 043 Images	3 Datasets: 35 201 images	95.5	92.5%	98.5%
Raumvib- oonsuk <i>et al.</i>	2019 [43]	Inception-V4	1665 151 Images	EyePACS-2: 1958 images	98.7	96.8%	95.6%
Lim et al.	2019 [39]	VGGNet	40542 Images	EyePACS-1: 101710 images	96.5	91.3%	91.1%
Ting et al.	2017 [20] 2019 [41]	VGGNet Ensemble of VGGNet with ResNet	76370 Images	SiDRP: 71 896 images 10 datasets: 40752 images Zambia: 4504 images	93.6 0.89-0.98 97.3	90.5% 91.8–100% 92.3%	91.6% 73.3–92.2% 89.0%
Son et al.	2020 [44]	Customized regional CNN	95350 Images	IDRiD: 143 images e-ophtha: 434 images	95.7-98.0 94.7-96.5	88.9–92.6 89.2–93.6	94.0–100.0 91.4–97.1

IDx-DR

- First FDA-approved autonomous diagnostic system
- Detects DR and ME
- Input: color fundus images

Output: negative/referable/vision threatening



ARTICLE OPEN

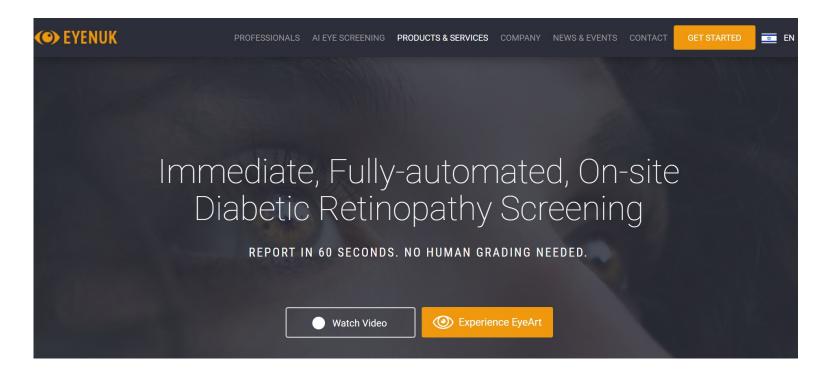
Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices

Michael D. Abràmoff (1,2,3,4), Philip T. Lavin⁵, Michele Birch⁶, Nilay Shah⁷ and James C. Folk^{1,2,3}

Artificial Intelligence (AI) has long promised to increase healthcare affordability, quality and accessibility but FDA, until recently, had never authorized an autonomous AI diagnostic system. This pivotal trial of an AI system to detect diabetic retinopathy (DR) in people with diabetes enrolled 900 subjects, with no history of DR at primary care clinics, by comparing to Wisconsin Fundus Photograph Reading Center (FPRC) widefield stereoscopic photography and macular Optical Coherence Tomography (OCT), by FPRC certified photographers, and FPRC grading of Early Treatment Diabetic Retinopathy Study Severity Scale (ETDRS) and Diabetic Macular Edema (DME). More than mild DR (mtmDR) was defined as ETDRS level 35 or higher, and/or DME, in at least one eye. AI system operators underwent a standardized training protocol before study start. Median age was 59 years (range, 22–84 years); among participants, 47.5% of participants were male; 16.1% were Hispanic, 83.3% not Hispanic; 28.6% African American and 63.4% were not; 198 (23.8%) had mtmDR. The AI system exceeded all pre-specified superiority endpoints at sensitivity of 87.2% (95% CI, 81.8–91.2%) (>85%), specificity of 90.7% (95% CI, 88.3–92.7%) (>82.5%), and imageability rate of 96.1% (95% CI, 94.6–97.3%), demonstrating AI's ability to bring specialty-level diagnostics to primary care settings. Based on these results, FDA authorized the system for use by health care providers to detect more than mild DR and diabetic macular edema, making it, the first FDA authorized autonomous AI diagnostic system in any field of medicine, with the potential to help prevent vision loss in thousands of people with diabetes annually. ClinicalTrials.gov NCT02963441

npj Digital Medicine (2018)1:39; doi:10.1038/s41746-018-0040-6

Autonomic Al based DR Screening



STEP 1

Capture color retinal fundus images of the patient's eyes

STEP 2

Submit images to the cloud for analysis

STEP 3

Download DR screening results and export PDF report.

EyeArt

Diabetic Retinopathy Screening Report

Patient Information

Patient ID: 123-45-6789 Patient Name: Michelle L. Roddy Date of Birth: 04-Mar-1963

Gender: Female

Challenges?

Submission Date: 2019/03/15 12:41

General Information

Referring Location: St. Lucy's Referring Provider: Dr. Charlie Hallock

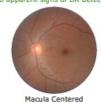
Encounter ID: 0987-abc-d1k EveArt Control ID: 560144 Dilation Status: Non Dilated

Diabetic Retinopathy Screening Summary

Screening Result: Negative for referable diabetic retinopathy.

