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Linear Algebra – Lesson 2 
Matrices and linear transformations 

 
1. Linear transformations 
This lesson focuses on how we can manipulate vectors. This will lead us to the concept of matrices. In 
the next lesson we will see how matrices are important for concepts like “change of basis” or the 
solution to a system of linear equations. 
 
1.1 Transformations 
Linear transformations can be thought of as functions that take a vector as input and give a vector as 
output. As you know, a function is a mapping of numbers from one space, called “the domain”, to 
another space, called “the codomain”. 
 
For example, 𝑓(𝑥) = 2𝑥 is a function from the real numbers to the real numbers 𝑓: ℝ → ℝ. 
The codomain can also be different. For example, 𝑓(𝑥) = 𝑓𝑙𝑜𝑜𝑟(𝑥) is a function from the real numbers 
to the integers (𝑓: ℝ → ℤ). 
 
Similarly, a transformation 𝑇 takes as input a vector and returns a vector. 
For example, 𝑇(�̅�) = 2�̅� is a transformation that scales every vector by 2. 
Question: What are the domain and codomain of 𝑇? 
Answer: Well, we didn’t define it. But what is clear is that they are identical. If we start with a vector �̅� ∈

ℝଶ we get another vector in ℝଶ. So we could write 𝑇: ℝଶ → ℝଶ. 
 
Generally, we write: 𝑇: 𝑉 → 𝑊. This reads: “𝑇 is a transformation from vectors in 𝑉 to vectors in 𝑊”. 
 
1.2 Linear transformations 
A special kind of transformation is called a linear transformation. As you saw in the video, we can 
intuitively think of linear transformation as transformations that keep the origin in place, and keep 
parallel lines parallel to each other. 
More formally, a transformation 𝑇 is called a linear transformation iff for any two vectors 𝑢ത, �̅� and any 
scalar 𝑎: 

𝑇(�̅� + 𝑢ത) = 𝑇(�̅�) + 𝑇(𝑢ത) 
𝑇(𝑎�̅�) = 𝑎𝑇(�̅�) 

In other words, it doesn’t matter if you first scale (or add) vectors and then apply the transform, or first 
apply the transform and then scale (or add) them. 
 
Example 1 – is this a linear transform? 

Let 𝑇 be the projection transform 𝑇: ℝଷ → ℝଷ, such that 𝑇 ൭

𝑣ଵ

𝑣ଶ

𝑣ଷ

൩൱ = ቈ
𝑣ଵ

𝑣ଶ

0
. 

Is it linear? To check this, we have to verify the two conditions: 

𝑇 ൭

𝑣ଵ

𝑣ଶ

𝑣ଷ

൩ + 

𝑢ଵ

𝑢ଶ

𝑢ଷ

൩൱ = 𝑇 ൭

𝑣ଵ + 𝑢ଵ

𝑣ଶ + 𝑢ଶ

𝑣ଷ + 𝑢ଷ

൩൱ = 
𝑣ଵ + 𝑢ଵ

𝑣ଶ + 𝑢ଶ

0
൩ 
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And on the other hand: 𝑇 ൭

𝑣ଵ

𝑣ଶ

𝑣ଷ

൩൱ + 𝑇 ൭

𝑢ଵ

𝑢ଶ

𝑢ଷ

൩൱ = ቈ
𝑣ଵ

𝑣ଶ

0
 + ቈ

𝑢ଵ

𝑢ଶ

0
 = 

𝑣ଵ + 𝑢ଵ

𝑣ଶ + 𝑢ଶ

0
൩  

So the first condition is fulfilled. 
The second condition you will prove in the exercise. 
 
