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1. Motivation: Medical Image Processing (MIP)
Medical imaging plays a central role in medicine!

• 30% of all patients that reach a hospital get an image
• Over 2 billion/year worldwide!

à 750M CT; 250M MRI; growth of +10% per year.
• Imaging devices are now widespread worldwide.
à They get better (and larger) all the time.

• Manpower shortage: +2% per year, junior radiologists 

• Who is going to look at them?
• For what purpose? For how long?
• What information will be extracted?
• What about the population at large? 

BUT…

!!!



Models in the patient treatment cycle

Diagnosis Planning

Delivery

CAD mammography
Virtual colonoscopy

Neurosurgery – biopsy trajectory
Orthopaedics – spine fixation

Tumor follow-up
Implant location

Interventional Radiology
Navigation
RoboticsEvaluation

Training
Learning

Data mining

symptoms images

lab tests biopsyMODEL
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Classification in Medical Image Processing

Classification

Detection
Identification
Segmentation
Grading

Volumetry
Incidental findings
Follow-up
Triage, ranking

Determine to which class a scan/set of pixels/voxels belongs to
Technical CLINICAL

Liver tumors
Lung tumor Volumetry
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Classification: example
Baseline scan

Follow-up scan

d1

d2

FEATURES
Tumor diameter: d1,	d2
Diameter change: ∆d	%

RELATION

∆𝑑 = (!!"!"!"
) x	100%

Progression
Regression

Stable

CLASSES
∆𝑑 ≥ +20%
∆𝑑 ≤ −30%

−30% ≤ ∆𝑑 ≤ +20%

Nov 11, 2021

July 7, 2022

Clinical task: tumor follow-up in chest CT scan
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Classification: features space

intensity

shape

textureRELATION

Voxel classifier

Voxel 
classification

Clinical task: tumor volume by segmentation
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Models in computational radiology

Task: tumor 
segmentation by 

voxel classification 

Manual modeling Deep learningMachine learning
Features

intensity, texture
shape, location 

Relations
Boundary 

differences, …

Features
intensity, texture
shape, location 

Relations
Derived by 

regression, SVM,…

Features
Derived from data

Implicit

Relations
Derived from data

Implicit

M
A
N
U
A
L

M
A
N
U
A
L

M
A
N
U
A
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A
U
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O
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A
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O
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Program

Model = features + relations between features

Network
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Models in Medical Image Processing
Manual modeling Machine learning Deep learning

Mostly knowledge
Limited data

Some knowledge
Some data

Mostly data
Limited expert knowledge

Manual programming Features programming Automatic programming

5-10 features 20-50 features 1,000s of features

10-100 examples 100-1,000 examples 1,000-1,000,000 examples

Easy to extract features 
and their relations

Easy to extract features,
hard to find relations

Hard to extract features, 
hard to find relations

Desk-top computer Desk-top computer Massive computer power

High programming cost
Low data cost

Med programming cost
Medium data cost

Low programming cost
Very high data cost

Extensive and direct 
involvement of experts

Expert involvement for 
features and data tagging

Experts involvement    
data tagging only

Fully explainable Partially explainable Not explainable

The NO FREE LUNCH axiom
• Each approach requires effort and data

• The type of effort and size of data is different

• The effort by engineers and clinicians is different
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1. Define the regions of interest (ROI) on the image

2. Define the features to be computed for each ROI (10-50)

3. Define a way to compute feature values in each ROI to obtain a k-
dimensional vector

4. Choose a classifier to classify the resulting k–dimensional vectors. 
Common classifiers are: 
– Regression
– Single Value Decomposition
– k Nearest Neighbors
– Decision trees
– …

2. Machine learning methods in MIP

Features: intensity range, histogram, contrast,…

Computed 
classifier
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Typical requirements
• Sample size: ~50 cases per label

• Data set homogeneity: sequence type, resolution, etc.

• Exclusion criteria: scans of patients with multiple
pathologies from different origins

• Good data quality

• Clear criteria for segmentation of the target area for
classification

• Manual labeling of cases relative to a gold standard

• Prior knowledge regarding important characteristics of the
target area for classification - not mandatory but useful!

• Adequate computational power
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Common features

Courtesy of Dr. Artzi Moran, Sagol Center for Brain Research, Tel Aviv U.

