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“| hate to generalize, but...”

Gloria Steinem




Generalization in medicine

Family medicine clinic, Jerusalem, yesterday:

Physician examines 30 patients

First 28 with cough / runny nose / headaches
Upper respiratory viral infection

A young pregnant woman with runny nose:

Allergy?? Virus?

An elderly man, presenting stomach ache

Colon cancer? Virus?



What is learning?

Examples > Classifier > Test
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Generalization

Examples > Classifier > Test

Performance on heretofore unseen cases.

Why should it work"?



Generalization

“Though this be madness, yet there is method in't’

Hamlet

Assumptions about the nature of examples:

e Samples are from the same “population”

e Actual concept has some regularity
o Smoothness
o Simplicity

o ...



Concepts

Train error - error on the training set (seen)

Test error - error on test set (yet unseen)

Are these related?

Implicit assumption:

e Reducing training error will reduce also test error
e |[s this reasonable?



Different classifiers

Complexity



Error

Train vs. test errors

Optimum?? Over-fitting
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Measures of complexity

Degree of polynomial

Number of questions in decision tree
Number of free parameters

Magnitude of parameters

Curvature of decision surface
Neighborhood size in K-nearest neighbors



Empirical Test Error
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Empirical Test Error

Issues:
Train/Test allocation

e Small train set — not enough for learning
e Small test set — noisy error estimation
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Empirical Test Error

Issues:
Train/Test allocation

e Small train set — not enough for learning
e Small test set — noisy error estimation

N
N

Train set
e Multiple evaluations (of classifiers) ]
e Test samples used for learning
e Over-fitting the test data!!

Use of Test set

Test set
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Empirical Test Error

Train
set

N
S 2

Train set

~

Test set

(held-out)
~_



Error

Theoretical bound of test error
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Summary so far

Choose complexity (hyper-parameters)

Estimate generalization performance

e Train/test split
e (Cross-validation
e T[heoretical limits

Learn model with chosen hyper-parameter value



Case study

DECODING THE ¢
BOOK OF LIFE

Microarrays measure
genome sequenced MRNA levels of 23K genes



Gene expression classifications and predictions
of human cancers

Gene expression patterns of breast carcinomas

distinguish tumor subclasses with
clinical implications
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Could gene expression predict clinical outcout?

Early breast cancer, at young patients.

Chemotherapy reduces risk of metastases by 73

70-80% patients receiving it, would have survived without.
How to identify which patients would likely need chemo, and
which won’t?

34 patients developed distant metastases within 5 years
44 were disease-free after 5 years
(18 with BRCA1, 2 BRCA2 mutations)
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How they learned a classification model?

e 34 “poor prognosis”, 44 “good prognosis” samples

e From 23K genes, found top 231 correlated genes (“features”)

15
*
§ * +
6 10' a R *
= .
)

" = HBOC® PEOO0 eole’e)
= 0O O +O+MBBOO000COEET000 .
oJ
- e

+a Of
Kl (e

0 : . . .
0 50 100 150 200

Number of reporters

L eave-one-out CV
Correlation-based classifier
(“poor” or “good” prognosis)

“Optimal set” of 70 genes

AN
)
AGENDIA

MAMMAPRINT+BLUEPRINT



15 years later...

The NEW ENGLAN D e 6693 women
JOURNAL o MEDICINE e 1550: high clinical risk,

ESTABLISHED IN 1812 AUGUST 25, 2016 VOL. 375 NO.8

low genomic risk

70-Gene Signature as an Aid to Treatment Decisions
in Early-Stage Breast Cancer
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Is this a special set of genes?

Outcome signature genes in breast cancer:
is there a unique set?
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Cell Biology and 3Department of Immunology, Weizmann Institute of Science,
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More on Error

Positive
(disease)
Test
for virus
Negative

(no disease)



Test
for virus

More on Error

Real world
True False
(infected) (not)
Positive
(disease) True False
Positive Positive
Negative False True
(no disease) Negative Negative




More on Error

Real world

True False
(infected) (not)

Positive
(disease) s FP
Test
Neg_atlve N ™
(no disease)



More on Error

Real world

True False

infected t
(infected) — (no) FP = Type | error

Positive
(disease) TP FP FN = Type Il error
Test
Neg_atlve N N
(no disease)




Cost of error
Different costs depend on context
Infectious diseases
Type | error (FP):
e Unneeded treatment (cost, side effects etc)
e Burden on system
e Risk to a healthy patient
Type Il error (FN):

e Untreated condition (worse outcome)
e |ncrease disease propagation



Cost of error
Different costs depend on context
Genetic test (e.g. BRCA1)
Type | error (FP):
e Unneeded monitoring (cost, patient time)

e Unneeded pre-emptive treatment (cost, patient health)
e Mental cost (stress)

Type Il error (FN):

e Missed chance for early monitoring (worse outcome)



Evaluating errors

Real world

] ] n TP
True False sensitivity
(infected) (not) TP+FN
Positive
(disease) UL FP
Test
Negative EN ™
(no disease)

A



Positive
(disease)

Test

Negative
(no disease)

Evaluating errors

Real world
True False
(infected) (not)
TP FP
FN TN
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Evaluating errors

Real world

ngn . TP
True False sensitivity
(infected) (not) TP+FN
Positive TN
(disease) L FP > specificity
Test TN+FP
Negative
(no disease) FN ™ PPV TP

TP+FP



Evaluating errors

Real world TP
True False sensitivity
(infected) (not) TP+FN
Positive TN
(disease) ' i specificity
Test TN+FP
Neg!ative EN N > TP
(no disease) PPV
TP+FP
TN

NPV
TN+FN



Evaluating errors

Sensitivity/specificity: test quality
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Evaluating errors
Sensitivity/specificity: test quality
PPV/NPV.

Disease prevalence & test quality
Same test can have different PPV/NPV
e General population

VS

e Population at risk
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4/3
11/3

Syllabus

Al in ophthalmology (Prof. ltay Chowers)
Classification

Learning 1

Learning 2

Regression (Wed.)

Deep learning in image analysis (Prof. Leo Joskowicz)
Clustering

Dimensionality reduction and visualization

Deep learning, Missing data (Wed.)

Natural language in medicine (Dr. Gabi Stanovsky)
?