1.3 The effect of transforms on the basis vectors 
Notice that to understand what a certain linear transform does, we don’t have to go and see what it 
does to any given vector. 
In fact, it’s enough to know what it does to the basis vectors. Why? Because any vector �̅� is just a linear 
combination of the basis vectors: 

�̅� = ቂ
𝑣ଵ

𝑣ଶ
ቃ = 𝑣ଵ𝚤̂ + 𝑣ଶ𝚥̂ 

And so, by definition of a linear transform: 
𝑇(�̅�) = 𝑇(𝑣ଵ𝚤̂ + 𝑣ଶ𝚥̂) = 𝑣ଵ𝑇(𝚤)̂ + 𝑣ଶ𝑇(𝚥̂) 

In other words, to apply a linear transformation on �̅�, we can decompose �̅� to its basis components, 
apply the transformation separately for each components, and then add them together. 
 
As an example, let’s look at the rotation transform, which rotates every vector by 90 degrees clockwise. 

𝑇ଽ ቀቂ
2
3

ቃቁ =? 

𝑇ଽ(�̂�) = 𝑇ଽ ቀቂ
1
0

ቃቁ = ቂ
0

−1
ቃ,      𝑇ଽ(𝚥̂) = 𝑇ଽ ቀቂ

0
1

ቃቁ = ቂ
1
0

ቃ 

So 𝑇ଽ ቀቂ
2
3

ቃቁ = 2 ቂ
0

−1
ቃ + 3 ቂ

1
0

ቃ = ቂ
3

−2
ቃ 

 
Now, imaging that we want to a quick “recipe” for calculating this transformation, so we don’t have to 
go through these steps every time we get a new vector. To do so, we can generally write  

for any vector ቂ
𝑥
𝑦ቃ: 

𝑇ଽ ቀቂ
𝑥
𝑦ቃቁ = 𝑥 ቂ

0
−1

ቃ + 𝑦 ቂ
1
0

ቃ = 
0 ∙ 𝑥 + 1 ∙ 𝑦

−1 ∙ 𝑥 + 0 ∙ 𝑦
൨ 
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This is the most important point:  
If 𝒗ഥ is a linear combination of some basis vectors, the transformed 𝑻(𝒗ഥ) is the same linear 
combination, but of the transformed basis vectors1. 
This leads us the useful notation of matrix representation. 
 
 
2. Matrix representation of linear transformations 
2.1 Intuition to matrix representation 

Now, let’s say we’re dealing with a different transformation, a general one, that takes 𝚤 ̂to ቂ
𝑎
𝑐

ቃ and 𝚥̂ to 

ቂ
𝑏
𝑑

ቃ. What will be the result of applying this transformation to ቂ
𝑥
𝑦ቃ? 

𝑥 ቂ
𝑎
𝑐

ቃ + 𝑦 ቂ
𝑏
𝑑

ቃ = 
𝑎𝑥 + 𝑏𝑦
𝑐𝑥 + 𝑑𝑦

൨ 

 
We can represent our transformation with a matrix, an array of numbers, that tells us where each basis 
vector “lands”: 

ቂ
𝑎 𝑏
𝑐 𝑑

ቃ 

This is the matrix representation of the transform. 
The first column tells us where 𝚤 ̂lands, and the second column tells us where 𝚥̂ lands. 
 
To apply the transform on a vector, we do what’s called “matrix multiplication”: 

ቂ
𝑎 𝑏
𝑐 𝑑

ቃ ቂ
𝑥
𝑦ቃ = 𝑥 ቂ

𝑎
𝑐

ቃ + 𝑦 ቂ
𝑏
𝑑

ቃ = 
𝑎𝑥 + 𝑏𝑦
𝑐𝑥 + 𝑑𝑦

൨ 

So the result of matrix-vector multiplication is just the appropriate linear combination of the column 
vectors of the matrix. 
 
In other words, multiplying a vector by a matrix is the same as applying the appropriate transformation 
to that vector. A matrix is the coordinate-based description of a linear transformation (which by itself 
need not have a coordinate system attached to it)2. 
 
Example – Matrix-vector multiplication as linear transformation 
What does the following matrix “do” to a vector? 

ቂ
2 0
0 1

ቃ 

We just have to imagine what it does to the basis vectors. So 𝚥̂ remains unchanged, but 𝚤 ̂moves to ቂ2
0

ቃ. 

In other words, this transformation expands any vector on the x axis, and does nothing on the y axis. 
 