Machine learning: classification features
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Artzi et al. Journal of Magnetic Resonance Imaging. 2017

DATA ANALYSIS

Differentiation between vasogenic edema and infiltrative tumor in 
patients with high grade gliomas using texture patch based analysis

Example: classification of tumor components
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Differentiation between vasogenic edema and infiltrative tumor in 
patients with high grade gliomas using a texture patch based analysis

Artzi et al. Journal of Magnetic Resonance Imaging. 2017

Example: classification of tumor components
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3. Deep learning methods in MIP
• Useful for tasks for which it is hard to find an algorithm but for which

we can collect examples of the input-output of the desired results

• Classification is based on a Neural Network

• Training data is required as in machine learning

• Layers: input and output layers, hidden layers

• Many layers à deep neural network à deep learning
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Neural networks
Deep learning = set the weights of an artificial neural network to
implement an unknown classification function

Training  consists of adjusting the weights of the various 
units/layers based on the input-output pairs

Neurons 
Individual 
processing units

Network
input-output 
connections

Input

Output

Weights𝑤𝑖, 𝑗

σ(∑!"#$ 𝑤𝑖1)
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Neural network model (1)
Neuron model
� x: input features vector

� 𝑎: output neuron activation

�w		and b :	learned parameters vectors
� 𝜎: neuron non-linear function 

𝑎 = 𝜎(𝒘!x +	b)

Neural network model
� L layers of stacked neurons
� Signal is propagated by layers

𝑎" = 𝜎(𝒘"
! 𝝈(𝒘"#$

! …(𝒘$
! 𝐱+ 𝑏$)… ) + 𝑏")

Output

Input σ(∑!"#$ 𝑤𝑖1)

Weights vector 
𝒘# = 𝑤#$,𝑤#&, … ,𝑤#'
𝒘#
( transpose
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Neural networks: activation units

𝑁𝑒𝑢𝑟𝑜𝑛
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑦 = 𝜙(𝑧)
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Neural networks: activation units
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𝑁𝑒𝑢𝑟𝑜𝑛
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑦 = 𝜙(𝑧)

z input

y	output



Neural networks: architectures
Terminology
� Input layer: x
� Output layer: 𝑎,
� Intermediate layers: hidden
� Many layers  L	à deep network

Network architectures

Auto-encoder Bolzman
Machine

RNN:
Recurrent

FCN: Fully Connected 
Network

Output

Input
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Neural networks principles
The neural network computes the function:

Three phases
1. Training: compute the weights of each neuron by optimization 

using input-output pairs 

2. Validation: fine-tune the network hyper-parameters to improve its
performance

3. Testing: perform classification on unseen examples

𝑎" = 𝜎(𝒘"
! 𝝈(𝒘"#$

! …(𝒘$
! 𝐱 + 𝑏$)… ) + 𝑏")
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Neural networks principles
1. Training

Compute the weights of each neuron by optimization using input-
output pairs.

� The computation is performed by multi-parameter optimization.

� The function that is optimized is called a loss function. It is the
difference between the observed and the computed values.

� The loss function is optimized by iterative methods, e.g., gradient
descent by forward and backwards propagation of training
examples through the network.

� The training stops upon convergence.

𝑎) = 𝜎(𝒘)
( 𝝈(𝒘)"$

( …(𝒘$( 𝐱 + 𝑏$)… ) + 𝑏))
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Forward and backward propagation
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Optimization
Loss function

© L. Joskowicz 2022Sketch of the high-dimensional weights parameter space



Optimizers

Loss function

© L. Joskowicz 2022Sketch of the high-dimensional weights parameter space



Neural networks principles
2. Validation

Fine-tune the network hyper-parameters to improve its performance

� Hyper-parameters include:

o number of hidden layers and units

o learning rate

o activation functions

o …
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Convolutional Neural Network for MIP

Deep Learning: An Update for Radiologists. Cheng P. et al, Radiographics, Sept-Oct 2021. © L. Joskowicz 2022



Convolution layer
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Convolution is a kind of 
weighted averaging on 

a patch of the image



Max pooling layer

Characteristics
• Decreases image

size by factor of 4
• Decreases location

dependence
• Reduces memory

requirements
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Components

Convolutional Neural Network
Image patch size x # of features
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Convolutional Neural Networks: depth

Evolution in time: 
2016-2022

Deep Learning: An Update for Radiologists. Cheng P. et al, RadioGraphics, Sept-Oct 2021. © L. Joskowicz 2022



The deep learning pipeline
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� Data partitioning: training, testing
and validation sets

� Randomized sampling: during
training

� Image data loading and sampling
� Data augmentation
� Network architecture
� Evaluation metrics for performance

during training/ inference

Key issues
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Abdominal organ segmentation in CT
� Network trained on 90 abdominal