Right Eye: No apparent signs of DR detected [0.0] Left Eye: No apparent signs of DR detected [0.0]

ONH Centered



ONH Centered

*Do not use the above thumbnail images for diagnostic purposes.

ICD-10 Diagnosis Codes

Type 2 diabetes mellitus without complications

Plan and Recommendations

Return for retinal imaging within 12 months.

As per ADA recommendations, emphasize the importance of controlling blood sugar, cholesterol and blood pressure as well the importance of routine follow-up with an ophthalmologist regardless of whether visual symptoms are present or absent.

Report Date: 2019/03/15 12:46

(EYENUK

EyeAr

Diabetic Retinopathy Screening Report

Patient Information General Information

Patient ID: 123-45-6791 Referring Location: St. Lucy's Referring Provider: Dr. Charlie Hallock Patient Name: Benny S. Jones Date of Birth: 22-Nov-1951 Encounter ID: 0987-abc-d1m Gender: Male EyeArt Control ID: 560145

Submission Date: 2019/03/15 12:45 Dilation Status: Non Dilated

Diabetic Retinopathy Screening Summary

Screening Result: Positive for vision threatening diabetic retinopathy.

Right Eye: Signs of Moderate NPDR [2.3] without macular edema detected

ONH Centered



ONH Centered

ICD-10 Diagnosis Codes

E11.3391 Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy without macular edema, right eye

E11.3312 Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy with macular edema, left eye

Plan and Recommendations

Immediate referral to ophthalmologist for evaluation of vision threatening diabetic retinopathy.

As per ADA recommendations, emphasize the importance of controlling blood sugar, cholesterol and blood pressure as well the importance of routine follow-up with an ophthalmologist regardless of whether visual symptoms are present or absent.

Report Date: 2019/03/15 12:47

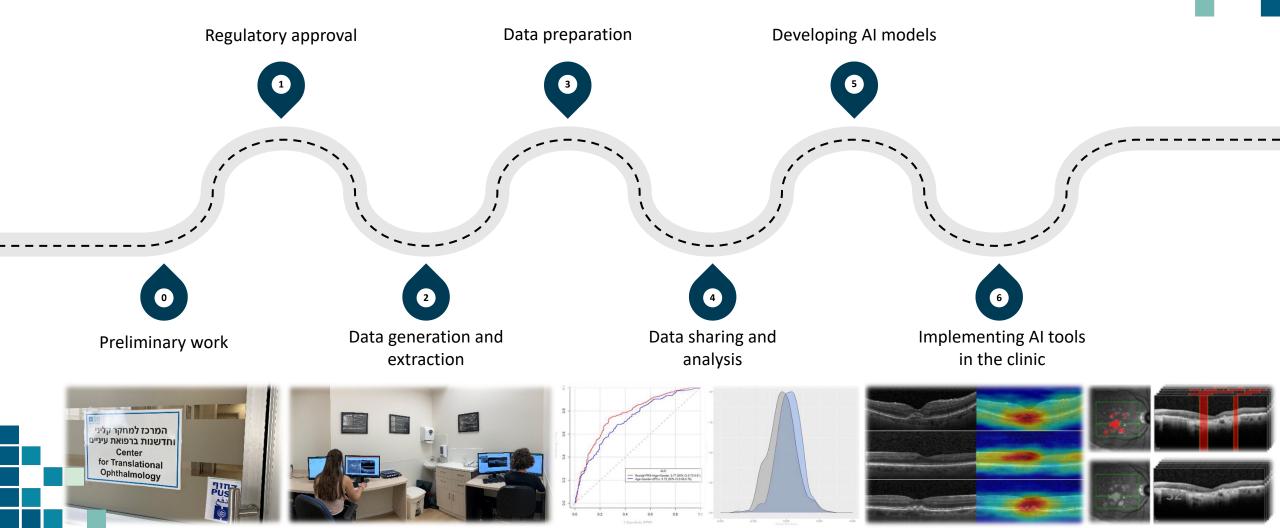
^{*}Do not use the above thumbnail images for diagnostic purposes.

Warning: This report is automatically generated using EyeArt and only provides a Diabetic Retinopathy (DR) screening assessment. This screening does not take place of a regular eye examination for the purpose of assessing the presence of age-related macular degeneration, glaucoma, cataract, anterior segment diseases or other possible vision threatening conditions. For customer support, please email support@eyenuk.com ID:123-45-6789 | NAME:Michelle L. Roddy | DOB:04-Mar-1963

