Exercise 7

- **1.** Let $\bar{v} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$, $\bar{w} = \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix}$. **1.1.** Calculate the projection of \bar{v} onto \bar{w} . **1.2.** Calculate the projection of \bar{w} onto \bar{v} .
- **2.** Let $\bar{u}, \bar{w} \in \mathbb{R}^2$ be two orthogonal vectors. For this question only, assume that you don't know that orthogonal vectors satisfy $\bar{u}^T \bar{w} = 0$.

Use the Pythagorean theorem to show that $\bar{u}^T \bar{w} = 0$.

- **3.** Let \bar{x} be an $n \times 1$ vector and A be a $n \times n$ matrix. What is the result of $\bar{x}^T A \bar{x}$? If it is a vector or matrix, write down the general term of the result. If it is a scalar, write down the result. You should use the Σ notation.
- **4.** Let A be a matrix. Show that any vector $\bar{x} \in \text{ker}(A)$ is orthogonal to any vector $\bar{a} \in rowsp(A)$ (remember, the row space of A is the space spanned by the rows of the matrix A).
- 5. Cauchy-Shcwartz inequality

The Cauchy-Shcwartz inequality says that for any two vectors $\overline{v}, \overline{w}$: $\langle \overline{v}, \overline{w} \rangle^2 \leq \langle \overline{v}, \overline{v} \rangle \langle \overline{w}, \overline{w} \rangle$ or equivalently: $|\langle \overline{v}, \overline{w} \rangle| \leq ||\overline{v}|| ||\overline{w}||$ Here one bar means "absolute value" and two bars mean "vector norm". Verify the Cauchy-Schwartz inequality for $\overline{u} = (1,0,3,2)^T$, $\overline{v} = (4,1,0,1)^T$.

6. Consider the following three vectors:

$$\bar{v}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \bar{v}_2 = \begin{pmatrix} 1\\-3\\2 \end{pmatrix}, \bar{v}_3 = \begin{pmatrix} 5\\-1\\-4 \end{pmatrix}$$

- 6.1. Show that they are pairwise orthogonal.
- 6.2. Show that they any vector $\bar{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ in \mathbb{R}^3 can be expressed by a linear combination of \bar{v}_1 , \bar{v}_2 and \bar{v}_3 . In other words (see chapter 4): show that they form a basis of \mathbb{R}^3 .
- 6.3. Let $\bar{u} = \begin{pmatrix} 4 \\ 14 \\ -9 \end{pmatrix}$. Write down \bar{u} as a linear combination of $\bar{v}_1, \bar{v}_2, \bar{v}_3$. Use the fact that the given

basis is an orthogonal basis.

- 7. Let $V = {\bar{v}_1, \bar{v}_2, ..., \bar{v}_n}$ be a set of nonzero pairwise-orthogonal vectors in \mathbb{R}^n . 7.1. Prove that V is linearly independent.
 - 7.2. Assume that k = n. Do the vectors in V form a basis for \mathbb{R}^n ?

8. The following vectors are a basis for a subspace $V \subset \mathbb{R}^4$:

 $\bar{v}_1 = (1,1,1,1)^T$ $\bar{v}_2 = (1,2,4,5)^T$ $\bar{v}_3 = (1,-3,-4,-2)^T$ Apply the Gram-Schmidt orthogonalization process to find an orthonormal basis for V.

9. Orthogonal matrices

9.1. Prove that the product of two orthogonal matrices is an orthogonal matrix.

Inner product spaces

11. Prove that the inner product over the complex numbers is linear in the second term.

12. Prove that for any inner product space, the norm satisfies:

 $\left| |k\bar{v}| \right| = |k| \cdot \left| |\bar{v}| \right|$