CTs with manual segmentations
from two public data sets

� V-Net segmentation: evaluated
with 9-fold cross-validation



State of the art: nnU-Net
� Tested for the segmentation of a wide variety of images and structures
� Excellent results in 49 tasks in 19 public international competitions

Isensee et al. Automated Design of Deep Learning Methods for Biomedical Image Segmentation, arXiv. Apr 2020



CASMIP Lab Projects

1. Fetal development in MRI (with TASME)
Segmentation and linear  measurements of 
fetal body, brain, and placenta

2. Tumors follow-up in liver and lungs CT and 
brain MRI (with Profs. J. Sosna, Y. Shoshan)
Detection, segmentation 
and lesion changes analysis

3. Macular atrophy in OCT scans
(with Prof. J. Levy)
Detection and segmentation of dry AMD
atrophy in OCT

cRORA 
atrophy

GA 
atrophy

Baseline Follow-up
Baseline

Follow-up
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Deep learning: cautionary tales 
Deep learning heavily relies on the training data

Size and distribution of the dataset

� GIGO effect: garbage in, garbage out

� Not enough data

� Data is not representative

� Beware of rare cases!

� Beware of imaging variations and noise

� More data is not always better
© L. Joskowicz 2022



Cases distribution
The long dinosaur tailFrequency

Case typeCommon cases

Vast majority of cases
come from here

Excellent 
performance!

Rare cases

Very unlikely 
that these cases are in 

the training set

Rare cases are the 
norm in radiology!



Deep learning: misclassification
Lack of robustness in the presence of small changes

Eykholt et al. “Robust Physical-World Attacks on Deep Learning Visual Classification” CVPR 2018.

New image CNN classifier Misclassification

Training set images



Deep learning: misclassification

Eykholt et al. “Robust Physical-World Attacks on Deep Learning Visual Classification” CVPR 2018.

Misclassification rate 100%     73.33%    66.67%       100%         80%



Original scan
Lung tumor 

Observer variability – what to aim for? 

Ask 10 radiologists to 
delineate the tumor

Hadassah Ein Kerem Radiology Dept
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Manual delineations 
by 10 radiologists

Low 
variability

High
variability

One color per 
radiologist

Observer variability – what to aim for? 

Study of 4 structures, 3,193 CT slices annotated
� Manual segmentation variability 5-57%

by type of structure, case, observer: 15-45%
� Variability can be quantified and estimated
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Narrow AI – long time and high costs!

Not cost-effective for the vast 
majority of common conditions!

Specialty
Modality

tumors

pneumonia

© L. Joskowicz 2022



AI and Radiology: bottlenecks
Developing AI-based radiology solutions requires

� Large collection of representative datasets of scans:
~1-5K for segmentation, 10-50K for classification

� Manual expert annotation: ~1,000+ radiologist hours for initial
deployment, ~1,000+ for robustness and coverage

� Custom development of solutions for 100’s of specific organs,
structures, pathologies, and imaging protocols
à Narrow AI: one Rad App for each!

� Lengthy and costly development process with several iterations until
regulatory approval is obtained!
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Deep learning and race cars
where’s the catch?

Annotated data
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Race car

Deep 
network

Destination Production



Present and future: 
AI in Radiology is hot!!



AI and Radiology is hot!!



77

The Radiology Market in Israel
Medical Imaging

Imaging Diagnostics

Israel AI healthcare 2021 
• 146 Israeli AI startups in healthcare

• Medical Imaging segment – 25 companies (17%)
• Diagnostic segment – 12 companies (8%)



The future
• Narrow intelligence by deep learning is very

effective for specific tasks!
• Expensive and time-consuming: clinicians are not

annotators!
• “Low hanging fruits” will be picked in the next

1 to 3 years

• Accelerate and increase coverage by involving the clinicians reducing
effort and cost

• Clinician in the loop bootstrapping approach with unique methods for
uncertainty estimation, error correction, and correction prioritization

• Longer term viability presents very significant challenges

It will replace radiologists 
that do not use AI!

AI will NOT replace 
radiologists any time soon
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Computational radiology: paradigm shift

100%

0% Radiologist
Time

Accuracy

Current
practice

MANUAL

Clinical
requirement

New
practice

COMPUTER
SUPPORT

Observer
variability

Less time

Higher
accuracy

Lower
variability
ADVANTAGES

• Improved accuracy 
• Reduced variability
• Less radiologist time

à Better treatment
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The future: combined imaging and patient data 
Workflow of Radiomics in Neuro-Oncology

Rudie et al. Emerging Applications of Artificial Intelligence in Neuro-Oncology. Radiology 2019. 
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Thanks for your attention!
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