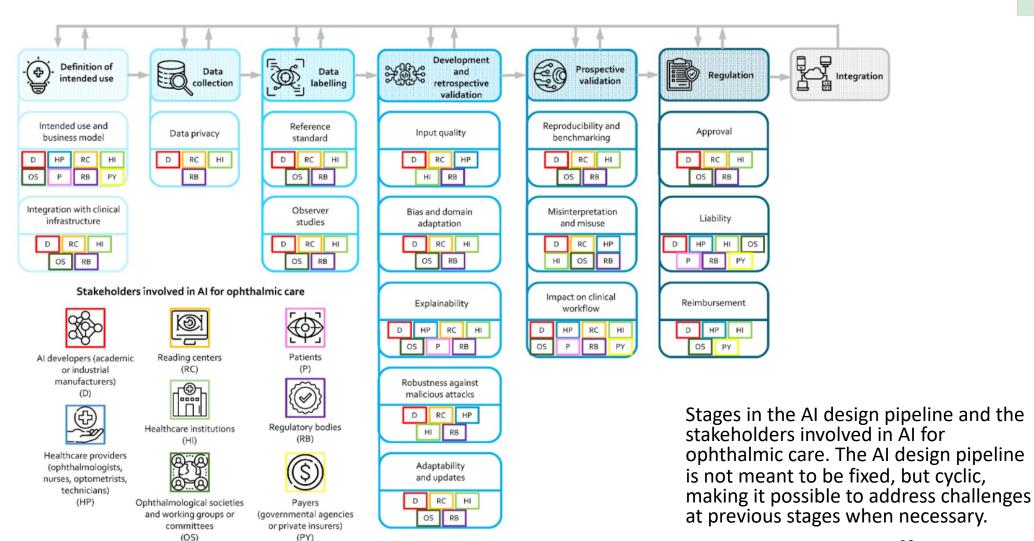
ID:123-45-6791 | NAME:Benny S. Jones | DOB:22-Nov-1951

Our Wild Journey into the New Era

Hadassah Ophthalmology AMD AI project



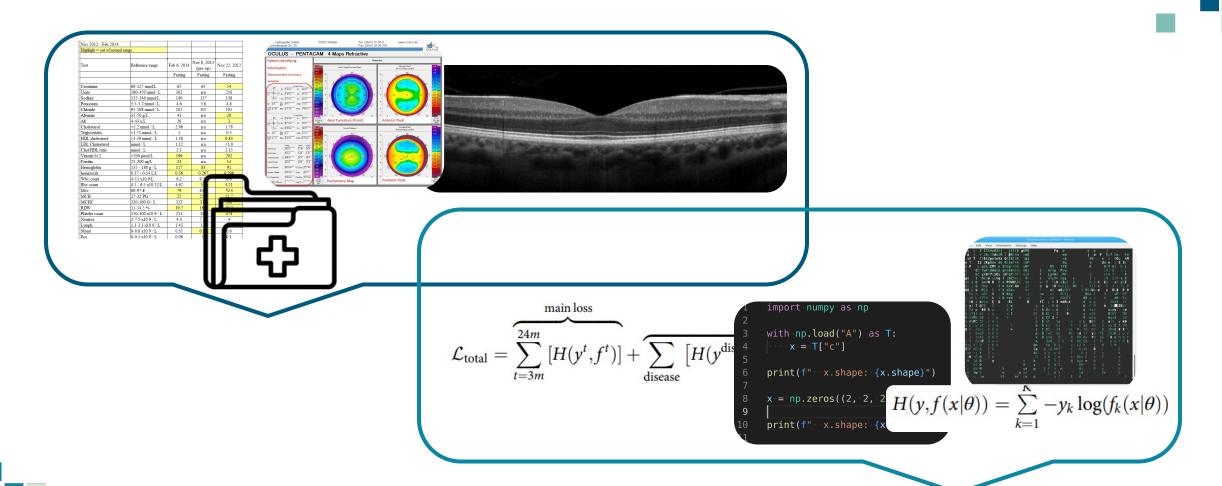
Al Systems in Ophthalmic Practice



Challenges - Research

- Accessing EMR/imaging data
- Downloading data generating DB
- Anonymization according to the MOH guidelines
- Regulatory approvals ethics, data committee
- Computation resources cloud/on site

Challenges - Interdisciplinary Collaboration



Challenges - Integrating AI into the Clinic

- Regulatory approval
- Technical challenges
- The business case

Clinical and technical challenges in building and deploying DL techniques from 'bench to bedside'

Steps	Potential challenges
Identification of training data sets	 Patients' consent and confidentiality issues. Varying standards and regulations between the different institutional review boards. Small training data sets for rare disease (eg, ocular tumours) or common diseases that are not captured in routine (eg, cataracts).
2. Validation and testing data sets	 Lack of sample size—not sufficiently powered. Lack of generalisability—not tested widely in different populations or on data collected from different devices.
3. Explainability of the results	 Demonstration of the regions 'deemed' abnormal by DL. Methods to generate heat maps—occlusion tests, class activation, integrated gradient method, soft attention map and so on.
4. Clinical deployment of DL Systems	 Recommendation of the potential clinical deployment sites. Application of regulatory approval from health authorities (eg, US Food and Drug Administration, Europe CE marking and so on). Conducting prospective clinical trials. Medical rebate scheme and medicolegal requirement. Ethical challenges.

