Artificial Intelligence in Medicine

Mon Dec 27, 2022: 10:15-11:00 and 11:15-12:00

Deep Learning in Medical Image Processing

Prof. Leo Joskowicz

School of Computer Science and Engineering The Hebrew University of Jerusalem, ISRAEL

Medical Image Processing Laboratory

The Edmond & Lily Safra Center for Brain Sciences

האוניברסיטה העברית בירושלים דHE HEBREW UNIVERSITY OF JERUSALEM

Outline

- 1. Motivation: Medical Image Processing (MIP)
- 2. Machine Learning in MIP very briefly
- 3. Deep Learning classification methods in MIP
- 4. State of the art and conclusions

1. Motivation: Medical Image Processing (MIP)

Medical imaging plays a central role in medicine!

- <u>30%</u> of all patients that reach a hospital get an image
- Over <u>2 billion/year</u> worldwide!

BUT...

- \rightarrow 750M CT; 250M MRI; growth of +10% per year.
- Imaging devices are now widespread worldwide.
 - \rightarrow They get better (and larger) all the time.
- Manpower shortage: +2% per year, junior radiologists
 - Who is going to look at them?
 - For what purpose? For how long?
 - What information will be extracted?
 - What about the population at large?

Joskowicz, 2022

Models in the patient treatment cycle

Classification in Medical Image Processing

Determine to which class a scan/set of pixels/voxels belongs to

Classification: example

Clinical task: tumor follow-up in chest CT scan

FEATURESRELATIONTumor diameter: d_1 , d_2 $\Delta d = (\frac{d_2 - d_1}{d_1}) \times 100\%$ Diameter change: $\Delta d\%$ $\Delta d = (\frac{d_2 - d_1}{d_1}) \times 100\%$

CLASSES			
Progression	$\Delta d \geq +20\%$		
Regression	$\Delta d \leq -30\%$		
Stable	$-30\% \le \Delta d \ \le +20\%$		

Classification: features space

Models in computational radiology

Model = features + relations between features

Task: tumor segmentation by voxel classification

Μ

Α

Ν

U

Α

Μ

Α

Ν

U

Α

Μ

Α

Ν

U

Α

Α

U

Т

0

Μ

Program

215	// Save Lu IIIe
52	<pre>void saveToFile(void *data, size_t nBytes, std::string fileName) {</pre>
53	<pre>FILE * fp = fopen(fileName.c str(), "wb");</pre>
54	if (!fp) {
55	<pre>LOG_ERR("Can't access " << fileName);</pre>
56	
57	
58	<pre>size_t n = fwrite(data, 1, nBytes, fp);</pre>
59	<pre>tf (n != nBytes) {</pre>
50	LOG ERR("Error saving vector to " << fileName);
51	
	fellen (fel)
52	<pre>fclose(fp);</pre>
52	

Manual modeling

Features *intensity, texture* shape, location

Machine learning

Features intensity, texture shape, location

Relations Derived by regression, SVM,...

Deep learning

Models in Medical Image Processing

Ма	nual modeling	Machine learning	Deep learning	
N	lostly knowledge Limited data	Some knowledge Some data	Mostly data Limited expert knowledge	
	The NO FREE LUNCH axiom			
	• Each approach requires effort and data			
	• The type of effort and size of data is different			
	• The effort by engineers and clinicians is different			

2. Machine learning methods in MIP

- 1. Define the regions of interest (ROI) on the image
- 2. Define the features to be computed for each ROI (10-50)
- 3. Define a way to compute feature values in each ROI to obtain a *k*-dimensional vector
- Choose a classifier to classify the resulting *k*-dimensional vectors.
 Common classifiers are:
 - Regression
 - Single Value Decomposition
 - k Nearest Neighbors
 - Decision trees

