

האוויררסיטה העברית בירושלים THE HEBREW **UNIVERSITY** OF JERUSALEM

Artificial Intelligence in Medicine

Neural networks and real-life data

Nir Friedman and Tommy Kaplan

28/2/24

Why neural networks?

Why neural networks?

BULLETIN OF MATHEMATICAL BIOPHYSICS **VOLUME 5, 1943**

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

FROM THE UNIVERSITY OF ILLINOIS. COLLEGE OF MEDICINE, DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE, AND THE UNIVERSITY OF CHICAGO

Because of the "all-or-none" character of nervous activity, neural
events and the relations among them can be treated by means of propositional logic. It is found that the behavior of every net can be described in these terms, with the addition of more complicated logical means for nets containing circles; and that for any logical expression satisfying certain conditions, one can find a net behaving in the fashion it describes. It is shown that many particular choices among possible neurophysiological assumptions are equivalent, in the sense that for every net behaving under one assumption, there exists another net which behaves under the other and gives the same results, although perhaps not in the same time. Various applications of the calculus are discussed.

1949The Organization of Behavior A Neuropsychological Theory D.O. HEBB

J. Physiol. (1959) 148, 574-591 RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

BY D. H. HUBEL* AND T. N. WIESEL*

From the Wilmer Institute, The Johns Hopkins Hospital and University, Baltimore, Maryland, U.S.A.

J. Physiol. (1962), 160, pp. 106-154

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

BY D. H. HUBEL AND T. N. WIESEL

From the Neurophysiology Laboratory, Department of Pharmacology Harvard Medical School, Boston, Massachusetts, U.S.A.

Why neural networke?

BULLETIN OF MATHEMATICAL BIOPHYSICS **VOLUME 5, 1943**

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

FROM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE, DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE, AND THE UNIVERSITY OF CHICAGO

Because of the "all-or-none" character of nervous activity, neural events and the relations among them can be treated by means of propositional logic. It is found that the behavior of every net can be described in these terms, with the addition of more complicated logical means for nets containing circles; and that for any logical expression satisfying certain conditions, one can find a net behaving in the fashion it describes. It is shown that many particular choices among possible neurophysiological assumptions are equivalent, in the sense that for every net behaving under one assumption, there exists another net which behaves under the other and gives the same results, although perhaps not in the same time. Various applications of the calculus are discussed.

J. Physiol. (1959) 148, 574-591 RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

BY D. H. HUBEL* AND T. N. WIESEL*

From the Wilmer Institute, The Johns Hopkins Hospital and University, Baltimore, Maryland, U.S.A.

"Neuron" ≈ linear classifier

- Smoothed non-binary output
- No temporal dynamics
- Parameter learning \approx Hebbian learning

Fully connected network

Convolutional neural network

Few changes from fully connected networks

- 1. A neuron is not connected to all neurons (in prev. layer)
- 2. Keep it local
- 3. Use the same filter across all regions

Convolutional neural network - filters

Convolutional neural network - filters

Convolutional neural network

Few changes from fully connected networks

- 1. A neuron is not connected to all neurons (in prev. layer)
- 2. Keep it local
- 3. Use the same filter across all regions
- 4. Use more than one filter

Convolutional neural network - architecture

From engineering to learning to deep learning

Stochastic Gradient Ascent

- Iteratively, approximate the direction at each optimization step using a small subset of samples (mini-batch)
- Epoch: a series of steps, using all training data
- Learning rate $=$ step size
- Too large and you're over the mountain
- Too small and you won't get far

Revisiting our assumptions

Training set

- Training set Samples X Features
- Every sample has value for all the features

Missing Data

Training set contains "?"

Features

Missing Data

Example:

Basic parameters & blood works of patients in ER

Histogram of number of measured values

https://www.biosymetrics.com/blog/missing-values-healthcare-data

Missing Data

Why is that a problem?

Complete data - (10, 24) Missing data - (10, ?)

- Missing completely at random Random "mechanism" removes values
	- \circ Patients miss ~5-10% of questions on the form, each person different ones
	- Measurement device is flaky and not all results are measured

- Missing completely at random
- Missing specific values Hiding mechanism depends on actual value
	- Overweight people often do not report their weight
	- Only abnormal temperatures are recorded

- Missing completely at random
- **Missing specific values**
- **Missing specific cases** Other aspects of the sample determine whether the value is observed
	- Pathology report only when colonoscopy had positive findings

- Missing completely at random
- **Missing specific values**
- **Missing specific cases**
- Complex mechanism
	- Creatinine is typically measured for patients with potential kidney problems
	- \circ Employees who fear their manager do not report their job satisfaction

Issues to consider

- Observed/missing status is it informative?
	- Should we count it as another feature?

