Exercise for chapter 8 - solution

1. If the columns of a square matrix A are linearly dependent, it means that the column space that span the parallelogram after applying A is lower than the original dimension. This means that the volume of the unit parallelogram after applying A is 0.

2.

- a. . By direct computation: $\begin{vmatrix} 4 & -3 \\ 5 & 2 \end{vmatrix} = 4 \cdot 2 5 \cdot (-3) = 23$
- b. 0*()-1(-1*1+0)+0*()=1
- С

This is a triangular matrix, so the determinant is the multiplication of the ele-

ments on the main diagonal:
$$\begin{vmatrix} 2 & 7 & -2 & 6 \\ 0 & -3 & 4 & 4 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & -4 \end{vmatrix} = 2 \cdot (-3) \cdot 1 \cdot (-4) = 24.$$

d. .

Switching rows $R_1 \leftrightarrow R_5$, $R_2 \leftrightarrow R_4$ brings about a diagonal matrix, which determinant equals the determinant of the original matrix, since each row flip multi-

 $1 \cdot 2 \cdot 1 \cdot 1 \cdot 2 = 4.$

3. .

a.

(a)
$$1 = \det AA^T = \det A \cdot \underbrace{\det A^T}_{= \det A} = (\det A)^2$$
. So $(\det A)^2 = 1$, and hence $(\det A) = +1$

b. .

- (b) If we had det $A \neq 0$ then A would be invertible and multiplying by its inverse A^{-1} would give: $A^{-1}A^2 = A^{-1}A$, taht is, A = I, in contradiction to the assumption.
- c. . Since $AA^{-1}=I$, $|AA^{-1}|=1$. This means $|A|\cdot |A^{-1}|=1$. Thus $|A^{-1}|=\frac{1}{|A|}$. Note that we can divide by |A| because A is regular and thus $|A|\neq 0$
- d. A is regular and therefore $AA^{-1} = I$. Now, $(A^m)(A^m)^{-1} = (AA ... A)(AA ... A)^{-1} = (AA ... A)(A^{-1}A^{-1} ... A^{-1}) = (AA ... A)I(A^{-1}A^{-1} ... A^{-1}) = \cdots = I$. And therefore, A^m is regular too.
- 4. We can write A as $A = \begin{bmatrix} x & ax \\ y & ay \end{bmatrix}$. tr(A) = x + ay = 5. so x = 5 ay.

 Therefore: $A = \begin{bmatrix} 5 ay & a(5 ay) \\ y & ay \end{bmatrix}$.

 we can calculate $A^2 = \begin{bmatrix} 5(5 ay) & 5a(5 ay) \\ 5y & 5ay \end{bmatrix}$.
 - a. $tr(A^2) = 25$
 - b. $det(A^2) = 0$ (the columns are dependent).
- 5. Q is a orthogonal matrix so $Q^TQ = I$. Therefore $\det(Q^TQ) = \det(I) = 1$. We know from determinant rules that $\det(Q^TQ) = \det(Q^T) \det(Q) = [\det(Q)]^2$. So $[\det(Q)]^2 = 1$ meaning that $\det(Q) = +1$ or -1.