Typical requirements

- <u>Sample size</u>: ~50 cases per label
- Data set homogeneity: sequence type, resolution, etc.
- <u>Exclusion criteria</u>: scans of patients with multiple pathologies from different origins
- Good data quality
- <u>Clear criteria</u> for segmentation of the target area for classification
- <u>Manual labeling of cases relative to a gold standard</u>
- Prior knowledge regarding important characteristics of the target area for classification - not mandatory but useful!
- Adequate computational power

Joskowicz 2022

Machine learning: classification features

Autocorrelation: Energy: $autocorrelation = \sum_{j}^{N_g} \sum_{j}^{N_g} ij \mathbf{P}(i, j)$ $energy = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} [\mathbf{P}(i, j)]^2$ **Common features** Cluster Prominence: Entropy (H): Sum average: $entropy = -\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \mathbf{P}(i, j) \log_2[\mathbf{P}(i, j)]$ cluster prominence = $\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} [i + j - \mu_x(i) - \mu_y(j)]^4 \mathbf{P}(i, j)$ $sum average = \sum_{i=1}^{2N_g} [i\mathbf{P}_{x+y}(i)]$ Cluster Shade: Homogeneity 1: Sum entropy: $cluster\ shade = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \left[i + j - \mu_x(i) - \mu_y(j)\right]^2 \mathbf{P}(i, j)$ homogeneity $1 = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{\mathbf{P}(i,j)}{1+|i-j|}$ sum entropy = $-\sum_{x+y=1}^{2N_g} \mathbf{P}_{x+y}(i) \log_2[\mathbf{P}_{x+y}(i)]$ Cluster Tendency: Homogeneity 2: Sum variance: cluster tendency = $\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} [i + j - \mu_x(i) - \mu_y(j)]^2 \mathbf{P}(i,j)$ homogeneity $2 = \sum_{i=1}^{N_g} \sum_{i=1}^{N_g} \frac{\mathbf{P}(i,j)}{1+|i-j|^2}$ sum variance = $\sum_{i=1}^{2N_g} (i - SE)^2 \mathbf{P}_{x+y}(i)$ Contrast: ational measure Variance: $contrast = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} |i-j|^2 \mathbf{P}(i,j)$ $IMC1 = \frac{HXY - HXY1}{\max\{HX, HY\}}$ $variance = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i - \mu)^2 \mathbf{P}(i, j)$ 1,2,3,4,5,6,7,8 h 12345678 0.21 0.05 0.05 0.03 0.01 0.00 0.00 0.00 Long Run Emphasis (LRE) 0.00 0.03 0.02 0.01 0.01 0.00 0.00 lı. 0 00 0 01 0 00 0 00 0 00 0 00 000 Energy: 0.067 $LRE = \frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} j^2 p(i, j|\theta)}{\sum_{i=1}^{N_g} \sum_{i=1}^{N_r} p(i, j|\theta)}$ 2.4930.02 0.03 0.04 0.01 0.01 0.01 0.00 \Rightarrow Homogeneity: 0.785 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.00 1.444 Entropy 2462 100 200 100 200 100 100 100 000 Gray Level Non-Uniformity (GLN) Cluster Tend. 39.231 li. 1225 00 000 000 001 001 000 000 000 $GLN = \frac{\sum_{i=1}^{N_{\theta}} \left[\sum_{j=1}^{N_{r}} p(i, j|\theta)\right]^{2}}{\sum_{i=1}^{N_{\theta}} \sum_{i=1}^{N_{r}} p(i, j|\theta)}$ 000 000 000 000 000 000 001 0.00 Run Length Non-Uniformity (RLN) $RLN = \frac{\sum_{j=1}^{N_r} \left[\sum_{i=1}^{N_g} p(i, j|\theta) \right]^2}{\sum_{i=1}^{N_g} \sum_{i=1}^{N_r} p(i, i|\theta)}$ h ٠

0°

45°

90°

135°

Courtesy of Dr. Artzi Moran, Sagol Center for Brain Research, Tel Aviv U.