Ting DSW, et al. Br J Ophthalmol 2019; **103**:167–175. doi:10.1136/bjophthalmol-2018-313173

OCT devices, protocols, resolution, format,...

KEY COMPANIES

And Many Others

RTVue XR Avanti AngioVue (Optovue)

RS-3000 Advance (NIDEK)

Spectralis OCT2 (Heidelberg)

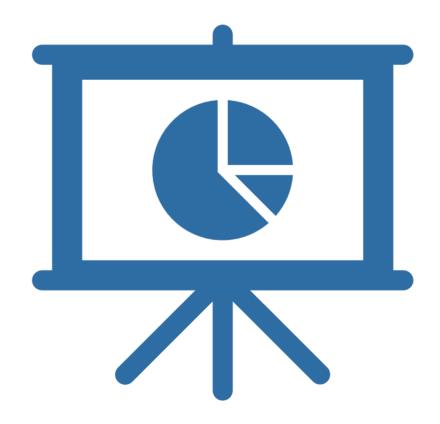
Triton SS OCT Angio (Topcon)

Cirrus5000 AngioPlex (Carl Zeiss Meditec)

Plex Elite 9000 (Carl Zeiss Meditec)

OCT-HS100 (Canon)

Figure 1. OCT angiography (OCTA) devices

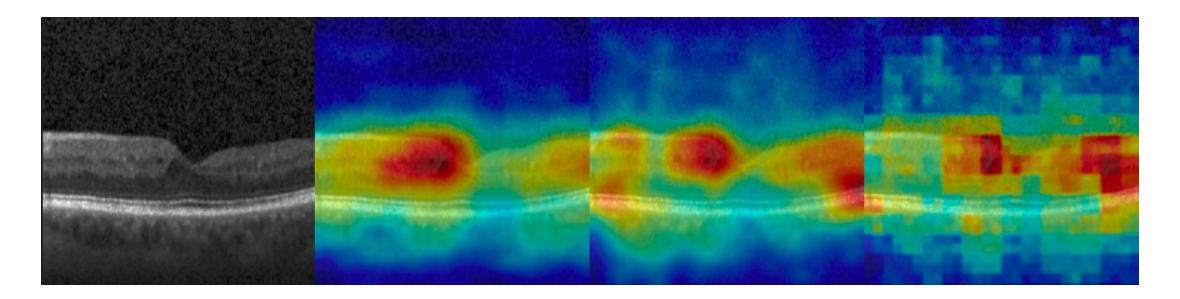


Our Project Results (so far)

Anomaly Detection Results

Developing a novel state-of-the-art model using localization self supervised

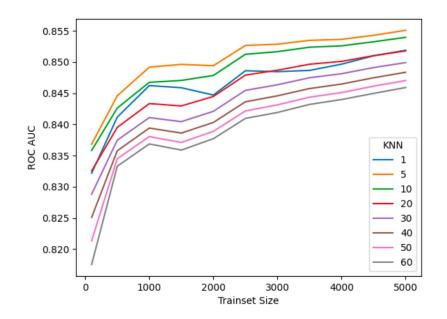
DL algorithm for detecting retinal diseases and biomarkers



Anomaly Detection Results

Table 1: Image-level anomaly detection accuracy (Average ROCAUC%)

Model	SPADE	SPADE	PaDiM	PaDiM	PatchCore	PANDA	PANDA	PaDiM	PaDiM	PatchCore
Model	(R50)	(R152)	(R50)	(R152)	(R50)	(R50 EWC)	(R152 EWC)	(R50 EWC)	(R152 EWC)	(R50 EWC)
CNV	89.9	93.9	84.9	84.3	96.8	94.5	95.2	85.8	85.2	97
DME	80.5	85.9	81.1	85.1	91.7	87.9	85.9	81.9	82.6	91.8
DRUSEN	70	76.4	72.2	74.2	84.1	77.3	77.3	70.9	70	84.5
Average	80.13	85.4	79.4	81.2	90.8	86.5	86.1	79.5	79.2	91.1