Note: This matrix is called a diagonal matrix, because all its off-diagonal terms are zero (∀𝑖 ≠ 𝑗: 𝑎 =

0). 
 
2.2 Matrix notation 

                                                           
1 You can see this in video 3 in 3blue1brown, 3:45. 
2 This is discussed in Strang’s lecture 31. 
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While we denote vectors by lowercase letter, we denote matrices by capital letters: A,B etc. 
So multiplying a vector �̅� by a matrix 𝐴 is written as 𝐴�̅�. 
 
Also, while for vectors we only needed one index to refer to different entries (𝑣ଵ, 𝑣ଶ 𝑒𝑡𝑐.), matrices 
require two indices. By convention, the first index represents the row, and the second represents the 
column: 

𝐴 = ቂ
2 3
0 5

ቃ   →     𝑎ଵଵ = 2, 𝑎ଵଶ = 3, 𝑎ଶଵ = 0, 𝑎ଶଶ = 5 

As you can see, we usually use lower-case letters to refer to specific terms in the matrix. 
 
2.3 Matrix vector multiplication using Σ notation 
We can define the product of matrix-vector multiplication in the general case. Let 𝐴× be a matrix with 
𝑚 rows and 𝑛 columns, and �̅� be a vector in ℝ. Then the ith entry of the new vector 𝐴�̅� is: 

[𝐴�̅�] =  𝐴�̅�



ୀଵ

 

 
3. Image (column space), rank, kernel (null space) 
Given a matrix 𝐴 which maps vectors from 𝑉 to 𝑈: 

𝐴: 𝑉 → 𝑈 
There are two interesting spaces we are interested in, called the Image of 𝐴 (𝐼𝑚(𝐴)) and the kernel of  
(ker (𝐴)). 
 
3.1 𝐼𝑚(𝐴), the Image of a matrix, the column space of a matrix 
A basic property we might want to know about a matrix is what 
its image is – what are the possible vectors it can give us. In other 
words – what is the span of the column vectors of the matrix? 
The span of the columns of a matrix is also called “the column 
space” of that matrix, the “image” of the matrix, or the “range” of 
the matrix. It is noted 𝐼𝑚(𝐴). Naturally, 𝐼𝑚(𝐴) ∈ 𝑈. 
 
3.1.2 The rank 
The dimension of the 𝐼𝑚(𝐴) is called the “rank of the A”: 

𝑟𝑎𝑛𝑘(𝐴) = dim൫𝐼𝑚(𝐴)൯ 
This is also called the column rank of 𝐴. 
 
Similarly, the row rank is defined as the dimension of the row space (the space spanned by the rows of 
the matrix). A theorem says that the column rank and row rank are equal. We can therefore talk about 
the rank of a matrix (knowing that it refers to both definitions). 
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3.2 Kernel, null space 
A special case which will become very important when we use 
matrices to solve real-world problems, is the case in which a 
vector �̅� is mapped to the 0 vector. The set of all vectors that 𝐴 
maps to the 0 vector is called the “null space” or “kernel”. 
Naturally, 𝑘𝑒𝑟(𝐴) ∈ 𝑉. 
Given 𝐴×:  𝑘𝑒𝑟(𝐴) = {�̅� ∈ 𝑉|𝐴�̅� = 𝑜} 
 
3.2.1 Nullity of A 
The dimension of ker (𝐴) is called the “nullity of A”: 

𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝐴) = dim (ker(𝐴)) 
 
Example – null space 
For example, let’s look at the matrix A: 

𝐴 = ቀ
0 0
0 1

ቁ 

Question: What linear transformation does it represent? What is its image? What is its kernel? 
Answer: The matrix 𝐴 represents a projection onto the y-axis (onto 𝚥̂). 