 \bullet

• Distribution of "missing values" - different than observed?

Approaches to Missing Data

New value that stands for "missing" or "unknown"

- Enables reasoning about the implications of not observing the values
- Can complicates the learning procedure

Approaches to Missing Data

Special value: Danger of artifacts

- Missing weight value denoted as 0
- Mean / variance estimates are skewed
- Regression model treats it as another number

Approaches to Missing Data

Fill in missing values

- Use existing algorithms and procedures
- "Shields" the learning procedure from missing data
- Ignores information in observed/missing status

Issue - what values to fill in?

Imputation - Fill in the blanks

Default value

- Skews the distribution of values
- Underestimation of variance

Imputation - Fill in the blanks

Use randomization

- **Fixed distribution**
- Empirical distribution

Imputation - Fill in the blanks

More advanced methods

- Classifier to predict based on other examples
- Use nearest neighbors to predict missing values

Remember PCA?

Remember PCA?

Auto-encoders

"Compress" data to lower dimension

then, "decompress" back to original dimension

- Learn hidden dependencies or patterns in data
- **Denoise**

- Learn hidden dependencies or patterns in data
- **Denoise**

Autoencoder Output

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

Original Images

- Learn hidden dependencies or patterns in data
- Denoise

Denoising of 3D Magnetic Resonance Images Using a Residual Encoder-Decoder

Wasserstein Generative Adversarial Network

Maosong Ran¹, Jinrong Hu², Yang Chen^{3,4,5}, Hu Chen¹, Huaiqiang Sun⁶, Jiliu Zhou¹, Yi Zhang^{1,7,*}

 (a)

 (b)

 (c)

- Learn hidden dependencies or patterns in data
- **Denoise**
- **Impute**

Extracting and Composing Robust Features with Denoising Autoencoders

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol

MISSING DATA IMPUTATION IN THE ELECTRONIC HEALTH RECORD USING **DEEPLY LEARNED AUTOENCODERS***

BRETT K. BEAULIEU-JONES

Genomics and Computational Biology Graduate Group, Computational Genetics Lab, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia PA, 19104 Email: brettbe@med.upenn.edu

JASON H. MOORE

Computational Genetics Lab, Institute for Biomedical Informatics, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia PA, 19104 Email: jhmoore@exchange.upenn.edu

- Learn hidden dependencies or patterns in data
- **Denoise**
- **Impute**
- Visualize / cluster data in latent space

- Learn hidden dependencies or patterns in data
- **Denoise**
- **Impute**
- Visualize / cluster data in latent space
- Anomaly detection (= reconstruction failures)

- Learn hidden dependencie
- **Denoise**
- **Impute**
- Visualize / cluster data in $\vert \epsilon \vert$
- Anomaly detection $(=$ reconstruction $=$
- Data generation

(b) VAE generated MNIST images.

Autoencoders Dor Bank, Noam Koenigstein, Raja Giryes

- Learn hidden dependencies or patterns in data
- **Denoise**
- **Impute**
- Visualize / cluster data in latent space
- Anomaly detection (= reconstruction failures)
- Data generation

https://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/

- Learn hidden dependencies or patterns in data
- **Denoise**
- **Impute**
- Visualize / cluster data in latent space
- Anomaly detection (= reconstruction failures)

https://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/

Re-use parts of a trained network (e.g., early filters/features)

Transfusion: Understanding Transfer Learning for Medical Imaging

Maithra Raghu* Cornell University and Google Brain maithrar@gmail.com

Jon Kleinberg[†] **Cornell University** kleinber@cs.cornell.edu

Chivuan Zhang* Google Brain chiyuan@google.com

Samy Bengio[†] Google Brain bengio@google.com

Compact representatio

Re-use parts of a pre-trained network (early filters = basic visual features)

Transfusion: Understanding Transfer Learning for Medical Imaging

Maithra Raghu* Cornell University and Google Brain maithrar@gmail.com

Jon Kleinberg[†] **Cornell University** kleinber@cs.cornell.edu

Chiyuan Zhang* Google Brain chiyuan@google.com

Samy Bengio[†] Google Brain bengio@google.com

What have we learned?

- Convolutional neural networks
- Missing data
- **Imputation**
- Auto-encoders
- Learning latent representations
- Multiple uses of latent representations
- Transfer learning