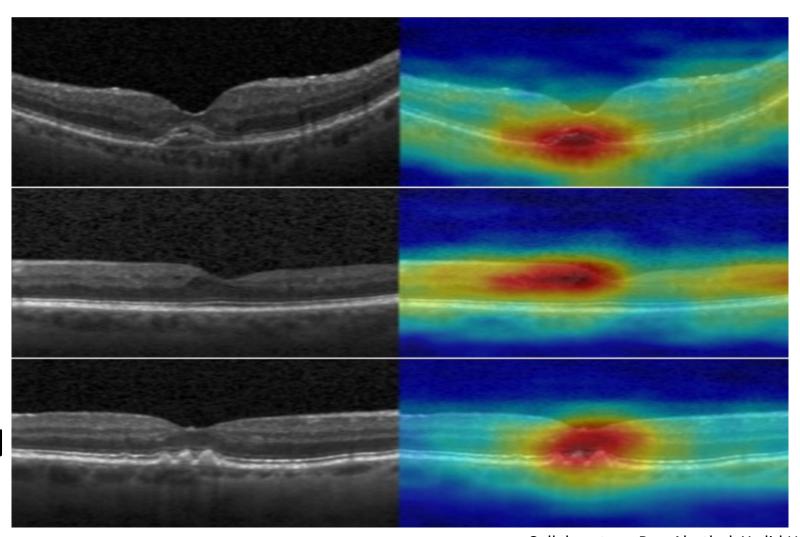


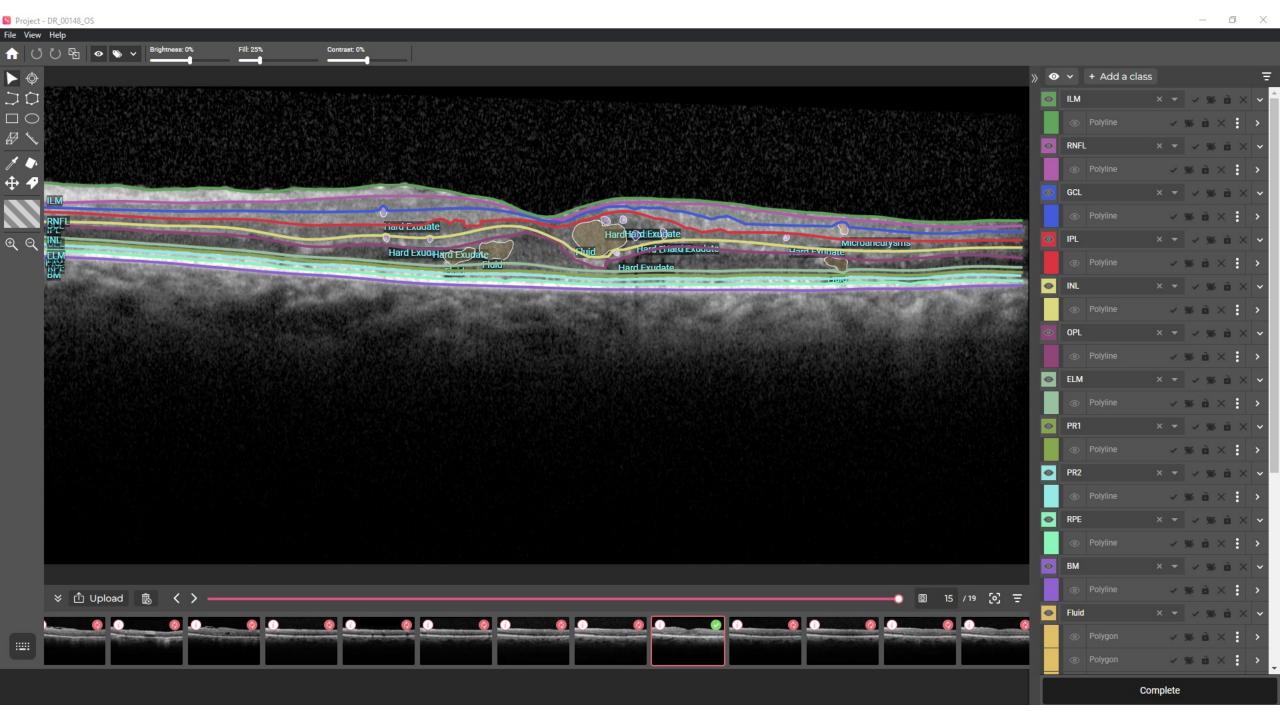
Localization results:

