Exercise 4

1. Show that the vectors $\overline{w}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\overline{w}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\overline{w}_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ form a spanning set of \mathbb{R}^3 .

Guidance: Show that a general vector $\overline{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ can be written as a linear combination of $\overline{w}_1, \overline{w}_2, \overline{w}_3$.

2. Let
$$\bar{v} = \begin{pmatrix} 2\\7\\8 \end{pmatrix}$$
 and $\bar{u}_1 = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$, $\bar{u}_2 = \begin{pmatrix} 1\\3\\5 \end{pmatrix}$, $\bar{u}_3 = \begin{pmatrix} 1\\5\\9 \end{pmatrix}$

2.1. Show that \bar{v} cannot be written as a linear combination of $\bar{u}_1, \bar{u}_2, \bar{u}_3$. 2.2. Do $\bar{u}_1, \bar{u}_2, \bar{u}_3$ span \mathbb{R}^3 ?

3. Without any calculation, determine whether the following set of vectors in \mathbb{R}^3 is linearly dependent:

$$\bar{u}_1 = \begin{pmatrix} 1\\2\\5 \end{pmatrix}, \bar{u}_2 = \begin{pmatrix} 1\\3\\1 \end{pmatrix}, \bar{u}_3 = \begin{pmatrix} 2\\5\\7 \end{pmatrix}, \bar{u}_4 = \begin{pmatrix} 3\\1\\4 \end{pmatrix}$$

4. The zero vector is a vector in which all entries are 0. It is usually denoted by 0 (and not $\overline{0}$). For example, the zero vector in 2D is $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Given the definition that we saw in class for linear dependence, prove that any set of vectors that includes the zero vector is linearly dependent.

5. Let:
$$\bar{v} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
, $\bar{u} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, $\bar{w} = \begin{pmatrix} -2 \\ -6 \end{pmatrix}$

- 5.1. Draw the above vectors on the same coordinate system.
- 5.2. Add a schematic illustration of $Sp(\bar{v})$
- 5.3. Calculate $\bar{v} + 3\bar{u}$ and show that your answer agrees with the geometrical interpretation of vector summation.

6. Check your answer to question 2 in the main exercise for the specific vector $\bar{v} = \begin{pmatrix} 5 \\ -6 \\ 2 \end{pmatrix}$

- 7. True/false? Justify your answers.
 - 7.1. Let A be a real $m \times n$ matrix. rowsp(A) is a subspace of \mathbb{R}^m .
 - 7.2. Let A be a real $m \times n$ matrix. rowsp(A) is a subspace of \mathbb{R}^n .
 - 7.3. The solution set for a nonhomogeneous system $A\bar{x} = \bar{b}$ is a subspace of \mathbb{R}^n .
 - 7.4. The set of real 2 × 2 matrices with zero determinant ({ $A \in M_{2 \times 2} | \det(A) = 0$ }) is a subspace of the space of real 2 × 2 matrices.
- **8.** Let V be the vector space of real 2×2 matrices. Let U be the subspace of real symmetric 2×2 matrices.
 - 8.1. Find dim(*U*).

To prove your answer, find a basis for U. Make sure to prove that it is indeed a basis (remember the two properties that every basis needs to fulfill).

9. Let $P_2(x)$ be the vector space of polynomials of degree smaller or equal to 2. The following polynomials form a basis for this space:

$$p_1 = x + 1$$

 $p_2 = x - 1$
 $p_3 = x^2 - 2x + 1$

 $p_3 = x^2 - 2x + 1$ Let $\bar{v} = 2x^2 - 5x + 9$ be a vector in this space. Find the coordinate vector (i.e., the coefficients) of \bar{v} with respect to this new basis.

- **10.** In question 2, you have shown that $\bar{v} = \begin{pmatrix} 2 \\ 7 \\ 8 \end{pmatrix}$ cannot be written as a linear combination of $\bar{u}_1 =$
 - $\begin{pmatrix} 1\\2\\3 \end{pmatrix}, \bar{u}_2 = \begin{pmatrix} 1\\3\\5 \end{pmatrix}, \bar{u}_3 = \begin{pmatrix} 1\\5\\9 \end{pmatrix}.$
 - 10.1. Formulate this question as a matrix equation.
 - 10.2. What is the determinant of the matrix whose columns are $\bar{u}_1, \bar{u}_2, \bar{u}_3$? Check your answer by direct calculation.