Exercise for chapter 5-6 - solution

- 1. You need to show that $T\left(a*\begin{bmatrix}v_1\\v_2\\v_3\end{bmatrix}\right)=a*T\left(\begin{bmatrix}v_1\\v_2\\v_3\end{bmatrix}\right)$. You can do that; this is very straightforward.
- 2. This is the projection on the xz plane.
 - a. XZ plane
 - b. 2
 - c. Yaxis
 - d. 1

e.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- <u>3.</u> ...
 - a. No linear

$$F: \mathbf{R}^2 \to \mathbf{R}^2$$
 defined by $F(x,y) = (xy,x)$

Let v = (1,2) and w = (3,4); then v + w = (4,6). Also,

$$F(v) = (1(2), 1) = (2, 1)$$
 and $F(w) = (3(4), 3) = (12, 3)$

Hence,

$$F(v+w) = (4(6),4) = (24,6) \neq F(v) + F(w)$$

- b. Linear
- c. Not linear because $T \begin{pmatrix} 0 \\ 0 \end{pmatrix} \neq 0$
- d. Not linear

$$F: \mathbf{R}^3 \to \mathbf{R}^2$$
 defined by $F(x, y, z) = (|x|, y + z)$

Let v = (1, 2, 3) and k = -3. Then kv = (-3, -6, -9). We have

$$F(v) = (1,5)$$
 and $kF(v) = -3(1,5) = (-3,-15)$.

Thus,

$$F(\mathit{kv}) = F(-3, -6, -9) = (3, -15) \neq \mathit{kF}(\mathit{v})$$

- 4. ...
- a. Rows are independent→ rank=3. The null space and row space are orthogonal complements so dim(ker(A))=5-3=2. The left null space and column space are orthogonal complements so dim(ker(A^t))=3-3=0.
- b. Rows are dependent→ rank=2. The null space and row space are orthogonal complements so dim(ker(A))=4-2=2. The left null space and column space are orthogonal complements so dim(ker(A^t))=3-2=1.

5. Rank=dim(colsp(A))=dim(rowsp(A))=5. The null space and row space are orthogonal complements so dim(ker(A))=9-5=4. The left null space and column space are orthogonal complements so dim(ker(A^t))=7-5=2.

<u>6.</u>

Problem 1: A is an $m \times n$ matrix of rank r. Suppose there are right-hand-sides \vec{b} for which $A\vec{x} = \vec{b}$ has no solution.

- (a) What are all the inequalities (< or \le) that must be true between m, n, and r?
- (b) $A^{\mathrm{T}}\vec{y} = \vec{0}$ has solutions other than $\vec{y} = \vec{0}$. Why must this be true?

Solution (15 points = 10+5)

- (a) First of all, the rank r of a matrix is the number of column (row) pivots, it must be less than equal to m and n. If the matrix were of full row rank, i.e., r = m, it would imply that $A\vec{x} = \vec{b}$ always has a solution; we know that this is not the case, and hence $r \neq m$. To sum up, the inequalities among m, n, r are $r \leq n, r < m$.
- (b) Since A^{T} is an $n \times m$ matrix, the null space $N(A^{\mathrm{T}})$ has dimension m-r, which is positive by (a). Hence, $A^{\mathrm{T}}\vec{y} = \vec{0}$ has solutions other than $\vec{y} = \vec{0}$.