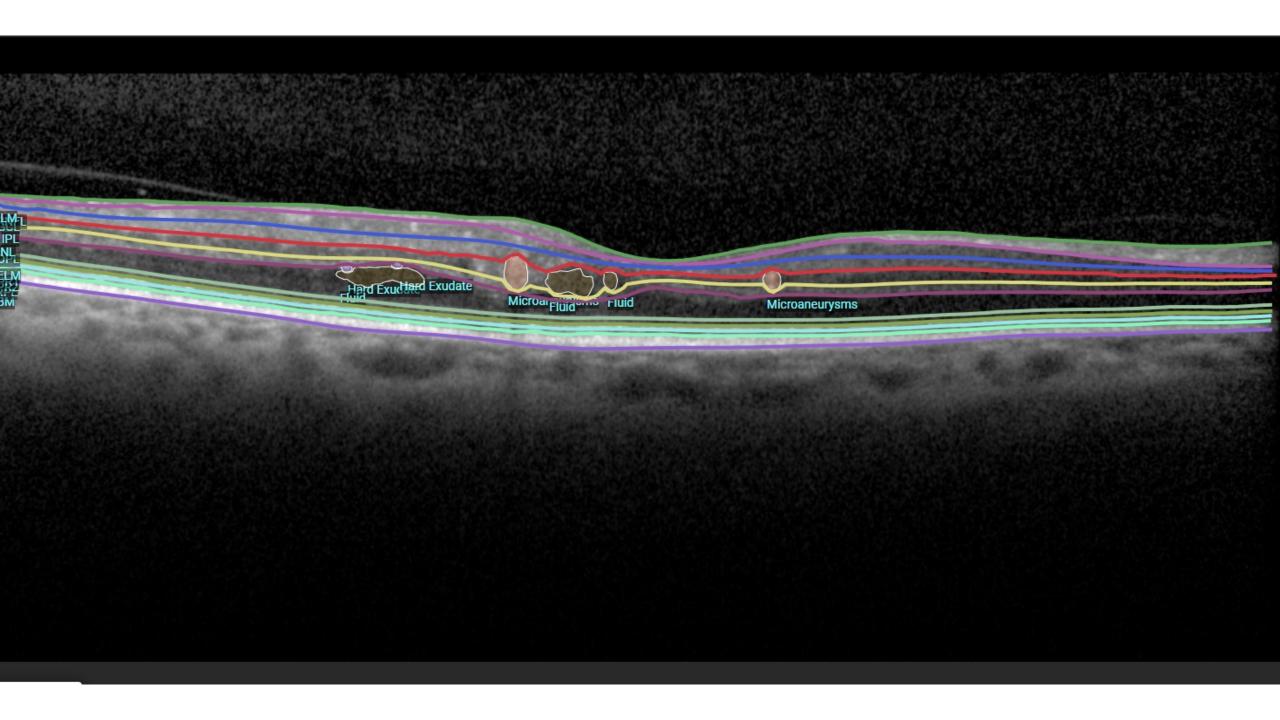
CNV

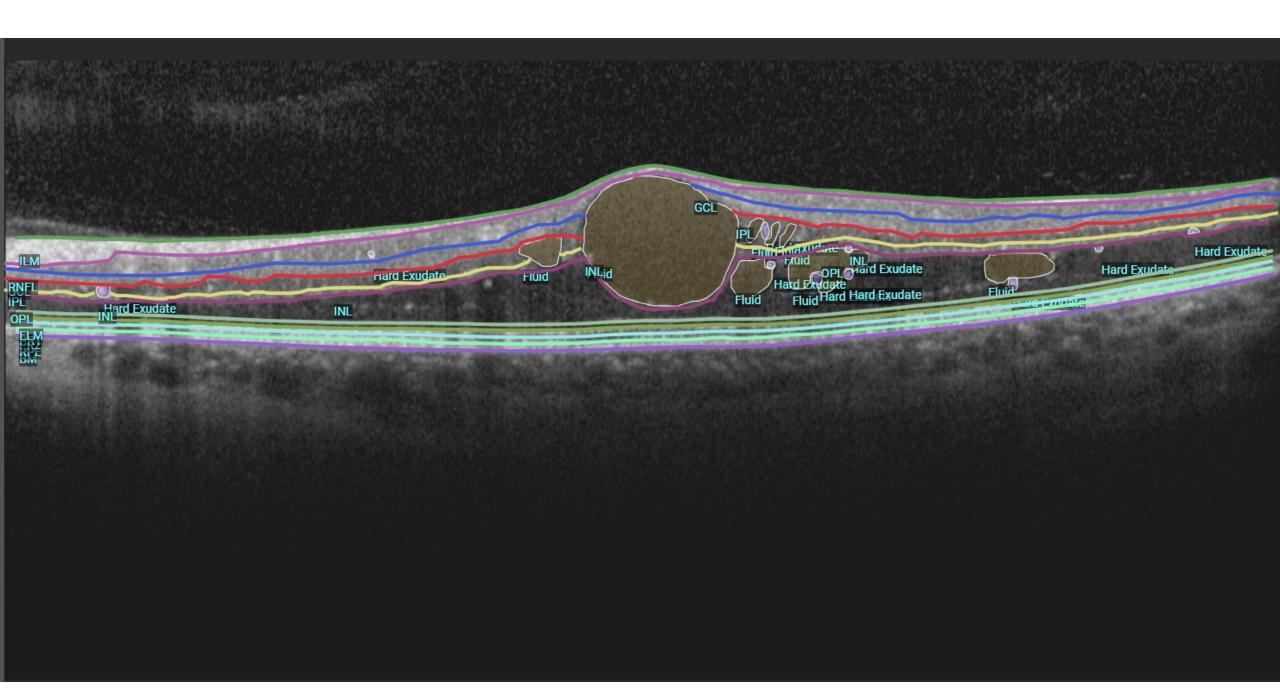
DME

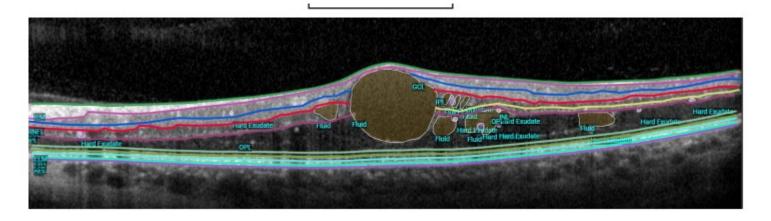
DRUSEN

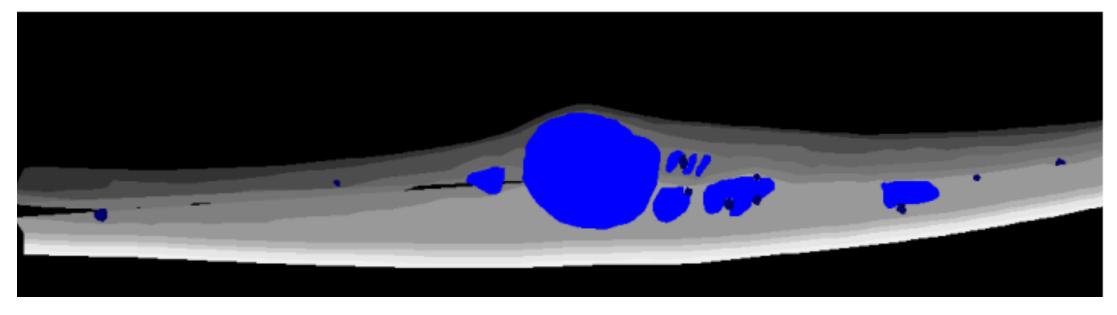




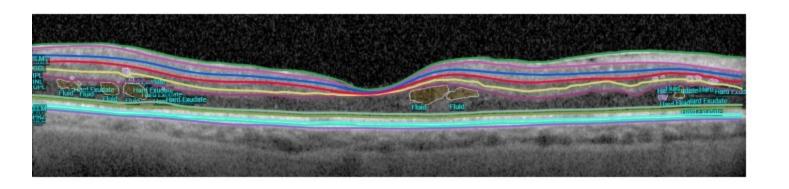


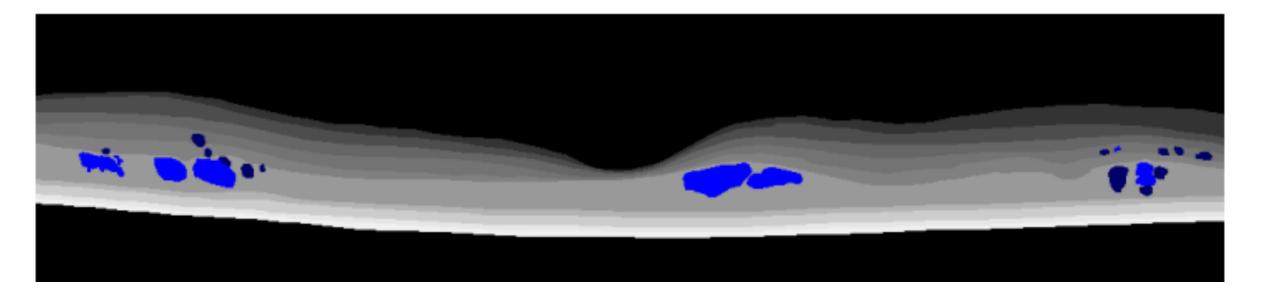






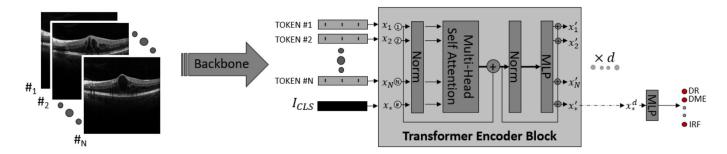
In collaboration with Meirav Galun, Danny Harari, Shimon Ulman; The Weitzman Institute of Science





In collaboration with Meirav Galun, Danny Harari, Shimon Ulman; The Weitzman Institute of Science

Attention Based Classification of DR



OCT-Transformer architecture.

	SICK #1	SICK #2	HEALTHY	SICK #3	SICK #4
INPUT				*****	and the
ATTENTION HEAT-MAP					

Synthetically composed volume and its corresponding attention heat-map. The brighter the color the higher the attention-score, with black and white at the ends and shades of red in between.

F1-Score	SliverNet	Equivariant	OCT-
			Transformer
DR	42.62%	65.45%	75.56%
DME	52.63%	64.52%	81.48%
IRF	72.73%	68.42%	83.33%
Normal	82.49%	89.95%	94.47%
Macro-F1	65.75%	73.13%	83.8%

Classification F1-Score Results on the Hadassah dataset; our models compared to previous method SliverNet.