Therefore, its image is the y-axis: 𝐼𝑚(𝐴) = ቄ�̅� = ቀ
𝑣ଵ

𝑣ଶ
ቁ |𝑣ଵ = 0, 𝑣ଶ ∈ ℝቅ 

What about its kernel? We can see that 𝐴 will take any vector on the x-axis (i.e., along 𝚤)̂ to 0. So its null 

space is 𝐾𝑒𝑟(𝐴) = 𝑛𝑢𝑙𝑙𝑠𝑝(𝐴) = ቄ�̅� = ቀ
𝑣ଵ

𝑣ଶ
ቁ |, 𝑣ଵ ∈ ℝ, 𝑣ଶ = 0ቅ 

 
 
Example 2 – Rank of a matrix 

What is the rank of 𝐴 = ቂ
1 −3
2 −6

ቃ? 

Geometrically, this matrix transforms 𝚤 ̂to ቂ1
2

ቃ and 𝚥̂ to ቂ−3
−6

ቃ. We can see that any vector in the image of 

𝐴 will therefore fall on this line. The dimension of a line is 1, and therefore 𝑟𝑎𝑛𝑘(𝐴) = 13. 
Note that we could also solve it in a different way. As you remember from the exercise, given a set of 
vectors, the dimension of their span is the maximum number of linearly independent vectors you can 
choose from them. It is easy to see that 𝑎തଶ = 3𝑎തଵ, and therefore 𝑑𝑖𝑚(𝑆𝑃({𝑎തଵ, 𝑎തଶ}) = 1. 
 
There is an easy algorithm for finding the rank of a matrix, we might talk about it later in the course. 
But in fact, sometimes you can just “see” what the rank is, if you can figure out linear dependencies 
between the columns. 
 
3.3 Rank-nullity theorem 
When we solve real-world problems, the rank and nullity have very important consequences. An 
important theorem that relates them is the rank-nullity theorem: 
 
Left 𝐴: 𝑉 → 𝑈 be a linear transformation (𝑉 is finite). Then: 

                                                           
3 You can see a similar example in video 3 of 3blue1brown, 9:20. 
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dim(𝑉) = dim(ker(𝐴)) + dim൫𝐼𝑚(𝐴)൯ = 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝐴) + 𝑟𝑎𝑛𝑘(𝐴) 
 

We will not prove this theorem. 

 

4. Composite transformations 
4.1 Composite transformations as matrix multiplication 
So far we’ve seen different transformations, like rotation, scaling and shear. But what happens if we 
want to apply two transformation one after the other? 
 
Let A be a 2x2 rotation matrix of 90 degrees counterclockwise, and B be a 2x2 matrix that scales 𝚤 ̂by 3. 
First, let’s find A and B (by thinking about where 𝚤 ̂and 𝚥̂ land: 
 

𝐴 = ቀ
0 −1
1 0

ቁ , 𝐵 = ቀ
3 0
0 1

ቁ 

 
Now, given a vector �̅�, we want to first rotate, then scale. We first apply the rotation transformation: 

𝐴�̅� 
This will give us a new vector. Now, we can apply the second transformation to this new vector: 

𝐵(𝐴�̅�) = 𝐵𝐴�̅� 
Let’s see a concrete example: 

�̅� = ቀ
1
2

ቁ 
                Read right to left ← 

𝐵𝐴�̅� = ቀ
3 0
0 1

ቁ ቀ
0 −1
1 0

ቁ ቀ
1
2

ቁ = ⋯ 

 
In fact, we could simply compute one new matrix that combines the two transformations: 

𝐵𝐴 = ቀ
3 0
0 1

ቁ ቀ
0 −1
1 0

ቁ = ⋯ 

Matrix multiplication is simply a series of matrix-vector multiplications. 
 
Another way to look at matrix multiplication 
Another way to look at matrix multiplication is using a formula4. 

𝐴𝐵 = 𝐶 
To find a formula for the general element 𝐶, let’s look at a specific example, say 𝐶ଷସ. 