All Directions © L. Joskowicz 2022

Example: classification of tumor components

Differentiation between vasogenic edema and infiltrative tumor in patients with high grade gliomas using texture patch based analysis

DATA ANALYSIS

Artzi et al. Journal of Magnetic Resonance Imaging. 2017

Example: classification of tumor components

Differentiation between **vasogenic edema** and **infiltrative tumor** in patients with high grade gliomas using a texture patch based analysis

Patients with high grade glioma

Patients with brain metastases

Artzi et al. Journal of Magnetic Resonance Imaging. 2017

3. Deep learning methods in MIP

- Useful for tasks for which it is hard to find an algorithm but for which we can collect examples of the input-output of the desired results
- Classification is based on a Neural Network
- Training data is required as in machine learning
- Layers: input and output layers, hidden layers
- Many layers \rightarrow deep neural network \rightarrow deep learning

Neural networks

Deep learning = set the weights of an **artificial neural network** to implement an **unknown classification function**

Neurons Individual processing units

Network

input-output connections

Training consists of adjusting the weights of the various units/layers based on the input-output pairs

Neural network model (1)

Neuron model

- x: input features vector
- *a*: output neuron activation

$$a = \sigma(\mathbf{w}^T \mathbf{x} + b)$$

- w and b: learned parameters vectors
- σ : neuron non-linear function

Neural network model

- L layers of stacked neurons
- Signal is propagated by layers

$$a_L = \sigma(\boldsymbol{w}_L^T \, \boldsymbol{\sigma}(\boldsymbol{w}_{L-1}^T \, \dots (\boldsymbol{w}_1^T \, \mathbf{x} + b_1) \, \dots) + b_L)$$

Neural networks: activation units

Activation function	Equation	Example	1D Graph	
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	<i>y</i> output <i>z</i> input	Neuron Function
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	-	$y = \phi(z)$
Linear	$\phi(z) = z$	Adaline, linear regression		
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2} \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	+	

Neural networks: activation units

tivation function	Equation	Example	1D Graph	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1+e^{-z}}$	Logistic regression, Multi-layer NN	youtput zinput	Neuro Functi y = φ (
Hyperbolic tangent	$\phi(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$	Multi-layer Neural Networks	×	_y_= φ(
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = max(0,z)$	Multi-layer Neural Networks		

Neural networks: architectures

Terminology

- Input layer: x
- Output layer: a_L
- Intermediate layers: hidden
- Many layers $L \rightarrow$ deep network

Network architectures

© L. Joskowicz 2022

Neural networks principles

The neural network computes the function:

$$a_L = \sigma(\mathbf{w}_L^T \, \boldsymbol{\sigma}(\mathbf{w}_{L-1}^T \, \dots (\mathbf{w}_1^T \, \mathbf{x} + \boldsymbol{b}_1) \, \dots) + \boldsymbol{b}_L)$$

Three phases

- **1. Training**: compute the weights of each neuron by optimization using input-output pairs
- **2. Validation**: fine-tune the network hyper-parameters to improve its performance
- 3. Testing: perform classification on unseen examples

Neural networks principles

1. Training

$$a_L = \sigma(\mathbf{w}_L^T \, \boldsymbol{\sigma}(\mathbf{w}_{L-1}^T \, \dots (\mathbf{w}_1^T \, \mathbf{x} + \mathbf{b}_1) \, \dots) + \mathbf{b}_L)$$

Compute the weights of each neuron by optimization using inputoutput pairs.

- The computation is performed by **multi-parameter optimization**.
- The function that is optimized is called a loss function. It is the difference between the observed and the computed values.
- The loss function is optimized by iterative methods, e.g., gradient descent by **forward** and **backwards** propagation of training examples through the network.
- The training stops upon convergence.