Collaborators: Meirav Galun, Danny Harari, Dan Segev

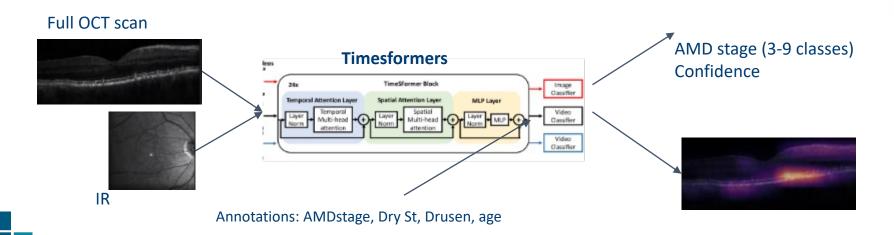
DL Methods Results

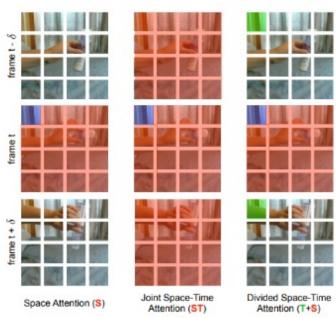
- Goal #1 (predict AMD stage from volume OCT/IR):
 - Model: Based on Timesformer -> Video with Transformers

(same as large language models)

https://arxiv.org/pdf/2102.05095.pdf

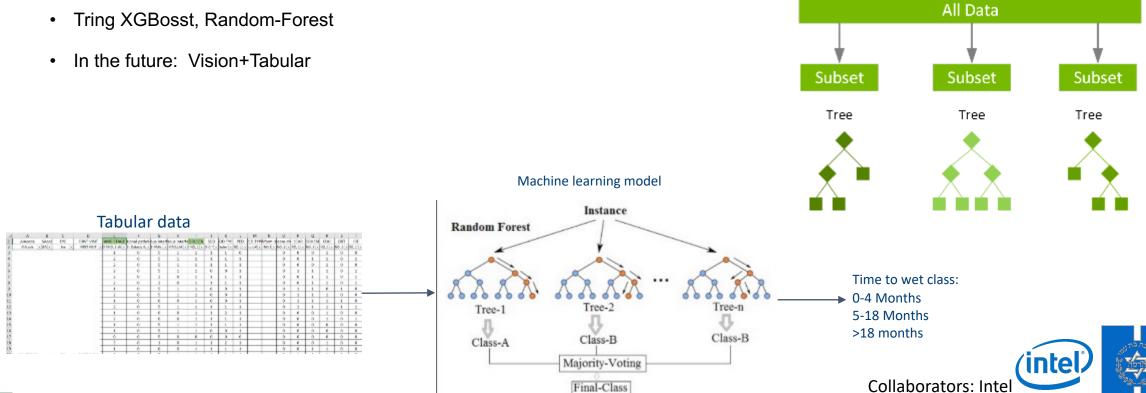
https://github.com/facebookresearch/TimeSformer



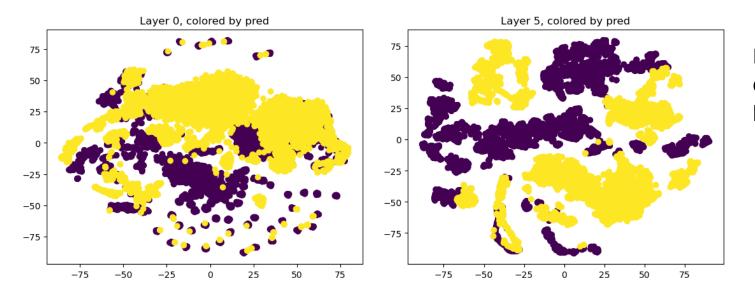


DL Methods Results

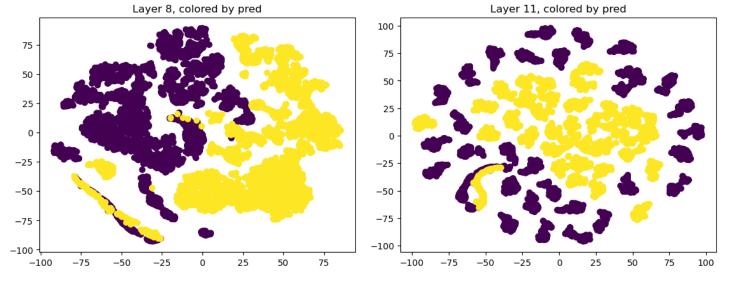
- Goal #2 (predict time to converting to neovascular disease):
- Model: Under development.
 - Tring XGBosst, Random-Forest



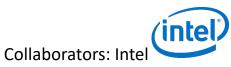
DL Methods Results



Progression in the CNN layers more easily separates and better predicts
better the different AMD stages



Purple – neovascular AMD Yellow – non-neovascular AMD



Take-Homes

- New era
- Challenges for AI integration in the clinic/outreach setting
- Opportunities for:
 - Research
 - Entrepreneurship
 - Bringing value for our patients
- You can do it!

Thank you for your attention!

- Dr. Liran Tiosano, tiosano@hadassah.org.il
- Prof. Jaime Levi,
 ljaime@hadassah.org.il
- Prof. Itay Chowers, chowers@hadassah.org.il

