Exercise for chapter 7 — solution
1.

a. projpv=—w=

[N
—
@
|
Il
I
|
=l

Pythagorean theorem: |ii|? + |w|? = |7|? = |u — w|?.

This gives us:

wla+ww=@-wm)I@-—-w) =@ —whHa-w=u"u—-a'w—-wla+w'w
We can cancel similar terms and get: —a’w — w'@ = 0

But we know that u”w = w'# (this is a scalar)

So 2wTu = 0 and therefore wiu = 0
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Ax is a nx1 vector and therefore x” Ax is a scalar.
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4. x € ker (A) means that Ax = 0. From matrix multiplication we know that this
means that every row of A multiplied by x equal 0. Meaning that x is
orthogonal to the all the rows of A. rowsp(A) is the space spanned by all the
rows of A. so every vector a € rowsp (A) is just a linear combination of the
rows of A. therefore, x is orthogonal to any vector a € rowsp (4)
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And indeed

6 <vV14 *v18 = 15.87
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1. Just show: 7; Ui{> 0ifi=]j

6.2. we are looking for 3 scalars cy, c;, c3 that will satisfy: u = c,v| + c,v;, +

3V3
We will get 3 equations:

Q
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X =c1;+¢; +5¢3

y=¢ —3c; —¢3

z=c1+2¢c; —4c3
And we will get ¢; = (x +y +2), ¢; = - (x — 3y + 22), ¢3 = — (5x — y — 42)
@. C1:3,C2:—4,C3:1

7. S={v1,v2,...,vk} vectors in Rn
1.

Consider the linear combination

~

civi+ vy + -+ v = 0.

Our goal is to show thatc; = ¢, = -+ = ¢, = 0.
We compute the dot product of v; and the above linear combination foreachi = 1,2, ..., k:
0= A\ 0

=vVv;-(c1vi + vy + -+ + Cr Vi)
=C1Vi -V +CaV;i - Vo + - + CkVi * Vi.

As S is an orthogonal set, we have v; - v; = 0if i # j.

Hence all terms but the i-th one are zero, and thus we have

0 =cvi-vi = c|lvill*.

Since v; is a nonzero vector, its length ||v;|| is nonzero.

It follows that ¢; = 0.

As this computation holds foreveryi = 1,2, ..., k, we conclude that ¢; = ¢, = -+ = ¢, = 0.
Hence the set S is linearly independent.
7.2.

Suppose that k = n. Then by part (a), the set S consists of n linearly independent vectors in the dimension n vector

space R".

Thus, S is also a spanning set of R”, and hence S is a basis for R".



8. From Schaum (example 7.10)

EXAMPLE 7.10 Apply the Gram-Schmidt orthogonalization process to find an orthogonal basis and
then an orthonormal basis for the subspace U of R* spanned by

v =(1,1,1,1), v, = (1,2,4,5), vy = (1,-3,—4,-2)
(1) Firstset w; = v, = (1,1,1,1).
(2) Compute
e W 12
{opw) — oy ——wy = (~2,-1,1,2)
(wy, wy)

! 4
Set w, = (—2,—1,1,2).
(3) Compute

(v3, W) , (v3,w,) o
"3 (wy, wy) " (wy,w W2 ="

Clear fractions to obtain wy = (—6,—17,—13, 14).
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Thus, wy, w,, w; form an o;‘thogonal bgsis for U. I\iormalize these vectors to obtain an orthonormal basis
{uy,up,uz} of U. We have ||w,[|” =4, ||w,|~ = 10, ||ws]|” =910, so

1 1 1
uy =—(1,1,1,1), U, = —(-2,—-1,1,2), U, = —(16,—-17,-13, 14
1 2( ) b 10( ) 3 910( O )

9. Assume that Q and W are orthogonal matrices. That means that Q7Q = I
and WTW = I. Now let’s calculate (QW)TQW = WTQTQw = WTIw =
WTW = I. Which means that QW is an orthogonal matrix.

11.

- additivity:

Suppose u,v,w € V. Then

(u,v+w) = (v+w,u)
(v,u) + (w,u)
= (v.u) + (w.u)
= (u,v) + (u,w).
- homogeneity (scalar multiplication): show by yourselves.

12.

b

”l-\‘ ’ = (0.0 ) =12 (v,v) =%y