Forward and backward propagation

Optimization

Method	Update equation
SGD	$egin{aligned} g_t &= abla_{ heta_t} J(heta_t) \ \Delta heta_t &= -\eta \cdot g_t \end{aligned}$
	$\theta_t = \theta_t + \Delta \theta_t$
Momentum	$\Delta heta_t = -\gamma \ v_{t-1} - \eta g_t$
NAG	$\Delta \theta_t = -\gamma v_{t-1} - \eta \nabla_\theta J(\theta - \gamma v_{t-1})$
Adagrad	$\Delta heta_t = -rac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t$
Adadelta	$\Delta \theta_t = -\frac{\overset{V}{R}\overset{U}{M}\overset{T}{S}[\Delta \theta]_{t-1}}{R}\overset{U}{M}\overset{T}{S}[g]_t}g_t$
RMSprop	$\Delta \theta_t = -\frac{\eta^{t-1}}{\sqrt{\frac{E[g^2]_t + \epsilon}{m}}} g_t$
Adam	$\Delta heta_t = -rac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$

Sketch of the high-dimensional weights parameter space

Optimizers

Sketch of the high-dimensional weights parameter space

Neural networks principles

2. Validation

Fine-tune the network hyper-parameters to improve its performance

- Hyper-parameters include:
 - \circ number of hidden layers and units
 - \circ learning rate
 - \circ activation functions

0 ...

Convolutional Neural Network for MIP

Deep Learning: An Update for Radiologists. Cheng P. et al, Radiographics, Sept-Oct 2021.

Convolution layer

Convolution is a kind of weighted averaging on a patch of the image

Max pooling layer

8

4

ax pool with 2x2 filters d stride 2	6
•	3

Characteristics

- Decreases image size by factor of 4
- Decreases location
 dependence
- Reduces memory requirements

Convolutional Neural Network

Components

- Activation functions
 - ReLU, ELU, SReLU, PreLU
- Convolutional layers
 - Dimensionality vs complexity
 - Dilated convolution
- Aggregation layers
 - Global Pooling
 - Max/Mean Pooling
 - Convolutions

Image patch size x # of features

Convolutional Neural Networks: depth

The deep learning pipeline

Computer Methods and Programs in Biomedicine 158 (2018) 113-122

NiftyNet: a deep-learning platform for medical imaging

Eli Gibson^{a,b,1}, Wenqi Li^{a,1,*}, Carole Sudre^b, Lucas Fidon^a, Dzhoshkun I. Shakir^a, Guotai Wang^a, Zach Eaton-Rosen^b, Robert Gray^{c,d}, Tom Doel^a, Yipeng Hu^b, Tom Whyntie^b, Parashkev Nachev^{c,d}, Marc Modat^b, Dean C. Barratt^{a,b}, Sébastien Ourselin^a, M. Jorge Cardoso^{b,2}, Tom Vercauteren^{a,2}

^aWellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK ^b Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK

^c Institute of Neurology, University College London, UK ^d National Hospital for Neurology and Neurosurgery, London, UK

Key issues

- **Data partitioning**: training, testing and validation sets
- Randomized sampling: during training
- Image data loading and sampling
- Data augmentation
- Network architecture
- Evaluation metrics for performance during training/ inference

Abdominal organ segmentation in CT

- Network trained on 90 abdominal CTs with manual segmentations from two public data sets
- V-Net segmentation: evaluated with 9-fold cross-validation

	Dice score	Relative volume difference	Mean absolute distance (voxels)
Spleen	0.94	0.03	1.07
L. Kidney	0.93	0.04	1.06
Gallbladder	0.79	0.17	1.55
Esophagus	0.68	0.57	2.05
Liver	0.95	0.02	1.42
Stomach	0.87	0.09	2.06
Pancreas	0.75	0.19	1.93
Duodenum	0.62	0.24	3.05

NiftyNet segmentation

State of the art: nnU-Net

- Tested for the segmentation of a wide variety of images and structures
- Excellent results in 49 tasks in 19 public international competitions

Isensee et al. Automated Design of Deep Learning Methods for Biomedical Image Segmentation, arXiv. Apr 2020