𝐶ଷସ = (𝑟𝑜𝑤 3 𝑜𝑓 𝐴) ∙ (𝑐𝑜𝑙𝑢𝑚𝑛 4 𝑜𝑓 𝐵) 
This is called a “dot product” between two vectors, and we will learn about it later in the course. In 
essence, it is the sum of the element-by-element products: 

𝑐ଷସ = 𝑎ଷଵ𝑏ଵସ + 𝑎ଷଶ𝑏ଶସ + ⋯ + 𝑎ଷ𝑏ସ =  𝑎ଷ𝑏ସ



ୀଵ

 

And in general: 

                                                           
4 See examples and explanations at the beginning of video 3 from Gilbert Strang’s videos. 
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𝑐 = 𝑎→ 𝑏↓ =  𝑎𝑏



ୀଵ

 

The following diagram from wikipedia also helps visualizing how each element in the product matrix is 
calculated: 

 

Another visual explanation for matrix-matrix multiplication can be found in the book “No bullshit guide 
to linear algebra”: 

 
 

  

 
 
4.2 The order matters in matrix multiplication 
Does the order matter? Looking at the previous example, we can easily see that in general: 

𝐴𝐵 ≠ 𝐵𝐴 
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4.3 Associativity 
What if we have 3 matrices? What does it mean to have the product ABC? 
Well, right now, it doesn’t mean anything, because we only defined matrix multiplication for 2 matrices. 
This is where the property of associativity comes in. Associativity means that given 3 matrices A,B,C: 

(AB)C=A(BC) 
This simply means, that the order by which you compute the final matrix, doesn’t matter (although the 
order of the matrices themselves, A,B,C, does matter, as we saw above). 
 
How can we prove this? 
Although annoying, you can simply calculate this product in two ways: 

ቀ
𝑎 𝑏
𝑐 𝑑

ቁ ൬
ℎ 𝑖
𝑗 𝑘

൰ ቀ
𝑤 𝑥
𝑦 𝑧ቁ = ൬

𝑎ℎ + 𝑏𝑗 𝑎𝑖 + 𝑏𝑘
𝑐ℎ + 𝑑𝑗 𝑐𝑖 + 𝑑𝑘

൰ ቀ
𝑤 𝑥
𝑦 𝑧ቁ = ⋯ 

 
 
5. Matrix addition and scalar multiplication 
5.1 Matrix addition 
Matrix addition is very intuitively defined as the addition of the corresponding elements. 
The sum of two matrices A and B of the same size (written A+B) is a matrix defined by adding the 
corresponding elements from A and B: 

 
 
5.2 Matrix scalar multiplication 
The product of a matrix A and a scalar k (written as kA) is a matrix obtained by multiplying each element 
of A by k: 

 
 
5.3 Left and right distributivity (of matrix product with respect to matrix addition) 
Distributivity (הוצאת גורם משותף) of the matrix product means: 

𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 
(𝐵 + 𝐶)𝐷 = 𝐵𝐷 + 𝐶𝐷 

This is easy to show by thinking about the ij-th element of the resulting matrix: 

 𝑎(𝑏 + 𝑐)



=  𝑎𝑏



+  𝑎𝑐



 

And similarly for left distributivity. 
In other words, the distributivity property for matrices results from the distributivity property of scalars. 
 
6. Non-square matrices 
So far we saw only square matrices. But matrices don’t have to be square, and in general we talk about 
matrices of size 𝑚 × 𝑛, where 𝑚 is the number of rows and 𝑛 is the number of columns. 
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What does a non-square matrix “do”? It takes vectors from n-dimensional space, and maps them to 
vectors in m-dimensional space: 
𝐴×: ℝ → ℝ 
 
Question: Given two matrices 𝐴షష

, 𝐵 What condition must be fulfilled for matrix multiplication AB to 
be defined? 
Answer: The columns of 𝐴 must be the same dimension as the rows of 𝐵. 
Why? Well, the columns of 𝐵 tell us where each basis vector ends up. Now, these vectors are described 
with 𝑘 elements, meaning they live in k-dimensional space, with k basis vectors. Since we need to know 
where each one of them ends up after applying 𝐴, the matrix 𝐴 must have 𝑘 columns.  
 
An easy way to remember this is that the adjacent subscripts must be the same: 𝐴𝐵 
 
7. Summary 
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A note about the identity matrix and scalar matrices (taken from Schaum):  

 