CASMIP Lab Projects

1. Fetal development in MRI (with TASME) Segmentation and linear measurements of fetal body, brain, and placenta

- Tumors follow-up in liver and lungs CT and brain MRI (with Profs. J. Sosna, Y. Shoshan)
 Detection, segmentation and lesion changes analysis
- 3. Macular atrophy in OCT scans (with Prof. J. Levy) *Detection and segmentation of dry AMD atrophy in OCT*

Deep learning: cautionary tales

Deep learning heavily relies on the training data

Size and distribution of the dataset

- GIGO effect: garbage in, garbage out
- Not enough data
- Data is not representative
- Beware of rare cases!
- Beware of imaging variations and noise
- More data is not always better

Deep learning: misclassification

Lack of robustness in the presence of small changes

New image

CNN classifier Misclassification Output $f_{\theta}(x)$ Target Training set images Perturbed Stop Sign Under Varying Distances/Angles

Eykholt et al. "Robust Physical-World Attacks on Deep Learning Visual Classification" CVPR 2018.

Deep learning: misclassification

Distance/Angle	Subtle Poster	Subtle Poster Right Turn	Camouflage Graffiti	Camouflage Art (LISA-CNN)	Camouflage Art (GTSRB-CNN)
5' 0°	STOP		STOP	STOP	STOP
5′ 15°	STOP		STOP	STOP	STOP
10' 0°				STOP	STPP
10' 30°				STOP	STP
40' 0°	La unit				
Misclassification rate	100%	73.33%	66.67%	100%	80%

Eykholt et al. "Robust Physical-World Attacks on Deep Learning Visual Classification" CVPR 2018.

Observer variability – what to aim for?

Observer variability – what to aim for?

© L. Joskowicz 2021

Narrow AI – long time and high costs!

AI and Radiology: bottlenecks

Developing AI-based radiology solutions requires

- Large collection of representative datasets of scans: ~1-5K for segmentation, 10-50K for classification
- Manual expert annotation: ~1,000+ radiologist hours for initial deployment, ~1,000+ for robustness and coverage
- Custom development of solutions for 100's of specific organs, structures, pathologies, and imaging protocols
 → Narrow AI: one Rad App for each!
- Lengthy and costly development process with several iterations until regulatory approval is obtained!

Deep learning and race cars

where's the catch?

Present and future: Al in Radiology is hot!!

Is Artificial Intelligence The Doom of Radiology?

Hear and Now: Will Al Doom Radiology?

Al and Radiology is hot!!

The Changing Role of the Radiologist in the Age of AI

Martin Lindner | Nov 07, 2018

liagnostic	cimaging				
aidoc		Home Blog	Team Careers <mark>Cante</mark>	act Us (See Demo	
DEEP FOR Aidoc develop Our technolog detecting acu	Radiological Society of North America	G TAILO Membership	Annual Meeting	Journals	Education
threatening of	RSNA News RSNA L Artificia First of three members no	al Intel	lligence		

January 30, 2019

The Radiology Market in Israel

The future

- Narrow intelligence by deep learning is very effective for specific tasks!
- Expensive and time-consuming: *clinicians are not annotators*!
- "Low hanging fruits" will be picked in the next 1 to 3 years

AI will NOT replace radiologists any time soon

It will replace radiologists that do not use AI!

- Accelerate and increase coverage by involving the clinicians reducing effort and cost
- Clinician in the loop bootstrapping approach with unique methods for uncertainty estimation, error correction, and correction prioritization
- Longer term viability presents very significant challenges

Computational radiology: paradigm shift

The future: combined imaging and patient data

Workflow of Radiomics in Neuro-Oncology

Rudie et al. Emerging Applications of Artificial Intelligence in Neuro-Oncology. Radiology 2019.

Team and collaborators

Funding: Two grants from the Israel Innovation Authority 2018-20 and 2020-22

Thanks for your attention!

© L. Joskowicz 2021